Formation and Reactions of Stannanethiones and Stannaneselones

Yasusuke Matsuhashi, Norihiro Tokitoh, and Renji Okazaki*

Department of Chemistry, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Midori Goto

National Chemistry Laboratory for Industry, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan

Received February 22, 1993

Two approaches for the formation of stannanethiones and stannaneselones were examined, i.e., (i) the thermal retrocycloaddition of trichalcogenastannolanes 1 and (ii) the dechalcogenation of tetrachalcogenastannolanes 2 and 3. Novel heterocycles containing tin and chalcogen atoms, 1,2,4,3-trichalcogenastannolanes Tb(Tip)SnY₃CPh₂ [1a,b (Y = S, Se; Tb = 2,4,6-tris[bis-(trimethylsilyl)methyl]phenyl; Tip = 2,4,6-triisopropylphenyl)], have been synthesized by the thermal reaction of 1,2,3,4,5-tetrachalcogenastannolanes Tb(Tip)SnY₄ (3) with diphenyldiazomethane followed by dechalcogenation with hexamethylphosphoric triamide. Thermal decomposition of trichalcogenastannolanes 1 in the presence of dimethyl acetylenedicarboxylate (DMAD) afforded thiastannete 8 and selenastannete 14 as novel tin-containing heterocycles. The formation of 8 and 14 was explained in terms of a [2 + 2] cycloaddition of intermediary stannanethione 18a and stannaneselone 18b with DMAD. Dechalcogenation of tetrachalcogenastannolanes 2 and 3 with trivalent phosphorus compounds in the absence of trapping agents gave dichalcogenadistannetanes whose formation was explained in terms of dimerization of stannanethione 18a or stannaneselone 18b, except for the reaction of more crowded triisopropylphenyl-substituted 3a which gave a monomeric product 28 at room temperature on account of a slower rate of dimerization. The desulfurization of 3a with triphenylphosphine in the presence of an excess amount of 2,3-dimethyl-1,3-but diene provided [4 + 2] cycloadduct 32 as the first example of [4 + 2] cycloaddition of a stannanethione. The structures of 26, 27, 31, 8, and 14 were definitely determined by X-ray diffraction analysis. The central four-membered rings of trans-dichalcogenadistannetanes 26 and 31 were almost completely planar, while those of cis-27 had unprecedentedly large fold angles due to the steric repulsion between two Tb groups. Both 8 and 14 were found to have distorted trapezoid skeletons reflecting the coexistence of long tin-chalcogen bonds and short carbon-carbon double bonds.

Introduction

For many years, it was considered that compounds featuring double bonds between heavier main-group elements would not be stable because of weak $p\pi$ - $p\pi$ bonding. From the isolation in 1981 of the first stable compounds with Si=C,1 Si=Si,2 and P=P3 double bonds using sufficiently large ligands which prevented their oligomerization (kinetic stabilization), many unsaturated compounds containing group 14 and 15 elements were isolated.⁴ As for stable double-bond compounds between group 14 and 16 elements, there have been relatively

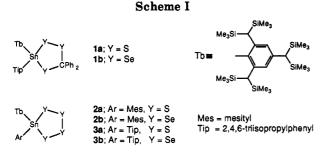
extensive studies on thicketones over several decades,⁵ while those on selenoketones started in the 1970s⁶ and those on thio- and selenoaldehydes were undertaken about 10 years ago.⁷ On the other hand, very little is known for stable metallathiones and metallaselones of heavier group 14 metals (RR'M=Y; M = Si, Ge, Sn, and Pb; Y = S, Se), although there have recently been reported some examples of silanethione,⁸ silaneselone,⁸ and germanethione⁹ stabilized by taking advantage of the intramolecular coordination of nitrogen atoms to the double bond (thermo-

⁽¹⁾ Brook, A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R. K. J. Chem. Soc., Chem. Commun. 1981, 191.

⁽²⁾ West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.

⁽³⁾ Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. 1981, 103, 4587.

⁽⁴⁾ For reviews on multiple bond compounds containing group 14 and (4) For reviews on multiple bond compounds containing group 14 and 15 elements, see the followings. Group 14: (a) Tsumuraya, T.; Batchellar, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1991, 30, 902. (b) Barrau, J.; Escudié, J.; Stagé, J. Chem. Rev. 1990, 90, 283. (c) Raabe, G.; Michl, J. The Chemistry of Organosilicon Compounds; Patai, S.; Rappoport, Z., Eds.; Wiley-Interscience: New York, 1989; Chapter 17, p 1015. (d) West, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 1201. (e) Brook, A. G.; Baines, K. M. Adv. Organomet. Chem. 1986, 25, 1. (f) Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419. (g) Wiberg, N. J. Organomet. Chem. 1984, 273, 141. Group 15: (h) Multiple Bonds and Low Coordination in Phosphorus Chemistry; Regitz, M., Scherer, O. J.; Eds.; George Thieme Verlag: New York, 1990. (i) Regitz, M.; Binger, P. Angew. Chem., Int. Ed. Engl. 1988, 27, 1484. (j) Cowley, A. H.; Norman, N. C. Prog. Inorg. Chem. 1986, 34, 1. (k) Lochschmidt, S.; Schmidpeter, A. Prog. Inorg. Chem. 1986, 34, 1. (k) Lochschmidt, S.; Schmidpeter, A. Phosphorus Sulfur 1987, 29, 73.


⁽⁵⁾ Duus, F. Comprehensive Organic Chemistry; Barton, D. H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, p 373.

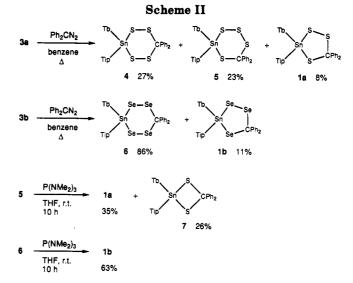
^{(6) (}a) Magnas, P. D. Comprehensive Organic Chemistry; Barton, D. H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, Part 12. (b) Jensen, K. A.; Kjaer, A. The Chemistry of Organic Selenium and Tellurium Compounds; Patai, S., Rappoport, Z., Eds.; Wiley-Inter-science: New York, 1986; Vol. 1, Chapter 1. (c) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986; Chapter 3.

^{(7) (}a) Okazaki, R.; Ishii, A.; Fukuda, N.; Oyama, H.; Inamoto, N. J. Chem. Soc., Chem. Commun. 1982, 1187. (b) Vedejs, E.; Perry, D. A.; Wilde, R. G. J. Am. Chem. Soc. 1986, 108, 2985. (c) Okazaki, R.; Ishii, Wilde, R. G. J. Am. Chem. Soc. 1986, 108, 2955.
 (c) Okazaki, R.; Isnii, A.; Inamoto, N. J. Am. Chem. Soc. 1987, 109, 279.
 (d) Okazaki, R.; Kumon, N.; Inamoto, N. J. Am. Chem. Soc. 1989, 111, 5949.
 (e) Ando, W.; Ohtaki, T.; Suzuki, T.; Kabe, Y. J. Am. Chem. Soc. 1991, 113, 7782.
 For reviews, see: Okazaki, R. Yuki Gosei Kagaku Kyokai Shi 1988, 46, 1149; Usov, X. A.; Timokhina, L. V.; Voronkov, M. G. Sulfur Rep. 1992, 12, 95.
 (8) Arya, P.; Boyer, J.; Carré, F.; Corriu, R.; Lanneau, G.; Lapasset, J.;

Perrot, M.; Priou, C. Angew. Chem., Int. Ed. Engl. 1989, 28, 1016.

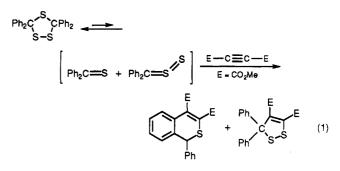
^{(9) (}v) Veith, M.; Becker, S.; Huch, V. Angew. Chem., Int. Ed. Engl. 1989, 28, 1237. (b) Veith, M.; Detemple, A.; Huch, V. Chem. Ber. 1991, 124, 1135.

dynamic stabilization). Reports on tin-chalcogen doublebond compounds are even more scarce because of their lower π -bond energy (for example, the value for Sn=S is 31.8 kcal mol⁻¹ while those for C=S, Si=S, and Ge=S are 56.1, 46.2, and 40.0 kcal mol⁻¹, respectively).¹⁰ Indeed, sterically unhindered stannanethiones and stannaneselones have been known to undergo oligomerization; Ph₂-SnS and Me₂SnS have the corresponding trimeric structures¹¹ while di-*tert*-butyltin chalcogenides *t*-Bu₂SnY (Y = S, Se, and Te) occur as dimers both in the solid state and in solution.¹²


In continuation of our work on thio- and selenocarbonyl compounds, we became interested in the chemistry of tinsulfur and tin-selenium double bonds. In this paper, we report on (i) a novel mode of generation of stannanethiones and stannaneselones from trichalcogenastannolanes and tetrachalcogenastannolanes, (ii) their characteristic reactivities, and (iii) the crystallographic analyses of some reaction products with unique structures which are formed from these novel double-bond species.

Results and Discussion

We used two approaches for the generation of stannanethiones and stannaneselones, i.e., the thermal retrocycloaddition of trichalcogenastannolanes 1 and the dechalcogenation of tetrachalcogenastannolanes 2 and 3.


In these heterocycles 1-3, bulky substituents such as mesityl, 2,4,6-triisopropylphenyl (Tip), and 2,4,6-tris[bis-(trimethylsilyl)methyl]phenyl (Tb) are introduced onto tin atoms in the hope of obtaining stannanethiones and stannaneselones of as high stability as possible. We have already reported the synthesis of 1,2,3,4,5-tetrachalcogenastannolanes Tb(Ar)SnY₄ 2 and 3.¹³

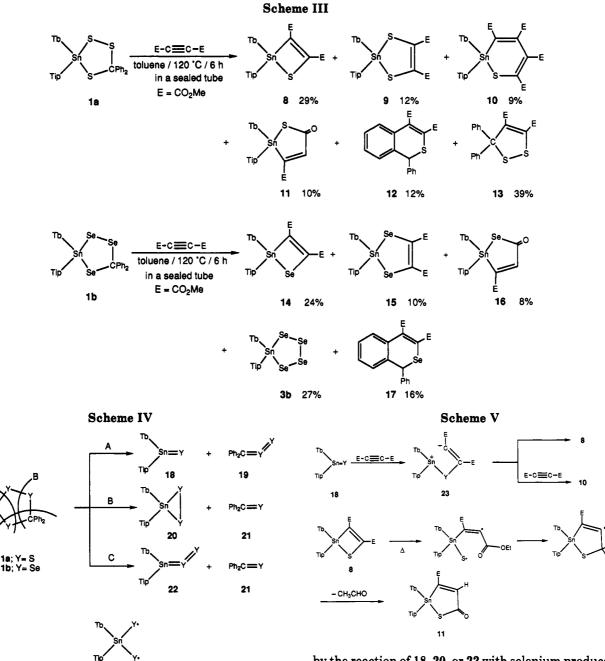
I. Thermal Decomposition of 1,2,4,3-Trichalcogenastannolanes 1.¹⁴ (a) Preparation of 1,2,4,3-Trichalcogenastannolanes 1. When 1,2,3,4,5-tetrathiastannolane 3a bearing Tb and Tip substituents was treated with an excess amount of diphenyldiazomethane in refluxing benzene for 10 h, two isomeric products, i.e., 1,2,4,5tetrathia-3-stannacyclohexane 4 and 1,2,3,5-tetrathia-4stannacyclohexane 5, were isolated in 27 and 23% yields, respectively, together with 1,2,4,3-trithiastannolane 1a (8%). Similarly, the thermal reaction of 1,2,3,4,5-tetraselenastannolane 3b with diphenyldiazomethane resulted

in the formation of 1,2,4,5-tetraselena-3-stannacyclohexane 6 and 1,2,4,3-triselenastannolane 1b in 86 and 11% yields, respectively. Tetrathiastannacyclohexane 5 was readily desulfurized by the reaction with an equimolar amount of hexamethylphosphoric triamide in THF at room temperature to afford 1,2,4,3-trithiastannolane 1a (35%) and 1,3,2-dithiastannetane 7 (26%) along with recovered 5 (12%), while, under similar conditions, tetraselenastannacyclohexane 6 underwent deselenation more readily leading to the exclusive formation of 1,2,4,3-tetraselenastannolane 1b in 63% yield (Scheme II).

(b) Thermal Decomposition of Trichalcogenastannolanes 1 in the Presence of Dimethyl Acetylenedicarboxylate (DMAD) and Trapping of Intermediary Stannanethione and Stannaneselone by [2 + 2]Cycloaddition Reaction. Huisgen and Rapp previously reported the thermal dissociation of 3,3,5,5tetraphenyl-1,2,4-trithiolane into thiobenzophenone and the corresponding thiosulfine, both of which were trapped by DMAD to afford benzothiopyran and 1,2-dithiolane derivatives, respectively (eq 1).¹⁵

We anticipated that similar thermal retrocycloaddition of 1,2,4,3-trichalcogenastannolanes 1, a tin analog of a trithiolane, would lead to the formation of a reactive species containing a tin-chalcogen double bond.

When 1a was heated $(120 \,^{\circ}C)$ in toluene in the presence of DMAD in a sealed tube until 1a was consumed (¹H NMR), products 8-13 were obtained after chromatographic separation in yields as shown in Scheme III. A similar reaction for 1b gave 14-17 and 3b. Because of their unsymmetric structures, there are three conceivable dissociation pathways (A-C) for 1 as shown in Scheme IV. The products 8 and 13 are formed by the cycloaddition of


⁽¹⁰⁾ Calculated with HF/DZ (d, p). Nagase, S. Unpublished results.
(11) (a) Schumann, H. Z. Anorg. Allg. Chem. 1967, 354, 192. (b)
Menzebach, B.; Bleckmann, P. J. Organomet. Chem. 1975, 91, 291.

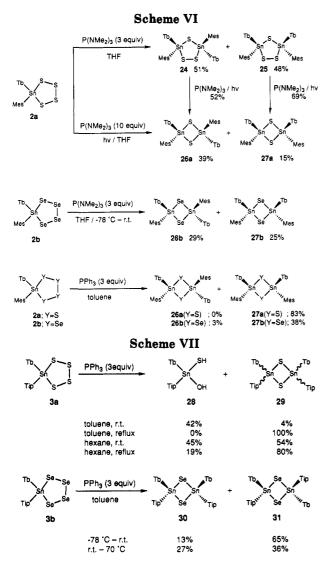
⁽¹²⁾ Puff, H.; Gattermayer, R.; Hundt, R.; Zimmer, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 547.

^{(13) (}a) Tokitoh, N.; Suzuki, H.; Matsumoto, T.; Matsuhashi, Y.;
Okazaki, R.; Goto, M. J. Am. Chem. Soc. 1991, 113, 7047. (b) Tokitoh,
N.; Takahashi, M.; Matsumoto, T.; Suzuki, H.; Matsuhashi, Y.; Okazaki,
R. Phosphorus, Sulfur, Silicon 1991, 59, 161. (c) Tokitoh, N.; Matsuhashi,
Y.; Okazaki, R. Tetrahedron Lett. 1991, 32, 6151. (d) Matsuhashi, Y.;
Tokitoh, N.; Okazaki, R.; Goto, M.; Nagase, S. Organometallics 1993, 12, 1351.

⁽¹⁴⁾ Preliminary reports. (a) Tokitoh, N.; Matsuhashi, Y.; Okazaki, R. Tetrahedron Lett. 1992, 33, 5551. (b) Tokitoh, N.; Matsuhashi, Y.; Okazaki, R. J. Chem. Soc., Chem. Commun. 1993, 407.

^{(15) (}a) Huisgen, R.; Rapp, J. J. Am. Chem. Soc. 1987, 109, 902. (b) Huisgen, R. Phosphorus, Sulfur, Silicon 1989, 43, 63.

DMAD with stannanethione 18a and thioxothiobenzophenone (19a), respectively, generated via path A. However, the formation of 2:1 adduct 10 suggests that the reaction of stannanethione 18a with DMAD proceeds in a stepwise fashion probably involving a zwitterionic intermediate 23 (Scheme V). The formation of thiastannolane 11 is most likely explained by homolytic cleavage of the strained C-S bond of 8 under the reaction conditions followed by loss of acetaldehyde (Scheme V).

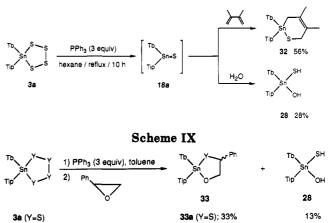

20

The formation of 9 indicates the existence of path B involving 20 (or 20'), which is in contrast with the dissociation pattern of the tetraphenyltrithiolane reported by Huisgen. Since it is known that thio- and selenobenzophenone react with DMAD to give 12 and 17,¹⁶ respectively, 21 formed in paths B and C is thought to result in the formation of 12 and 17. It is reasonably considered that 22 formed in path C rearranges into 20 or loses a chalcogen atom to give 18. The mechanism for the formation of 3b in the reaction of 1b is not clear, but it is probably formed by the reaction of 18, 20, or 22 with selenium produced in the reaction.

The compounds 8 and 14 are of great interest not only as the first examples of [2 + 2]cycloaddition of stannanethione and stannaneselone, respectively, but also as novel tin-containing heterocycles. The successful isolation and noticeable stability of 8 and 14 suggest that the combination of the bulky Tb and Tip groups effectively protects these highly strained molecules against their ringopening reactions by nucleophiles.

II. Dechalcogenation of 1,2,3,4,5-Tetrachalcogenastannolanes 2 and 3 with Trivalent Phosphorus Compounds. (a) Dechalcogenation in the Absence of Trapping Agents.¹⁷ Since the dechalcogenation of tetrachalcogenastannolanes 2 and 3 is considered to be a reasonable approach to stannanethione 18a and stannaneselone 18b, we first studied the reactivity of 2 and 3

^{(16) (}a) Ohno, A.; Koizumi, T.; Ohnishi, Y. Bull. Chem. Soc. Jpn. 1971,
44, 2511. (b) Gotthardt, H.; Nieberl, S. Tetrahedron Lett. 1976, 3563.
(c) Gotthardt, H.; Nieberl, S. Liebigs Ann. Chem. 1980, 867. (d) Okuma,
K.; Kojima, K.; Kaneko, I.; Ohta, H. Tetrahedron Lett. 1992, 33, 1333.
(17) Preliminary report: Tokitoh, N.; Matsuhashi, Y.; Goto, M.;
Okazaki, R. Chem. Lett. 1992, 1595.



toward trivalent phosphorus compounds. The results for mesityl-substituted stannolane 2 and triisopropylphenylsubstituted stannolane 3 are shown in Schemes VI and VII, respectively.

Except for the thermal reaction of 2a with $P(NMe_2)_3$ and that of 3a with PPh₃, there were obtained only dichalcogenadistannetanes whose formation was most likely explained in terms of dimerization of stannanethione 18a or stannaneselone 18b (or the corresponding mesity) derivatives). The mechanism for the formation of 24 and 25 from 2a is not clear, but the formation of 26a and 27a in the photodesulfurization of 2a is thought to proceed via 24 and 25, respectively, because the photodesulfurization of 24 and 25 under similar conditions gave 26a and 27a. respectively. Although the reaction of mesityl-substituted tetrathiastannolane 2a with 3 equiv of PPh_3 gave only dimeric products, a similar reaction of more crowded triisopropylphenyl-substituted 3a gave a monomeric product 28, preferentially at room temperature in particular. This suggests that the more crowded stannanethione Tb-(Tip)Sn=S (18a) undergoes much slower dimerization than the less crowded stannanethione Tb(Mes)Sn=S, thus being capable of existing as a monomer in solution and being converted into thiol 28 by trapping with water present either adventitiously in the reaction solution or in the workup procedure.

(b) Trapping of Intermediary Stannanethione 18a by [4 + 2]Cycloaddition Reaction. In order to trap stannanethione 18a expected to be formed by the above

desulfurization reaction of 3a, the reaction of 3a with 3 equiv of PPh₃ was carried out in refluxing hexane in the presence of an excess amount of 2,3-dimethyl-1,3-butadiene (Scheme VIII).

3b (Y=Se)

33b (Y=Se); 53%

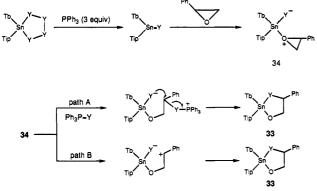
The reaction proceeded cleanly to give [4 + 2]cycloadduct 32 (56%) along with the thiol 28 (28%) which was considered to be formed by a mechanism similar to that described in Scheme VII. Since it is well-known that thioketones and thioaldehydes undergo facile [4 + 2]cycloaddition with dienes,¹⁸ the formation of a good yield of 32 provides definite evidence for the generation of stannanethione 18a in the desulfurization of 3a. It should be noted that this represents the first example of [4 + 2]cycloaddition of a stannanethione.

(c) Dechalcogenation of Tetrachalcogenastannolanes in the Presence of Epoxides. In view of the report that a transient germanethione can be trapped by an epoxide,¹⁹ we became interested in the reaction of stannanethione 18a and stannaneselone 18b with an epoxide. When 3a was allowed to react with PPh₃ (3 equiv) in toluene at 90 °C in the presence of styrene oxide, oxathiastannolane 33a (33%) and thiol 28 (13%) were obtained. Similarly, 3b gave oxaselenastannolane 33b (53%) (Scheme IX).

The formation of **33a** and **33b** is most likely explained in terms of the reaction of stannanethione **18a** and stannaneselone **18b** with the epoxide to give **34** followed by nucleophilic attack by triphenylphosphine sulfide (or selenide), necessarily produced in the dechalcogenation step, and subsequent ring closure with loss of Ph₃P=Y (nucleophilic assistance) (Scheme X; path A), although the possibility of direct ring opening at α -carbon to the phenyl group (Scheme X; path B) cannot be excluded. It has been known that a phosphine sulfide²⁰ and a phosphine selenide²¹ can undergo a nucleophilic ring opening of an epoxide in the presence of an acid catalyst.

III. Structures of Dichalcogenadistannetanes (26, 27, and 31) and Chalcogenastannetes (8 and 14). The

^{(18) (}a) Middleton, W. J. J. Org. Chem. 1965, 30, 1390. (b) Schönberg,
A.; König, B. Chem. Ber. 1968, 101, 725. (c) Ohnishi, Y.; Akasaki, Y.;
Ohno, A. Bull. Chem. Soc. Jpn. 1973, 46, 3307. (d) Baldwin, J. E.; Lopez,
R. C. G. Tetrahedron 1983, 39, 1487. (e) Kirby, G. W.; Lochead, A. W.;
Sheldrake, G. N. J. Chem. Soc., Chem. Commun. 1984, 922. (f) Krafft,
G. A.; Meinke, P. T. Tetrahedron Lett. 1985, 26, 1947. (g) Vedejs, E.;
Eberlein, T. H.; Mazur, D. J.; McClure, C. K.; Perry, D. A.; Ruggeri, R.;
Schwartz, E.; Stults, J. S.; Varie, D. L.; Wilde, R. G.; Wittenberger, S. J.
Org. Chem. 1986, 51, 1556. (h) Segi, M.; Nakajima, T.; Suga, S.; Murai,
S.; Ryu, I.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1988, 110, 1976.


⁽¹⁹⁾ Barrau, J.; Rima, G.; Lavayssiere, H.; Dousse, J.; Satgé, J. J. Organomet. Chem. 1983, 246, 227.

 ⁽²⁰⁾ Chan, T. H.; Finkenbine, J. R. J. Am. Chem. Soc. 1972, 94, 2880.
 (21) Chan, T. H.; Finkenbine, J. R. Tetrahedron Lett. 1974, 2091.

. . .

	Table I.Crystal Data for 26, 27, 31, 8, and 14									
	26a	26b	27a	27b	31	8	14			
formula M	$\begin{array}{c} C_{72}H_{140}Sn_2Si_{12}S_2\\ 1644.52 \end{array}$	$\frac{C_{72}H_{140}Sn_2Si_{12}Se_2}{1738.31}$	$\begin{array}{c} C_{72}H_{140}Sn_2Si_{12}S_2\\ 1644.52 \end{array}$	$C_{72}H_{140}Sn_2Si_{12}Se_2$ 1738.31	$C_{84}H_{164}Sn_2Si_{12}Se_2$ 1906.55	C ₄₈ H ₈₈ O ₄ SSi ₆ Sn 1048.48	C ₄₈ H ₈₈ O ₄ SeSi ₆ Sn 1095.38			
crystal size, mm	$0.46 \times 0.4 \times 0.4$	0.37 × 0.16 × 0.16	$0.3 \times 0.2 \times 0.2$	$0.53 \times 0.3 \times 0.3$	0.8 × 0.6 × 0.5	0.7 × 0.75 × 0.15	$0.3 \times 0.4 \times 0.2$			
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	triclinic			
space group	C2/c	C2/c	C2/c	C2/c	$P2_1/a$	PĪ	PĨ			
a, Å	16.489(3)	16.416(3)	20.916(5)	20.868(7)	27.219(7)	12.401(6)	12.366(2)			
b, Å	20.441(2)	20.365(2)	15.390(1)	15.402(2)	13.38(1)	22.001(7)	21.981(5)			
c, Å	28.750(4)	29.241(6)	30.396(5)	30.598(8)	31.539(6)	12.359(3)	12.368(4)			
α , deg						95.91(2)	100.76(2)			
β , deg	102.21(1)	101.13(1)	103.82(1)	104.40(1)	110.00(1)	114.94(3)	114.86(2)			
γ , deg						79.17(3)	84.08(2)			
V, Å ³	9471(2)	9591.8(3)	9501.4(3)	9527(4)	10790(9)	3002(2)	2996(1)			
Z	4	4	4	4	4	2	2			
$d_{\text{calcd}},$	1.148	1.203	1.149	1.211	1.173	1.160	1.214			
g cm ⁻³	65.54	68.99	63.55	69.43	12.97	6.11	11.81			
μ , cm ⁻¹			0.047	0.043	0.087	0.073	0.079			
R	0.057	0.046				0.082	0.080			
R _w	0.066	0.054	0.056	0.055	0.111	0.062	0.060			

Scheme X

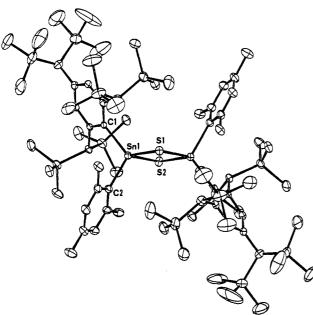


Figure 1. ORTEP drawing of trans- $[Tb(Mes)SnS]_2$ (26a) with thermal ellipsoid plot (20% probability).

newly obtained 1,3,2,4-dichalcogenadistannetanes (26, 27, and 31) and 1,2-chalcogenastannetes (8 and 14) showed satisfactory spectral and analytical data, and their final structures were definitely determined by X-ray crystallographic analysis. Crystal data of 8, 14, 26a, b, 27a, b, and 31 are summarized in Table I. The molecular structures of 26, 27, and 31 are shown in Figures 1–5, and their selected

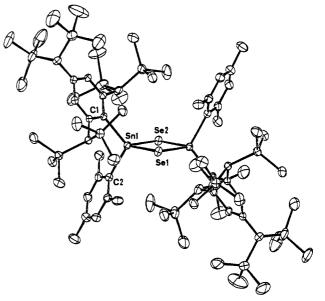


Figure 2. ORTEP drawing of trans-[Tb(Mes)SnSe]₂ (26b) with thermal ellipsoid plot (20% probability).

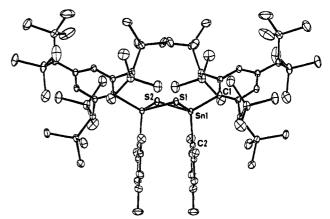


Figure 3. ORTEP drawing of cis-[Tb(Mes)SnS]₂ (27a) with thermal ellipsoid plot (20% probability).

interatomic bond lengths (Å) and angles (deg) and torsion angles (deg) for the core rings are listed in Table II.

The central four-membered rings of Tb and mesitylsubstituted *trans*-dichalcogenadistannolanes **26a** and **26b** were found to be completely planar as in the case of the previously reported rhombic ring systems of 2,2,4,4-tetra*tert*-butyl-1,3,2,4-dichalcogenadistannolanes,¹² though their

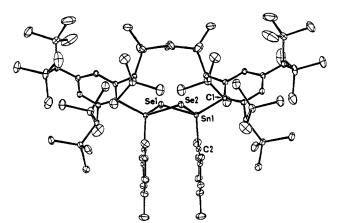


Figure 4. ORTEP drawing of cis-[Tb(Mes)SnSe]₂(27b) with thermal ellipsoid plot (20% probability).

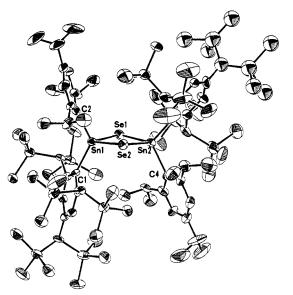


Figure 5. ORTEP drawing of trans-[Tb(Tip)SnSe]₂ (31) with thermal ellipsoid plot (30% probability).

ring shape becomes closer to a square. On the other hand, the crystal structure of 31 possesses an approximately square but a little puckered diselenadistannetane ring, the fold angles of which are 9.02° for Se-Se axis and 8.95° for Sn-Sn axis. The slight deviation of the core ring from planarity and the poor symmetry of the molecule of 31 are probably due to the higher steric hindrance between Tb and Tip groups than that of the mesityl analog 26b, although R value for 31 is not so good enough to discuss its strict molecular structure. In contrast to the trans derivatives, cis-substituted dichalcogenadistannetanes 27a and 27b showed unprecedentedly large fold angles (27a: 39.8° for S-S axis and 40.9° for Sn-Sn axis; 27b: 43.6° for Se-Se axis and 41.3° for Sn-Sn axis) probably due to the remarkable steric hindrance of the Tb groups facing each other. Since there have been no examples of unsymmetrically substituted 1,3,2,4-dichalcogenadistannetanes so far as we know, it is open to discussion whether a cissubstituted dichalcogenadistannetane ring system has intrinsically such a folded conformation or not.

The molecular structures of 8 and 14 are shown in Figures 6 and 7, respectively. Selected interatomic bond lengths (Å) and angles (deg) and torsion angles (deg) for the chalcogenastannete rings are listed in Table III.

Both 8 and 14 were found to have distorted trapezoid skeletons, which showed remarkably small corner angles at the tin atoms $[66.5(3)^{\circ} \text{ for } S(1)-Sn(1)-C(1) \text{ of } 8$ and

 Table II.
 Selected Bond Lengths, Bond Angles, and Torsion Angles for 26, 27, and 31

	A. Bond I	Lengths (A)	
26 a		26b	
	2.424(2)	<u> </u>	2.5(1(1))
Sn(1)-S(1) Sn(1)-S(2)	2.434(3) 2.432(3)	Sn(1)-Se(1) Sn(1)-Se(2)	2.561(1) 2.562(1)
Sn(1) - C(1)	2.19(1)	Sn(1) - C(1)	2.192(9)
Sn(1) - C(2)	2.18(1)	Sn(1)-C(2)	2.18(1)
27a		27ъ	
Sn(1)-S(1)	2.438(2)	Sn(1)-Se(1)	2.586(1)
Sn(1)-S(2) Sn(1)-C(1)	2.463(2) 2.192(8)	Sn(1)-Se(2) Sn(1)-C(1)	2.557(1) 2.188(7)
Sn(1)-C(2)	2.185(9)	Sn(1)-C(2)	2.173(8)
		31	.,
Sn(1)-Se(1)	2.559(3)	Sn(1)-C(1)	2.19(2)
Sn(1)-Se(2)	2.573(2)	Sn(1)C(2)	2.19(2)
Sn(2)-Se(1)	2.570(2)	Sn(2)-C(3)	2.20(2)
Sn(2)– $Se(2)$	2.565(3)	Sn(2)-C(4)	2.22(2)
	B. Bond A	Angles (deg)	
26a	***	26b	
Sn(1)-S(1)-Sn(2)	89.1(1)	Sn(1)-Se(1)-Sn(2)	88.32(5)
Sn(1)-S(2)-Sn(2)	89.2(1)	Sn(1)-Se(2)-Sn(2) So(1), Sn(1), So(2)	88.28(5) 01.70(4)
S(1)-Sn(1)-S(2) C(1)-Sn(1)-S(1)	90.84(9) 118.6(3)	Se(1)-Sn(1)-Se(2) C(1)-Sn(1)-Se(1)	91.70(4) 113.4(2)
C(1)-Sn(1)-S(2)	112.3(3)	C(1)-Sn(1)-Se(2)	119.2(2)
C(2)-Sn(1)-S(1)	105.2(3)	C(2)-Sn(1)-Se(1)	113.4(3)
C(2) - Sn(1) - S(2)	113.6(3)	C(2) - Sn(1) - Se(2)	104.0(3)
C(1)-Sn(1)-C(2)	114.1(4)	C(1)-Sn(1)-C(2)	113.3(3)
27a		27Ъ	
Sn(1)-S(1)-Sn(2) S(1)-Sn(1)-S(2)	84.34(6) 88.33(7)	Sn(1)-Se(1)-Sn(2) Se(1)-Sn(1)-Se(2)	82.88(3) 89.08(3)
C(1)-Sn(1)-S(1)	116.1(2)	C(1)-Sn(1)-Se(1)	118.8(2)
C(1)-Sn(1)-S(2)	119.1(2)	C(1)-Sn(1)-Se(2)	114.9(2)
C(2) - Sn(1) - S(1)	110.6(2)	C(2) - Sn(1) - Se(1)	105.8(2)
C(2)-Sn(1)-S(2)	105.6(2)	C(2)-Sn(1)-Se(2)	111.3(2)
C(1)-Sn(1)-C(2)	114.2(3)	C(1)-Sn(1)-C(2)	114.3(3)
		31	
Sn(1)-Se(1)-Sn(2)	89.47(7)	C(2)-Sn(1)-Se(2)	104.4(5)
$\frac{\operatorname{Sn}(1)-\operatorname{Se}(2)-\operatorname{Sn}(2)}{\operatorname{Se}(1)-\operatorname{Sn}(1)-\operatorname{Se}(2)}$	89.26(8) 90.31(8)	C(1)-Sn(1)-C(2) C(3)-Sn(2)-Se(1)	125.8(6) 108.1(5)
Se(1)-Sn(2)-Se(2) Se(1)-Sn(2)-Se(2)	90.26(8)	C(3)-Sn(2)-Se(2) C(3)-Sn(2)-Se(2)	122.5(7)
C(1)-Sn(1)-Se(1)	107.2(5)	C(4) - Sn(2) - Se(1)	119.4(6)
C(1)-Sn(1)-Se(2)	113.7(5)	C(4)-Sn(2)-Se(2)	104.9(5)
C(2)-Sn(1)-Se(1)	109.8(5)	C(3)-Sn(2)-C(4)	111.1(7)
	C. Torsion	Angles (deg)	
26a		26b	
C(1)-Sn(1)-S(1)-Sn(1)		C(1)-Sn(1)-Se(1)-Sn(1)	
C(1)-Sn(1)-S(2)-Sn(1)		C(1)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Se(1)-Sn(1)-Se(1)-Sn(1)	
C(2)-Sn(1)-S(1)-Sn C(2)-Sn(1)-S(2)-Sn		C(2)-Sn(1)-Se(1)-Sn(C(2)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Se(2)-Sn(1)-Sn(1)-Se(2)-Sn(1)-Sn(
Sn(1)-S(1)-Sn(2)-S		Sn(1)-Se(1)-Sn(2)-Se(2)	
S(1)-Sn(2)-S(2)-Sn		Se(1)-Sn(2)-Se(2)-Sn	• • • • • •
Sn(2)-S(2)-Sn(1)-S	• • • • • •	Sn(2)-Se(2)-Sn(1)-Se	
S(2)-Sn(1)-S(1)-Sn	(2) -0.00(7)	Se(2)-Sn(1)-Se(1)-Sn	(2) -0.00(3)
27a		27b	
C(1)-Sn(1)-S(1)-Sn	(2) 150.1(2)	$\overline{C(1)-Sn(1)-Se(1)-Sn(1)}$	2) -148.0(2)
C(1)-Sn(1)-S(2)-Sn(1)	1	C(1)-Sn(1)-Se(2)-Sn(1)	
C(2)-Sn(1)-S(1)-Sn(1)		C(2)-Sn(1)-Se(1)-Sn(1)	
C(2)-Sn(1)-S(2)-Sn(1)-S(2)		C(2)-Sn(1)-Se(2)-Sn(2)	
Sn(1)-S(1)-Sn(2)-S S(1)-Sn(2)-S(2)-Sn) Sn(1)–Se(1)–Sn(2)–Se) Se(1)–Sn(2)–Se(2)–Sn	
Sn(2)-S(2)-Sn(1)-S		Sn(2)-Se(2)-Sn(1)-Se(2)	
S(2)-Sn(1)-S(1)-Sn		Se(2)-Sn(1)-Se(1)-Sn(1)	
		31	
C(1)-Sn(1)-Se(1)-S		C(4)-Sn(2)-Se(1)-Sn(1) 100.9(6)
C(1)-Sn(1)-Se(2)-S		C(4)-Sn(2)-Se(2)-Sn(2)	
C(2)-Sn(1)-Se(1)-S C(2)-Sn(1)-Se(2)-S		Sn(1)-Se(1)-Sn(2)-Se(2	
C(2) - Sn(1) - Se(2) - Se(2) - Se(1) - Se(2) - Se(1) - Se(2) - Se(1) - Se(2)		Se(1)-Sn(2)-Se(2)-Sn Sn(2)-Se(2)-Sn(1)-Se	
C(3)-Sn(2)-Se(2)-S		Se(2)-Sn(1)-Se(1)-Sn(1	

74.3(7)° for Se(1)-Sn(1)-C(1) of 14] and at the sp² carbons α to the tin atom [98.6(8)° and 87(2)° for Sn(1)-C(1)-

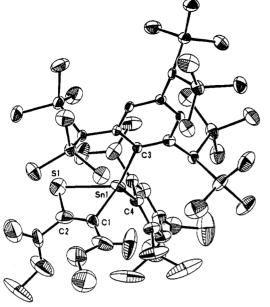
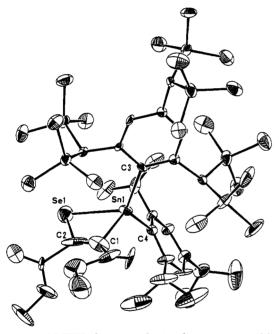



Figure 6. ORTEP drawing of 1,2-thiastannete (8) with thermal ellipsoid plot (30% probability).

Figure 7. ORTEP drawing of 1,2-selenastannete (14) with thermal ellipsoid plot (30% probability).

C(2) of 8 and 14, respectively], reflecting the coexistence of long tin-chalcogen bonds and short carbon-carbon double bonds [Sn(1)-S(1) 2.651 Å, C(1)-C(2) 1.33 Å for 8 and Sn(1)-Se(1) 2.746 Å, C(1)-C(2) 1.33 Å for 14]. As for the bond length and angle around the chalcogen atoms, thiastannete 8 showed values [1.73(1) Å for S(1)-C(2) and $73.1(4)^{\circ}$ for Sn(1)-S(1)-C(2)] quite similar to those of the previously reported carbon analog, i.e., thiete derivative (1.788 Å for S-C and 74.2° for C-S-C).²² Recently, Sita et al.²³ and Weidenbruch et al.²⁴ have described the X-ray structure analysis of two different types of sterically congested 1,2-distannetes, where the corner angles at sp² carbons were reportedly between 107.6(5)° and 111.6(4)°. Furthermore, in contrast to the flat structure of the thiete

 Table III.
 Selected Bond Lengths, Bond Angles, and Torsion Angles for 8 and 14

Angles for 0 and 14									
. 8		14							
•	A. Bond	Lengths (Å)	<u></u>						
Sn(1)-S(1)	2.651(4) Sn(1)-Se(1)	2.746(3)						
Sn(1)C(1)		Sn(1)-C(1)	2.30(2)						
S (1)– C (1)		Se(1)-C(1)	2.00(2)						
C(1)–C(2)	1.33(1)	C(1)-C(2)	1.33(3)						
Sn(1)-C(3)	2.166(7) Sn(1)-C(3)	2.17(1)						
Sn(1)-C(4)	2.164(7) Sn(1)-C(4)	2.19(1)						
	B. Bond	Angles (deg)							
S(1) - Sn(1) - C(1)	66.5(3)	Se(1)-Sn(1)-C(1)	74.3(7)						
Sn(1)-S(1)-C(2)	73.1(4)	Sn(1)-Se(1)-C(2)	64.3(7)						
S(1)-C(2)-C(1)	121(1)	Se(1)-C(2)-C(1)	134(2)						
Sn(1)-C(1)-C(2)	98.6(8)	Sn(1)-C(1)-C(2)	87(2)						
C(3) - Sn(1) - C(4)	122.9(3)	C(3)-Sn(1)-C(4)	121.3(5)						
C(3)-Sn(1)-S(1)	119.1(2)	C(3)-Sn(1)-Se(1)	120.2(4)						
C(3)-Sn(1)-C(1)	116.9(3)	C(3)-Sn(1)-C(1)	113.3(6)						
C(4)-Sn(1)-S(1)	99.2(2)	C(4)-Sn(1)-Se(1)	92.2(4)						
C(4)-Sn(1)-C(1)	116.4(3)	C(4)-Sn(1)-C(1)	118.4(6)						
	C. Torsion	n Angles (deg)							
Sn(1)-C(1)-C(2)-S(1)	-6.7(9)	Sn(1)-C(1)-C(2)-Se(1)	.) -9(2)						
C(1)-C(2)-S(1)-Sn(1)	5.7(8)	C(1)-C(2)-Se(1)-Sn(1)	.) 9(2)						
C(2)-S(1)-Sn(1)-C(1)	-3.2(4)	C(2)-Se(1)-Sn(1)-C(1)	.) -3.7(7)						
S(1)-Sn(1)-C(1)-C(2)	4.1(6)	S(1)-Sn(1)-C(1)-C(2)	5(1)						
C(3)-Sn(1)-S(1)-C(2)	-112.1(4)	C(3)-Sn(1)-Se(1)-C(2)	2) -111.9(7)						
C(3)-Sn(1)-C(1)-C(2)) 116.0(6)	C(3)-Sn(1)-C(1)-C(2)) 122(1)						
C(4)-Sn(1)-S(1)-C(2)	111.5(4)	C(4)-Sn(1)-Se(1)-C(2)	2) 113.4(6)						
C(4)-Sn(1)-C(1)-C(2)	-85.1(7)	C(4)-Sn(1)-C(1)-C(2)) -87(1)						

ring system, the carbon analog, the four-membered rings of 8 and 14 were not planar, and the dihedral angles between the planes S(1)-C(1)-C(2) and S(1)-C(1)-Sn(1) of 8 and between the planes Se(1)-C(1)-C(2) and Se(1)-C(1)-Sn(1) of 14 are 7.3° and 10.7°, respectively.

Experimental Section

General Procedure. All melting points were uncorrected. All solvents used in the reactions were purified by the reported methods. THF was purified by distillation from benzophenone ketyl before use. All reactions were carried out under argon atmosphere unless otherwise noted. Preparative gel permeation liquid chromatography (GPLC) was performed by LC-908 with a JAI gel 1H and 2H columns (Japan Analytical Industry, styrenedivinylbenzene copolymer, pore size 25 Å) with chloroform as solvent. Dry column chromatography (DCC) was performed with ISN silica DCC 60A. Flash column chromatography (FCC) was carried out with Fuji Davison BW-300. Preparative thin-layer chromatography was carried out with Merck Kieselgel 60 PF254 Art. 7747. The ¹H NMR (500 and 400 MHz) and ¹³C NMR spectra (125 and 100 MHz) were measured in CDCl₃ or C₆D₅CD₃ with Brucker AM-500 and JEOL GX-400 spectrometers using CHCl₃ or $C_6H_5CH_3$ as an internal standard.

Reaction of Tetrathiastannolane 3a with Diphenyldiazomethane. A benzene solution (15 mL) of tetrathiastannolane 3a^{13d} (468 mg, 0.47 mmol) and diphenyldiazomethane (906 mg, 4.67 mmol) was refluxed for 10 h. After removal of the solvent, the residue was separated with DCC and PTLC (hexane) to afford 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-(2,4,6-triisopropylphenyl)-6,6-diphenyl-1,2,4,5-tetrathia-3-stannacyclohexane (4) (152 mg, 27%), 4-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-4-(2,4,6-triisopropylphenyl)-6,6-diphenyl-1,2,3,5-tetrathia-4-stannacyclohexane (5) (129 mg, 23%), and 3-{2,4,6tris[bis(trimethylsilyl)methyl]phenyl}-3-(2,4,6-triisopropylphenyl)-5,5-diphenyl-1,2,4,3-trithiastannolane (1a) (44 mg, 8%), all as white crystals, which were recrystallized from ethanol-chloroform. 4: mp 183–185 °C; ¹H NMR (CDCl₃) δ –0.04 (br s, 18H), –0.02 (br s, 18H), 0.02 (s, 18H), 1.14 (br s, 6H), 1.18 (d, J = 6.9 Hz, 6H),1.25 (br s, 6H), 1.29 (s, 1H), 1.85 (br s, 1H), 1.86 (br s, 1H), 2.81 (sept, J = 6.9 Hz, 1H), 2.99 (br s, 2H), 6.37 (s, 1H), 6.48 (s, 1H),7.00 (s, 2H), 7.23-7.60 (m, 10H); ¹³C NMR (CDCl₃) δ 0.85 (q), 1.55 (q), 1.83 (q), 23.86 (q), 25.97 (q), 30.60 (d), 32.14 (d), 32.68 (d), 34.24 (d), 38.78 (d), 77.92 (s), 122.77 (d), 122.92 (d), 127.97 (d), 128.04 (d), 128.13 (d), 128.25 (d), 140.31 (s), 140.63 (s), 141.19

⁽²²⁾ Verhoeckx, G. J.; Kroon, J.; Brouwer, A. C.; Bos, H. J. T. Acta Crystallogr. B. 1980, 36, 484.

 ⁽²³⁾ Sita, L. R.; Kinoshita, I.; Lee, S. P. Organometallics 1990, 9, 1644.
 (24) Weidenbruch, M.; Schäfer, A.; Kilian, H.; Pohl, S.; Saak, W.;
 Marsmann, H. Chem. Ber. 1992, 125, 563.

(s), 141.48 (s), 144.98 (s), 150.71 (s), 150.92 (s), 151.25 (s), 154.56 (s). Anal. Calcd for C₅₅H₉₂S₄Si₆Sn: C, 56.52; H, 7.93; S, 10.97. Found: C, 56.76; H, 7.82; S, 10.62. 5: mp 222 °C dec; ¹H NMR (toluene- d_8 at 77 °C) δ 0.10 (s, 18H), 0.13 (s, 18H), 0.19 (s, 18H), 1.01 (br s, 6H), 1.27 (d, J = 6.9 Hz, 6H), 1.41 (s, 1H), 1.42 (br s, 6H), 2.54 (br s, 2H), 2.82 (sept, J = 6.9 Hz, 1H), 2.93 (br s, 1H), 4.28 (br s, 1H), 6.56 (br s, 2H), 6.70–7.52 (m, 10H), 7.10 (br s, 2H); $^{13}\mathrm{C}$ NMR (CDCl_3) δ 0.77 (q), 1.04 (q), 1.66 (q), 1.72 (q), 1.98 (q), 23.93 (q), 24.24 (q), 25.75 (q), 25.95 (q), 26.29 (q), 30.48 (d), 31.15 (d), 31.81 (d), 34.39 (d), 34.60 (d), 38.16 (d), 74.25 (s), 123.40 (d), 123.91 (d), 127.03 (d), 127.32 (dx2), 127.83 (d), 127.98 (d), 128.24 (dx2), 131.43 (d), 139.33 (s), 141.24 (s), 141.45 (s) 144.72 (s), 147.56 (s), 150.27 (s), 150.88 (s), 151.11 (s), 153.80 (s), 155.27 (s). Anal. Calcd for C₅₅H₉₂S₄Si₆Sn: C, 56.52; H, 7.93; S, 10.97. Found: C, 56.43; H, 7.86; S, 11.26. 1a: mp 150 °C dec; ¹H NMR (CDCl₃) δ -0.09 (s, 9H), -0.07 (s, 9H), 0.04 (s, 9H), 0.05 (s, 18H), 0.07 (s, 9H), 0.89 (br s, 6H), 1.16 (br s, 6H), 1.18 (d, J = 6.9 Hz, 6H), 1.31 (s, 1H), 1.89 (s, 1H), 1.95 (s, 1H), 2.81 (sept, J = 6.9 Hz, 1H), 3.02 (br s, 2H), 6.38 (s, 1H), 6.50 (s, 1H), 6.96 (s, 2H), 7.09-7.69 (m, 10H); ¹³C NMR (CDCl₃) δ 0.89 (q), 1.01 (q), 1.55 (q), 1.57 (q), 1.75 (q), 1.79 (q), 23.81 (q), 30.63 (d), 31.37 (d), 31.91 (d), 34.20 (d), 38.41 (d), 81.40 (s), 122.97 (d), 123.20 (d), 126.77 (d), 127.44 (d), 127.70 (d), 127.78 (d), 128.45 (d), 129.14 (d), 129.50 (d), 140.57 (s), 143.32 (s), 144.03 (s), 144.86 (s), 144.89 (s), 150.28 (s), 151.12 (s), 151.39 (s), 153.71 (s). Anal. Calcd for C₅₅H₉₂S₃Si₆Sn: C, 58.11; H, 8.16; S, 8.46. Found: C, 57.86; H, 7.94; S, 8.35.

Reaction of Tetraselenastannolane 3b with Diphenyldiazomethane. A benzene solution (30 mL) of tetraselenastannolane 3b^{13d} (271 mg, 0.23 mmol) and diphenyldiazomethane (560 mg, 2.9 mmol) was heated at reflux for 10 h. After the solvent was evaporated, the residue was chromatographed (FCC, 10% dichloromethane/hexane) to afford 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-(2,4,6-triisopropylphenyl)-6,6diphenyl-1,2,4,5-tetraselena-3-stannacyclohexane (6) (273 mg, 88%) and 3-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-3-(2,4,6triisopropylphenyl)-5,5-diphenyl-1,2,4,3-triselenastannolane (1b) (34 mg, 11%) as yellow crystals, respectively, which were recrystallized from ethanol-chloroform. 6: mp 183-185 °C; ¹H NMR (CDCl₃ at 57 °C) δ 0.01 (s, 36H), 0.05 (s, 18H), 1.200 (br s, 6H), 1.201 (d, J = 6.9 Hz, 6H), 1.231 (br s, 6H), 1.32 (s, 1H), 1.94 (br s, 2H), 2.82 (sept, J = 6.9 Hz, 1H), 3.36 (br s, 2H), 6.40 (br s, 1H), 6.49 (br s, 1H), 7.00 (s, 2H), 7.22–7.69 (m, 10H); ¹³C NMR (CDCl₃) δ 0.86 (q), 1.91 (q), 2.25 (q), 23.87 (q), 25.88 (q), 30.54 (d), 32.03 (d), 32.53 (d), 34.23 (d), 38.66 (d), 61.59 (s), 122.70 (d), 122.99 (d), 128.05 (d), 128.21 (d), 128.22 (d), 128.25 (d), 128.29 (d), 138.52 (s), 140.62 (s), 142.68 (s), 142.87 (s), 144.58 (s), 150.36 (s), 150.84 (s), 151.17 (s), 154.19 (s). Anal. Calcd for $C_{55}H_{92}\text{--}$ Se4Si6Sn: C, 48.70; H, 6.84; Se, 23.29. Found: C, 48.78; H, 6.73; Se, 23.15. 1b: mp 209 °C dec; ¹H NMR (CDCl₃) δ -0.05 (s, 9H), -0.04 (s, 9 H), 0.06 (s, 18H), 0.08 (s, 9H), 0.11 (s, 9H), 0.86 (br s, 6H), 1.19 (d, J = 6.9 Hz, 6H), 1.20 (br s, 6H), 1.32 (s, 1H), 1.96 (s, 1H), 2.05 (s, 1H), 2.81 (sept, J = 6.9 Hz, 1H), 3.39 (br s, 2H),6.39 (s, 1H), 6.51 (s, 1H), 6.97 (s, 2H), 7.18-7.78 (m, 10H); ¹³C NMR (CDCl₃) $\delta 0.88$ (q), 1.04 (q), 1.80 (q), 1.84 (q), 2.03 (q), 23.79 (q), 23.93 (q), 30.57 (d), 31.39 (d), 32.01 (d), 34.18 (d), 38.02 (d), 70.49 (s), 123.07 (d), 123.19 (d), 126.89 (d), 127.41 (d), 127.74 (d), 127.84 (d), 128.52 (d), 129.53 (d), 130.46 (d), 140.83 (s), 143.99 (s), 144.54 (s), 144.88 (s), 145.23 (s), 149.88 (s), 150.97 (s), 151.29 (s), 153.53 (s). Anal. Calcd for C₅₅H₉₂Se₃Si₅Sn: C, 51.71; H, 7.26; Se, 18.54. Found: C, 51.30; H, 7.01; Se, 18.01.

Desulfurization of 1,2,3,5-Tetrathia-4-stannacyclohexane 5 with Hexamethylphosphoric Triamide (HMPT). To a THF solution (5 mL) of 5 (100 mg, 0.86 mmol) was added HMPT (85% purity, 18 μ L, 0.86 mmol) at room temperature, and the mixture was stirred at ambient temperature for 10 h. After removal of the solvent, the residue was separated with GPLC to afford a monomeric fraction containing Tb and Tip substituents (80 mg) (by NMR) which was further purified by PTLC (hexane) to afford trithiastannolane (1a) (34 mg, 35%) and 2-{2,4,6-tris-[bis(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-4,4-diphenyl-1,3,2-dithiastannetane (7) (25 mg, 26%) as white crystals. 5 (12 mg, 12%) was recovered, 7 was recrystallized from ethanol-chloroform. 7: mp 215-217 °C; ¹H NMR (CDCl₃) δ -0.069 (s, 18H), -0.066 (s, 18H), 0.03 (s, 18H), 1.06 (br s, 12H), 1.24 (d, J = 6.9 Hz, 6H), 1.31 (s, 1H), 2.55 (s, 1H), 2.66 (s, 1H), 2.89 (sept, J = 6.9 Hz, 1H), 2.90 (br s, 2H), 6.36 (s, 1H), 6.47 (s, 1H), 6.97 (s, 2H), 6.95–7.70 (m, 10H); ¹³C NMR (CDCl₃) δ 0.94 (q), 1.06 (q), 1.29 (q), 23.95 (q), 25.20 (q), 30.42 (q), 30.72 (d), 30.80 (d), 34.29 (d), 38.50 (d), 61.92 (s), 122.73 (d), 123.42 (d), 125.45 (d), 125.76 (d), 126.16 (d), 127.08 (d), 127.35 (d), 127.44 (d), 128.61 (d), 137.15 (s), 142.62 (s), 145.29 (s), 150.70 (s), 151.70 (s), 151.78 (s), 151.82 (s), 152.25 (s), 153.58 (s). Anal. Calcd for C₅₅H₉₂S₂Si₆Sn: C, 59.80; H, 8.39; S, 5.81. Found: C, 59.62; H, 8.32; S, 5.99.

Deselenation of 1,2,4,5-Tetraselena-3-stannacyclohexane 6 with HMPT. A THF solution (10 mL) of 6 (180 mg, 0.13 mmol) and HMPT (85% purity, 84 μ L, 0.39 mmol) was stirred at room temperature for 10 h. After removal of the solvent, the residue was chromatographed (DCC, hexane) to afford 1b (108 mg, 63%).

Thermolysis of Trichalcogenastannolanes la,b in the Presence of Dimethyl Acetylenedicarboxylate (DMAD). (a) A toluene solution (3 mL) of 1a (286 mg, 0.25 mmol) and DMAD (310 μ L, 2.5 mmol) was heated at 120 °C for 6 h in a degassed sealed tube. After removal of the solvent, the residue was chromatographed (GPLC) to afford a fraction containing a Tb substituent (328 mg) and a fraction containing a diphenyl moiety (73 mg). The former fraction was purified was FCC followed by PTLC (20% ether/hexane) to afford 2-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-3,4-bis-(methoxycarbonyl)-1,2-thiastannete (8) (78 mg, 29%), 2-{2,4,6tris[bis(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-4,5-bis(methoxycarbonyl)-1,3,2-dithiastannolene (9) (33 mg, 12%), 2-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-3,4,5,6-tetrakis(methoxycarbonyl)-1,2thiastannanacyclohexa-3,5-diene (10) (26 mg, 9%), and 2-{2,4,6tris[bis(trimethylsilyl)methyl]phenyl]-2-(2,4,6-triisopropylphenyl)-3-(methoxycarbonyl)-1,2-thiastannolen-5-one (11) (27 mg, 10%). The latter fraction was purified with PTLC (10% ethyl acetate/ hexane) to provide dimethyl 1-phenyl-1H-2-benzothiopyran-3,4dicarboxylate (12) (11 mg, 12%) and dimethyl 3,3-diphenyl-3H-1,2-dithiole-4,5-dicarboxylate (13) (36 mg, 39%). 8 and 9 were recyrstallized from ethanol-chloroform, and 10 and 11 from acetonitrile-dichloromethane. 8: slightly yellow crystals; mp 173-175 °C; ¹H NMR (CDCl₃ at 57 °C) δ -0.04 (br s, 18H), 0.058 (s, 9H), 0.062 (s, 9H), 0.08 (br s, 18H), 1.22 (d, J = 6.3 Hz, 6H),1.23 (d, J = 6.9 Hz, 6H), 1.31 (d, J = 6.1 Hz, 6H), 1.36 (s, 1H), 1.96 (br s, 1H), 2.21 (br s, 1H), 2.862 (br s, 2H), 2.868 (sept, J = 6.9 Hz, 1H), 3.62 (s, 3H), 3.76 (s, 3H), 6.41 (br s, 1H), 6.53 (br s, 1H), 7.06 (s, 2H); ¹³C NMR (CDCl₃ at 57 °C) δ 0.90 (q), 1.02 (br q), 1.24 (q), 23.91 (q), 25.69 (br q), 30.98 (d), 32.72 (br d), 32.95 (br d), 34.44 (d), 39.90 (d), 51.21 (q), 52.25 (q), 122.64 (d), 123.02 (br d), 128.12 (br d), 132.64 (s), 137.42 (s), 141.37 (s), 146.03 (s), 151.68 (s), 151.89 (s), 152.23 (br s), 154.23 (s), 159.35 (s), 163.24 (s), 166.25 (s). Anal. Calcd for C₄₈H₈₈O₄SSi₈Sn: C, 54.98; H. 8.46; S. 3.06. Found: C. 54.69; H. 8.21; S. 3.49. 9: slightly yellow crystals; mp 157–159 °C; ¹H NMR (CDCl₃) δ –0.02 (s, 18H), 0.02 (s, 18H), 0.03 (s, 18H), 1.20 (d, J = 6.8 Hz, 6H), 1.27 (d, J = 6.4 Hz, 12H), 1.32 (s, 1H), 1.96 (s, 1H), 2.19 (s, 1H), 2.84(sept, J = 6.4 Hz, 1H), 2.91 (sept, J = 6.4 Hz, 2H), 3.76 (s, 6H),6.33 (s, 1H), 6.48 (s, 1H), 7.01 (s, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 0.83 (q), 1.20 (q), 1.39 (q), 23.91 (q), 26.35 (q), 30.68 (d), 31.86 (d), 32.30 (d), 34.35 (d), 39.31 (d), 52.84 (q), 122.61 (d), 122.90 (d), 127.95 (d), 133.87 (s), 138.28 (s), 143.74 (s), 145.96 (s), 150.96 (s),151.32 (s), 151.47 (s), 152.76 (s), 166.12 (s). Anal. Calcd for C48H88O4S2Si6Sn: C, 53.35; H, 8.21; S, 5.93. Found: C, 53.18; H, 7.92; S, 6.18. 10: yellow crystals; mp 195-197 °C; ¹H NMR (CDCl₃) δ -0.19 (s, 9H), -0.16 (s, 9H), 0.01 (s, 9H), 0.02 (s, 9H), 0.05 (s, 9H), 0.06 (s, 9H), 1.15 (d, J = 6.4 Hz, 3H), 1.22 (d, J =6.9 Hz, 6H), 1.29 (d, J = 6.4 Hz, 3H), 1.31 (s, 1H), 1.43 (d, J =6.4 Hz, 3H), 1.46 (d, J = 6.4 Hz, 3H), 1.69 (br s, 1H), 1.85 (br s, 1H), 2.56 (sept, J = 6.4 Hz, 1H), 2.857 (s, 3H), 2.867 (sept, J =6.9 Hz, 1H), 3.19 (sept, J = 6.4 Hz, 1H), 3.65 (s, 3H), 3.77 (s, 3H), 3.90 (s, 3H), 6.33 (s, 1H), 6.45 (s, 1H), 7.03 (s, 1H), 7.09 (s, 1H); ¹³C NMR (CDCl₃) δ 0.75 (q), 0.84 (q), 0.90 (q), 1.02 (q), 1.14 (q), 23.22 (q), 23.24 (q), 23.85 (q), 23.98 (q), 27.63 (q), 27.78 (q), 30.35

(d), 30.84 (d), 38.77 (d), 40.47 (d), 111.98 (s), 121.22 (s), 122.67(d), 122.82 (d), 123.26 (d), 128.30 (d), 129.00 (s), 138.67 (s), 143.61 (s), 146.35 (s), 148.77 (s), 151.16 (s), 151.55 (s), 151.60 (s), 152.64 (s), 153.33 (s), 161.62 (s), 162.43 (s), 166.05 (s), 175.22 (s). Anal. Calcd for C54H94O8SSi6Sn·H2O: C, 53.66; H, 8.01; S, 2.65. Found: C, 53.60; H, 7.57; S, 2.88. 11: white crystals; mp 190-192 °C; ¹H NMR (CDCl₃, 400 MHz) δ -0.05 (s, 9H), -0.02 (s, 9H), 0.01 (s, 9H), 0.04 (s, 27H), 1.20 (d, J = 7.0 Hz, 6H), 1.26 (br s, 6H), 1.29 (d, J = 6.7 Hz, 6H), 1.35 (s, 1H), 1.63 (s, 1H), 1.81 (s, 1H), 2.85(sept, J = 7.0 Hz, 1H), 2.81 (br s, 2H), 2.86 (sept, J = 7.0 Hz, 1H),3.75 (s, 3H), 6.37 (s, 1H), 6.51 (s, 1H), 7.06 (s, 2H), 7.25 (s, 1H); ¹³C NMR (CDCl₃) δ 0.52 (q), 0.71 (q), 0.82 (q), 0.99 (q), 1.22 (q), 23.83 (q), 23.87 (q), 25.80 (br q), 30.95 (d), 33.04 (d), 33.15 (d), 34.37 (d), 39.42 (d), 51.49 (q), 122.48 (d), 122.75 (d), 123.18 (d), 127.59 (s), 136.05 (s), 140.36 (s), 146.83 (s), 147.31 (s), 151.23 (s), 151.59 (s), 152.54 (s), 153.83 (s), 166.64 (s), 166.98 (s). Anal. Calcd for C47H86O3SSi6Sn·H2O: C, 54.46; H, 8.56; S, 3.09. Found: C, 54.43; H, 8.24; S, 3.17. (b) A toluene solution (3 mL) of 1b (300 mg, 0.24 mmol) and DMAD (289 µL, 2.4 mmol) was heated at 120 °C for 6 h in a degassed sealed tube. After removal of the solvent, the residue was chromatographed (GPLC) to afford a fraction containing a Tb substituent (460 mg) and a fraction containing a diphenyl moiety (39 mg). The former fraction was purified with PTLC (20% ether/hexane) to afford 2-{2,4,6-tris-[bis(trimethylsilyl)methyl]phenyl]-2-(2,4,6-triisopropylphenyl)-3,4-bis(methoxycarbonyl)-1,2-selenastannete (14) (62 mg, 24%), 2-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-4,5-bis(methoxycarbonyl)-1,3,2-diselenastannolene (15) (28 mg, 10%), 2-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-3-(methoxycarbonyl)-1,2selenastannolen-5-one (16) (20 mg, 8%), and 3b (76 mg, 27%). The latter fraction was purified with PTLC (30% ethyl acetate/ hexane) to provide dimethyl 1-phenyl-1H-2-benzoselenopyran-3,4-dicarboxylate (17) (14 mg, 16%). 14 and 15 were recrystallized from ethanol-chloroform and 16 from acetonitrile-dichloromethane. 14: slightly orange crystals; mp 165–167 °C; ¹H NMR $(CDCl_{s} at 57 °C) \delta -0.01 (br s, 18H), 0.058 (s, 9H), 0.062 (s, 9H),$ 0.08 (br s, 18H), 1.22 (d, J = 6.4 Hz, 6H), 1.23 (d, J = 6.9 Hz, 6H), 1.29 (d, J = 6.2 Hz, 6H), 1.35 (s, 1H), 2.08 (br s, 1H), 2.36 (br s. 1.29 (d, J = 6.2 Hz, 6H))1H), 2.87 (sept, J = 6.9 Hz, 1H), 2.92 (br s, 2H), 3.61 (s, 3H), 3.74 (s, 3H), 6.40 (br s, 1H), 6.53 (br s, 1H), 7.05 (s, 2H); ¹³C NMR (CDCl₃ at 57 °C) δ 0.90 (q), 1.11 (br q), 1.31 (q), 23.91 (q), 25.68 (br q), 30.91 (d), 32.62 (br d), 32.93 (br d), 34.39 (d), 39.85 (d), 51.34 (q), 52.26 (q), 122.55 (d), 123.03 (br d), 128.11 (br d), 136.06 (s), 141.28 (s), 141.92 (s), 145.72 (s), 150.19 (s), 151.46 (s), 151.86 (br s), 152.28 (s), 154.10 (s), 164.41 (s), 165.73 (s). Anal. Calcd for C48H88O4SeSieSn: C, 52.63; H, 8.10; Se, 7.21. Found: C, 52.42; H, 7.97; Se, 7.22. 15: slightly orange crystals; mp 202-205 °C; ¹H NMR (CDCl₃) δ -0.02 (s, 18H), 0.03 (s, 36H), 1.20 (d, J = 6.9 Hz, 6H), 1.25 (d, J = 6.5 Hz, 12H), 1.31 (s, 1H), 2.06 (s, 1H), 2.31 (s, 1H), 2.84 (sept, J = 6.4 Hz, 1H), 2.96 (sept, J = 6.5 Hz, 2H), 3.75 (s, 6H), 6.31 (s, 1H), 6.47 (s, 1H), 7.00 (s, 2H); ¹³C NMR (CDCl₃ at 57 °C, 400 MHz) & 0.91 (q), 1.63 (br q), 23.87 (q), 26.11 (br q), 30.88 (d), 32.05 (d), 32.51 (d), 34.35 (d), 39.53 (d), 52.77 (q), 122.74 (d), 123.05 (d), 128.33 (d), 136.10 (s), 137.59 (s), 143.55 (s), 145.67 (s), 151.21 (s), 151.22 (br s), 152.82 (s), 166.88 (s). Anal. Calcd for $C_{48}H_{88}O_4Se_2Si_6Sn: C, 49.09; H, 7.55; Se, 13.45$. Found: C, 48.83; H, 7.47; Se, 13.39. 16: white crystals; mp 177-180 °C; ¹H NMR (CDCl₃, 400 MHz) δ –0.05 (s, 9H), –0.014 (s, 9H), –0.008 (s, 9H), 0.03 (s, 9H), 0.04 (s, 18H), 1.20 (d, J = 7 Hz, 6H), 1.261(d, J = 6.4 Hz, 6H), 1.262 (br s, 6 H), 1.35 (s, 1H), 1.71 (s, 1H),1.88 (s, 1H), 2.85 (sept, J = 7 Hz, 1H), 2.88 (br s, 2H), 3.77 (s, 3H), 6.35 (s, 1H), 6.49 (s, 1H), 7.05 (s, 2H), 7.57 (s, 1H); ¹³C NMR $(CDCl_{3}, 400 \text{ MHz}) \delta 0.67 \text{ (q)}, 0.83 \text{ (q)}, 0.86 \text{ (q)}, 0.93 \text{ (q)}, 1.18 \text{ (q)},$ 1.41 (q), 23.94 (q), 24.00 (q), 25.93 (br q), 30.96 (d), 32.60 (d), 32.77 (d), 34.47 (d), 38.70 (d), 51.89 (q), 122.77 (d), 122.90 (d), 122.91 (s), 126.78 (d), 127.75 (d), 135.70 (s), 140.47 (s), 146.34 (s), 147.06 (s), 151.24 (s), 151.59 (s), 152.37 (s), 167.36 (s), 167.97 (s). Anal. Calcd for C47H86O3SeSi6Sn: C, 52.02; H, 7.99. Found: C, 52.30; H, 7.71. 17: yellow oil; ¹H NMR (CDCl₃) δ 3.76 (s, 3H), 3.95 (s, 3H), 5.28 (s, 1H), 7.06–7.48 (m, 9H); ¹³C NMR (CDCl₃) δ 41.94 (d), 52.82 (q), 52.91 (q), 123.83 (s), 127.33 (d), 127.47 (d), 127.67 (d), 127.80 (d), 128.12 (d), 128.70 (d), 131.05 (d), 132.11 (s), 133.20 (s), 138.98 (s), 139.93 (s), 165.10 (s), 168.36 (s); high-resolution MS m/z 388.0240, $\rm C_{16}H_{14}O_4$ ^{80}Se requires 388.0213.

Desulfurization of 1.2.3.4.5-Tetrathiastannolane 2a with HMPT. To a THF solution (30 mL) of 2a (504 mg, 0.55 mmol) was added HMPT (85% purity, 352 µL, 1.65 mmol) at room temperature, and the solution was stirred at room temperature for 10 h. After the solvent was evaporated, the residue was separated with DCC (hexane) to afford trans-3,5-dimesityl-3,5bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,2,4,3,5-trithiadistannolane (24) (236 mg, 51%) and cis-3,5-dimesityl-3,5bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,2,4,3,5-trithiadistannolane (25) (220 mg, 48%) as white crystals, both of which were recrystallized from ethanol-chloroform. 24: mp>300 °C; ¹H NMR (CDCl₃ at 57 °C) δ -0.36 (s, 36H), 0.01 (s, 18H), 0.02 (s, 18H), 0.14 (s, 36H), 1.28 (s, 2H), 2.17 (s, 6H), 2.38 (br s, 2H), 2.51 (br s, 2H), 2.62 (br s, 12H), 6.29 (s, 2H), 6.40 (s, 2H), 6.71 (s, 4H); ¹³C NMR (CDCl₃) δ 0.02 (q), 0.70 (q), 0.92 (q), 1.65 (q), 1.89 (q), 20.87 (q), 29.70 (q), 30.29 (d), 31.72 (d), 32.05 (d), 122.57 (d), 127.43 (d), 128.98 (d), 138.84 (s), 139.91 (s), 143.56 (s), 143.63 (s), 144.51 (s), 151.08 (s), 151.28 (s). Anal. Calcd for C72H140S3Si12Sn22H2O: C, 50.49; H, 8.48; S, 5.62. Found: C, 50.34; H, 8.12; S, 5.76. 25: mp > 300 °C; ¹H NMR (CDCl₈) δ -0.04 (s, 36H), -0.01 (s, 18H), 0.00 (s, 18H), 0.02 (s, 36H), 1.29 (s, 2H), 2.13 (s, 6H), 2.18 (s, 2H), 2.33 (s, 12H), 2.35 (s, 2H), 6.32 (s, 2H), 6.40 (br s, 4H), 6.44 (s, 2H); ¹³C NMR (CDCl₃) δ 0.80 (q), 0.85 (q), 1.02 (q), 1.27 (q), 1.36 (q), 1.56 (q), 20.90 (q), 24.99 (q), 26.31 (q), 30.29 (d), 31.86 (d), 32.14 (d), 122.61 (d), 127.58 (d), 128.25 (d), 138.30 (s), 139.41 (s), 142.44 (s), 143.02 (s), 144.75 (s), 151.38 (s), 151.60 (s). Anal. Calcd for C₇₂H₁₄₀S₃Si₁₂Sn₂: C, 51.58; H, 8.41; S, 5.73. Found: C, 51.28; H, 8.34; S, 5.82.

Desulfurization of 2a with HMPT under Irradiation. A benzene solution (1 mL) of 2a (100 mg, 0.11 mmol) and HMPT (85% purity, 200 μ L, 1.10 mmol) in a Pyrex glass tube was irradiated by a high-pressure mercury lamp for 1.5 h under ice cooling. After removal of the solvent, the residue was separated with PTLC (hexane) to afford trans-2,4-dimesityl-2,4-bis{2,4,6tris[bis(trimethylsilyl)methyl]phenyl]-1,3,2,4-dithiadistannetane (26a) (35 mg, 39%) and cis-2,4-dimesityl-2,4-bis{2,4,6-tris-[bis(trimethylsilyl)methyl]phenyl]-1,3,2,4-dithiadistannetane (27a) (14 mg, 15%) as white crystals, both of which were recrystallized with ethanol-chloroform. 26a: mp >300 °C; 1H NMR (CDCl₃ at 57 °C) δ -0.06 (br s, 72H), 0.03 (s, 36H), 1.29 (s, 2H), 2.09 (br s, 2H), 2.20 (s, 6H), 2.29 (br s, 2H), 2.62 (s, 12H), 6.26 (br s, 2H), 6.37 (br s, 2H), 6.71 (s, 4H); ¹³C NMR (CDCl₃ at 57 °C) & 0.92 (q), 1.02 (q), 1.30 (q), 20.89 (q), 26.56 (q), 30.54 (d), 30.98 (br d × 2), 122.74 (br d), 127.64 (br d), 128.89 (d), 138.96 (d), 139.37 (s), 143.06 (s), 143.84 (s), 144.64 (s), 151.45 (br s), 151.82 (br s). Anal. Calcd for C₇₂H₁₄₀S₂Si₁₂Sn₂: C, 52.59; H, 8.58; S. 3.90. Found: C. 52.29; H. 8.46; S. 4.31. 27a: mp >300 °C; ¹H NMR (CDCl₃) δ -0.03 (br s, 72H), 0.02 (s, 36H), 1.28 (s, 2H), 2.01 (br s, 2H), 2.09 (s, 2H), 2.17 (s, 6H), 2.33 (s, 12H), 6.24 (s, 2H), 6.38 (s, 2H), 6.48 (s, 4H); $^{13}\mathrm{C}$ NMR (CDCl_3) δ 0.83 (q), 1.14 (q), 1.49 (q), 20.96 (q), 26.16 (q), 30.34 (d), 30.75 (d), 30.98 (d), 122.43 (d), 127.41 (d), 128.50 (d), 138.33 (s), 138.54 (s), 141.81 (s), 143.99 (s), 144.77 (s), 151.11 (s), 151.38 (s). Anal. Calcd for $C_{72}H_{140}S_2Si_{12}Sn_2$: C, 52.59; H, 8.58; S, 3.90. Found: C, 52.30; H, 8.42; S, 3.97.

Desulfurization of 1,2,4,3,5-Trithiadistannolanes 24 and 25 with HMPT under Irradiation. In the same procedure as above, 24 (44 mg, 0.026 mmol) and 25 (42 mg, 0.025 mmol) gave 26a (22 mg, 52%) and 27a (28 mg, 69%), respectively.

Deselenation of 1,2,3,4,5-Tetraselenastannolane 2b with HMPT. HMPT (85% purity, 29 μ L, 0.14 mmol) was added to a THF solution (5 mL) of **2b** (50 mg, 0.045 mmol) at -78 °C, and the reaction mixture was stirred for 10 h, during which time it was warmed to room temperature. After removal of the solvent, the residue was chromatographed (DCC, hexane) to afford *trans*-2,4-dimesityl-2,4-bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,3,2,4-diselenadistannetane (**26b**) (11 mg, 29%) and *cis*-2,4dimesityl-2,4-bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,3,2,4-diselenadistannetane (**27b**) (10 mg, 25%) as white crystals, both of which were recrystallized with ethanol-chloroform. **26b**: mp >300 °C; ¹H NMR (CDCl₈) δ -0.09 (br s, 36H), -0.06 (s, 36H), 0.01 (s, 36H), 1.26 (s, 2H), 2.08 (br s, 2H), 2.21 (s, 6H), 2.39 (br s, 2H), 2.62 (s, 12H), 6.20 (s, 2H), 6.32 (s, 2H), 6.70 (s, 4H); ¹³C NMR (CDCl₃) δ 0.85 (q), 0.94 (q), 1.25 (q), 20.96 (q), 26.62 (q), 30.21 (q), 30.58 (d), 30.69 (d), 122.48 (d), 127.24 (d), 128.76 (d), 135.35 (s), 138.71 (s), 139.70 (s), 143.65 (s), 144.36 (s), 151.10 (s), 151.51 (s). Anal. Calcd for C₇₂H₁₄₀Se₂Si₁₂Sn₂: C, 49.75; H, 8.12; Se, 9.08. Found: C, 49.51; H, 7.88; Se, 9.35. **27b**: mp >300 °C; ¹H NMR (CDCl₃ at 57 °C) δ -0.017 (br s, 72H), 0.04 (s, 36H), 1.27 (s, 2H), 2.06 (br s, 2H), 2.14 (br s, 2H), 2.23 (br, 6H), 2.36 (s, 12H), 6.25 (br s, 2H), 6.37 (br s, 2H), 6.50 (s, 4H); ¹³C NMR (CDCl₃ at 57 °C) δ 0.91 (q), 1.31 (q), 1.60 (q), 20.91 (q), 26.27 (q), 30.63 (d), 31.27 (d), 31.39 (d), 122.70 (d), 127.61 (d), 128.90 (d), 135.73 (d), 138.42 (s), 139.95 (s), 144.28 (s), 144.74 (s), 151.24 (s), 151.38 (s). Anal. Calcd for C₇₂H₁₄₀Se₂Si₁₂Sn₂: C, 49.75; H, 8.12; Se, 9.08. Found: C, 49.48; H, 7.88; Se, 9.39.

Desulfurization of 1,2,3,4,5-Tetrathiastannolane 2a with Triphenylphosphine. To a toluene solution (1 mL) of **2a** (50 mg, 0.055 mmol) was added triphenylphosphine (43 mmg, 0.16 mmol) at room temperature, and the reaction mixture was stirred at room temperature for 10 h. After removal of the solvent, the residue was separated by GPLC to afford *cis*-1,3,2,4-dithiadistannetane **27a** (37.1 mg, 83%) and triphenylphosphine sulfide (37 mg, 76%).

Deselenation of 1,2,3,4,5-Tetraselenastannolane 2b with Triphenylphosphine. A toluene solution (2 mL) of triphenylphosphine (36 mg, 0.14 mmol) was added to a toluene solution (5 mL) of **2b** (50 mg, 0.045 mmol) at -78 °C, and the reaction mixture was stirred for 10 h, during which time the temperature was raised to room temperature. After the solvent was evaporated, the residue was chromatographed (GPLC) to afford a dimeric fraction (37 mg) and triphenylphosphine selenide (40 mg, 86%). The dimeric fraction was further purified by PTLC to afford *cis*-1,3,2,4-diselenadistannetane **27b** (15 mg, 38%) and *trans*-1,3,2,4-diselenadistannetane **26b** (1 mg, 3%).

Desulfurization of 1,2,3,4,5-Tetrathiastannolane 3a with Triphenylphosphine. (a) To a toluene solution (10 mL) of 3a (95 mg, 0.094 mmol) was added triphenylphosphine (74 mg, 0.28 mmol)mmol) at room temperature, and the reaction mixture was stirred at the same temperature for 10 h. After removal of the solvent, the residue was separated with GPLC to afford 2,4-bis(2,4,6triisopropylphenyl)-2,4-bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,3,2,4-dithiadistannetane (29) (4.6 mg, 4%, the ratio of cis- and trans-isomer = 1:1 determined by ^{1}H NMR) and {2,4,6tris[bis(trimethylsilyl)methyl]phenyl}hydroxy(2,4,6-triisopropylphenyl)mercaptostannane (28) (35 mg, 42%), both as white crystals, which were recrystallized from ethanol-chloroform. (b) By the same procedure as above except that the reaction was carried out in refluxing toluene, 3a (50 mg, 0.05 mmol) and PPh₃ (39 mg, 0.15 mmol) gave exclusively 29 (44 mg, 100%, the ratio of cis- and trans-isomer = 1:1 determined by ^{1}H NMR). (c) In a manner similar to procedure a except for use of hexane as a solvent, 3a (50 mg, 0.05 mmol) and PPh₃ (39 mg, 0.15 mmol) gave 28 (21 mg, 45%) and 29 (25 mg, 54%, trans-isomer as a main product). (d) By the same procedure as procedure b except for use of hexane as a solvent, 3a (50 mg, 0.05 mmol) and PPh₃ (39 mg, 0.15 mmol) afforded 28 (9 mg, 19%) and 29 (36 mg, 80%, the ratio of cis- and trans-isomer = 1:1 determined by ¹H NMR). trans- and cis-29 were separated by PTLC (hexane) and recrystallized from ethanol-chloroform. trans-29: mp >300 °C; ¹H NMR (CDCl₃ at 67 °C) δ -0.27 (s, 18H), -0.12 (s, 18H), 0.07 (s, 18H), 0.08 (s, 36H), 0.25 (s, 18H), 1.05 (d, J = 6.0 Hz, 6H), 1.16(br s, 6H), 1.22 (d, J = 6.9 Hz, 12H), 1.27 (d, J = 6.6 Hz, 6H),1.33 (s, 2H), 1.42 (br s, 2H), 1.48 (br s, 6H), 2.53 (sept, J = 6.6Hz, 4H), 2.82 (sept, J = 6.9 Hz, 2H), 3.78 (br s, 2H), 6.38 (br s, 4H), 6.92 (s, 2H), 6.96 (s, 2H); ¹³C NMR (C₂D₂Cl₄ at 140 °C) δ 1.49 (qx2), 2.13 (q), 2.73 (q), 2.90 (q), 3.02 (q), 23.63 (q), 23.91 (q), 25.38 (q), 26.94(q), 27.12(q), 30.27 (q), 30.97 (d), 31.54 (d), 32.90 (d), 34.24 (d), 34.55 (d), 38.75 (d), 123.50 (br d), 127.22 (br d), 143.63 (s), 144.53 (s), 146.33 (s), 150.08 (s), 150.40 (s), 152.26 (s), 154.15 (s), 155.41 (s). Anal. Calcd for C₈₄H₁₆₄S₂Si₁₂Sn₂: C, 55.66; H, 9.12; S, 3.54. Found: C, 55.39; H, 8.87; S, 3.59. cis-28: mp >300 °C; ¹H NMR (CDCl₃ at 67 °C) δ -0.31 (s, 18H), 0.06 (s, 18H), 0.08 (s, 18H), 0.12 (s, 18H), 0.22 (s, 18H), 0.24 (d, J = 6.6

Hz, 6H), 0.27 (s, 18H), 0.85 (br s, 6H), 1.15 (d, J = 6.9 Hz, 6H), 1.16 (d, J = 6.9 Hz, 6H), 1.23 (d, J = 6.6 Hz, 6H), 1.33 (br s, 6H),1.34 (s, 2H), 2.59 (br s, 2H), 2.75 (sept, J = 6.9 Hz, 2H), 3.28 (br s, 4H, 4.61 (sept, J = 6.6 Hz, 2H), 6.37 (br s, 2H), 6.41 (br s, 2H), 6.90 (s, 2H), 6.91 (s, 2H); ¹³C NMR (C₂D₂Cl₄ at 140 °C) δ 1.49 (q), 1.57 (q), 2.51 (q), 2.61 (q), 3.41 (q), 3.57 (q), 23.39 (q), 23.69 (q), 23.77 (q), 25.86 (q), 27.29 (q), 28.55 (q), 30.05 (d), 31.07 (d), 32.36 (d), 32.83 (d), 34.27 (d), 38.70 (d), 123.50 (d), 123.65 (d), 124.51 (d), 127.22 (d), 143.64 (s), 143.79 (s), 143.85 (s), 149.91 (s), 150.56 (s), 152.69 (s), 154.31 (s), 156.79 (s). Anal. Calcd for C84H184S2Si12Sn2: C, 55.66; H, 9.12; S, 3.54. Found: C, 55.78; H, 8.89; S, 3.46. 28: mp 160-162 °C; ¹H NMR (CDCl₃) δ -0.09 (s, 9H), -0.03 (s, 9H), 0.03 (s, 9H), 0.04 (s, 9H), 0.07 (s, 9H), 0.10 (s, 9H), 0.91 (s, 1H), 1.21 (d, J = 6.9 Hz, 6H), 1.24 (d, J = 6.5 Hz, 6H), 1.31 (s, 1H), 1.33 (d, J = 6.5 Hz, 6H), 1.96 (br s, 1H), 2.18 (br s, 1H), 2.84 (sept, J = 6.9 Hz, 1H), 3.27 (br s, 2H), 6.31 (s, 1H), 6.45 (s, 1H), 7.03 (s, 2H); ¹³C NMR (CDCl₃) δ 0.71 (q), 0.77 (q), 0.88 (q), 0.99 (q), 1.20 (q), 1.46 (q), 23.86 (q), 23.94 (q), 25.30 (br q), 26.20 (br q), 30.51 (d), 31.32 (d), 31.57 (d), 34.33 (d), 36.27 (d), 122.15 (d), 122.53 (d), 127.36 (d), 137.83 (s), 141.08 (s), 145.33 (s), 150.77 (s), 150.99 (s), 151.23 (s), 154.48 (s). Anal. Calcd for C42H84OSSi6Sn: C, 54.57; H, 9.16; S, 3.47. Found: C, 54.32; H, 8.86; S, 3.38.

Deselenation of 1,2,3,4,5-Tetraselenastannolane 3b with Triphenylphosphine. (a) To a toluene solution (5 mL) of 3b (50 mg, 0.042 mmol) was added a toluene solution (2 mL) of PPh₃ (33 mg, 0.13 mmol) at -78 °C, and the reaction mixture was stirred for 10 h while being warmed to room temperature. After the solvent was evaporated, the residue was separated with PTLC (hexane) to afford cis-2,4-bis(2,4,6-triisopropylphenyl)-2,4-bis-{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,3,2,4-diselenadistannetane (30) (5 mg, 13%) and trans-2,4-bis(2,4,6-triisopropylphenyl)-2,4-bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}-1,3,2,4-diselenadistannetane (31) (26 mg, 65%), both as white crystals, which were recrystallized from ethanol-chloroform. (b) In a manner similar to the above except that the reaction was carried out at 70 °C, 3b (100 mg, 0.084 mmol) and PPh₃ (66 mg, 0.25 mmol) gave 30 (21 mg, 27%) and 31 (29 mg, 36%). 30: mp >300 °C; ¹H NMR (CDCl₃ at 67 °C) δ -0.30 (s, 18H), 0.07 (s, 18H), 0.06 (s, 18H), 0.08 (s, 18H), 0.26 (s, 18H), 0.27 (s, 18H), 0.83 (d, J = 6.0 Hz, 6H), 1.155 (d, J = 6.9 Hz, 6H), 1.16 (d, J = 6.9Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H), 1.28 (s, 2H), 1.33 (d, J = 6.4Hz, 6H), 1.39 (s, 2H), 1.48 (br s, 6H), 2.58 (br s, 2H), 2.75 (sept, J = 6.9 Hz, 2H), 3.39 (s, 2H), 4.79 (br s, 2H), 6.33 (br s, 2H), 6.36 (br s, 2H), 6.88 (s, 2H), 6.89 (s, 2H); ¹³C NMR (C₂D₂Cl₄ at 140 °C) δ 1.49 (q), 1.53 (q), 2.54 (q), 2.61 (q), 3.27 (q), 3.47 (q), 23.61 (q), 23.70 (q), 23.76 (q), 25.93 (q), 27.22 (q), 28.68 (q), 30.52 (d), 31.03 (d), 32.17 (d), 32.81 (d), 34.27 (d), 38.70 (d), 123.68 (d), 124.47 (d), 126.55 (d), 128.51 (d), 139.78 (s), 140.94 (s), 143.66 (s), 149.85 (s), 150.33 (s), 152.74 (s), 154.28 (s), 156.58 (s). Anal. Calcd for C₈₄H₁₆₄Se₂Si₁₂Sn₂·2H₂O: C, 51.93; H, 8.72; Se, 8.13. Found: C, 51.45; H, 8.21; Se, 7.94. 31: mp 288-299 °C dec; ¹H NMR (CDCl₃ at 67 °C) δ -0.25 (s, 18H), -0.06 (s, 18H), 0.06 (s, 18H), 0.08 (s, 36H), 0.26 (s, 18H), 1.06 (d, J = 6.1 Hz, 6H), 1.23 (d, J= 6.9 Hz, 12H), 1.26 (d, J = 6.5 Hz, 12H), 1.33 (s, 2H), 1.36 (br s, 2H), 1.49 (br s, 6H), 2.47 (sept, J = 6.1 Hz, 2H), 2.58 (br s, 2H), 2.83 (sept, J = 6.9 Hz, 2H), 3.79 (br s, 2H), 6.34 (br s, 4H), 6.90 (s, 2H), 6.94 (s, 2H); ¹³C NMR (C₂D₂Cl₄ at 140 °C) δ 1.50 (q), 2.06 (br q), 2.89 (q), 23.77 (qx2), 25.83 (q), 26.75 (q), 27.47 (q), 29.99 (q), 30.95 (d), 31.71 (d), 33.16 (d), 34.21 (d), 34.69 (d), 39.08 (d), 123.44 (d), 126.93 (d), 141.08 (s), 143.40 (s), 143.59 (s), 149.98 (s), 150.33 (s), 152.30 (s), 154.14 (s), 155.26 (s). Anal. Calcd for C₈₄H₁₆₄Se₂Si₁₂Sn₂: C, 52.91; H, 8.67; Se, 8.28. Found: C, 52.63; H, 8.49; Se, 8.64.

Desulfurization of 1,2,3,4,5-Tetrathiastannolane 3a with Triphenylphosphine in the Presence of 2,3-Dimethyl-1,3butadiene. A hexane solution (3 mL) of tetrathiastannolane 3a (50 mg, 0.05 mmol), triphenylphosphine (39 mg, 0.15 mmol), and 2,3-dimethyl-1,3-butadiene (0.3 mL) was refluxed for 10 h. After removal of the solvent, the residue was separated with GPLC to afford a monomeric fraction containing Tb and Tip substituents (40 mg), which was further purified by FCC (hexane) to provide 28 (13 mg, 28%) and 2-{2,4,6-tris[bis(trimethylsilyl)methyl]- phenyl}-2-(2,4,6-triisopropylphenyl)-1,2-thiastannacyclohex-4ene (32) (27 mg, 56%), both as white solids, which were recrystallized from ethanol-chloroform. 32: mp 148-150 °C dec; ¹H NMR (CDCl₃) δ -0.12 (s, 9H), -0.06 (s, 9H), 0.03 (s, 9H), 0.04 (s, 9H), 0.10 (s, 9H), 0.13 (s, 9H), 1.02 (br s, 6H), 1.17 (d, J = 6.9Hz, 6H), 1.28 (br s, 6H), 1.29 (s, 1H), 1.45 (s, 3H), 1.56 (s, 1H), 1.65 (s, 1H), 1.78 (s, 3H), 2.18 (d, J = 10 Hz, 1H), 2.44 (d, J =10 Hz, 1H), 2.79 (sept, J = 6.9 Hz, 1H), 3.22 (d, J = 13 Hz, 1H), 3.33 (d, J = 13 Hz, 1H), 3.79 (br s, 2H), 6.29 (s, 1H), 6.43 (s, 1H),6.92 (br s, 2H); $^{13}\mathrm{C}$ NMR (CDCl_3) δ 0.74 (q), 1.01 (q), 1.29 (q), 1.55 (q), 1.83 (q), 2.08 (q), 19.91 (q), 20.64 (q), 23.88 (q), 23.93 (q), 25.09 (br q), 27.16 (br q), 27.79 (br q), 30.15 (t), 30.32 (d), 31.82 (d), 32.22 (d), 32.92 (d), 34.12 (t), 34.34 (d), 37.89 (d), 122.07 (d), 122.17 (d), 127.42 (d), 128.45 (s), 129.73 (s), 139.30 (s), 140.14 (s), 143.64 (s), 149.53 (s), 150.79 (s), 150.86 (s), 154.05 (br s), 155.94 (br s). Anal. Calcd for C₄₈H₉₂SSi₆Sn: C, 58.32; H, 9.38; S, 3.24. Found: C, 58.14; H, 9.13; S, 2.96.

Dechalcogenation of 1,2,3,4,5-Tetrachalcogenastannolanes 3a,b with Triphenylphosphine in the Presence of Styrene Oxide. (a) PPh₃ (74 mg, 0.28 mmol) was added to a toluene solution of 3a (94 mg, 0.094 mmol) at room temperature. After the mixture was stirred for 1 h at ambient temperature, styrene oxide (100 μ L) was added to the solution. Then the reaction mixture was heated to 90 °C and stirred at the same temperature for 10 h. After evaporation of the solvent, the residue was chromatographed (GPLC) to afford a monomeric fraction (79 mg), which was further purified with PTLC (20% dichloromethane/hexane) to give two isomers of 2-{2,4,6-tris[bis-(trimethylsilyl)methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-4phenyl-1,3,2-oxathiastannolane (33a) (isomer I, 12 mg and isomer II, 20 mg, 33%) as white crystals and 28 (11 mg, 13%). Both isomers of 33a were recrystallized from ethanol-chloroform. The stereochemical configuration of the two isomers was not determined. 33a-I: mp 188-192 °C; ¹H NMR (CDCl₃ at 57 °C) δ 0.03 (br s, 18H), 0.07 (br s, 36H), 1.24 (d, J = 6.9 Hz, 6H), 1.30 (d, J)= 6.5 Hz, 6H), 1.31 (d, J = 6.5 Hz, 6H), 1.35 (s, 1H), 2.13 (br s, 1H), 2.35 (br s, 1H), 2.88 (sept, J = 6.9 Hz, 1H), 3.10 (sept, J =6.5 Hz, 2H), 3.56 (dd, J = 11 and 11 Hz, 1H), 4.44 (dd, J = 4 and 11 Hz, 1H), 4.66 (dd, J = 4 and 11 Hz, 1H), 6.39 (br s, 1H), 6.50 (br s, 1H), 7.06 (s, 2H), 7.18-7.41 (m, 5H); ¹³C NMR (CDCl₃ at 57 °C) δ 0.91 (q), 0.98 (q), 1.33 (q), 23.93 (q), 26.12 (br q), 30.88 (d), 31.41 (d), 34.42 (d), 38.31 (d), 55.72 (d), 73.94 (t), 122.44 (d), 123.10 (d), 127.23 (d), 128.20 (d), 128.27 (d), 128.39 (d), 138.92 (s), 140.78 (s), 142.39 (s), 145.37 (s), 151.14 (s), 151.63 (br s), 154.61 (s). Anal. Calcd for C₅₀H₉₀OSSi₆Sn: C, 58.50; H, 8.84; S, 3.12. Found: C, 58.44; H, 8.58; S, 3.52. 33a-II: mp 192-194 °C; ¹H NMR (CDCl₃ at 57 °C) δ 0.00 (br s, 18 H), 0.07 (br s, 18H), 0.11 (br s, 18H), 1.25 (d, J = 6.0 Hz, 6H), 1.27 (br s, 6H), 1.35 (d, J = 6.5 Hz, 6H), 1.36 (s, 1H), 1.92 (br s, 1H), 2.09 (br s, 1H),2.88 (sept, J = 6.9 Hz, 1H), 3.26 (br s, 2H), 3.57 (dd, J = 11 and 11 Hz, 1H), 4.32 (dd, J = 4 and 11 Hz, 1H), 4.54 (dd, J = 4 and 11 Hz, 1H), 6.40 (br s, 1H), 6.52 (br s, 1H), 7.07 (s, 2H), 7.20-7.42 (m, 5H); ¹³C NMR (CDCl₃ at 57 °C) δ 0.89 (q), 1.01 (q), 1.21 (br q), 1.47 (br q), 23.90 (q), 23.93 (q), 25.99 (br q), 30.89 (d), 31.09 $(d), 34.39\,(d), 38.25\,(d), 57.21\,(d), 72.41\,(t), 122.58\,(d), 123.24\,(d),$ 127.34 (d), 128.07 (d), 128.26 (d), 128.45 (d), 138.83 (s), 140.24 (s), 141.81 (s), 145.40 (s), 150.95 (s), 151.32 (s), 151.58 (s), 154.89 (s). Anal. Calcd for C₅₀H₉₀OSSi₈Sn: C, 58.50; H, 8.84; S, 3.12. Found: C, 57.94; H, 8.44; S, 3.48. (b) To a THF solution (3 mL) of 3b (100 mg, 0.084 mmol) was added a THF solution (3 mL) of PPh₃ (66 mg, 0.25 mmol) at -78 °C, and the solution was stirred at -78 °C for 30 min. After styrene oxide (100 μ L) was added to the mixture, it was stirred for 10 h, during which time it was warmed to room temperature. After evaporation of the solvent, the residue was chromatographed (GPLC) to afford a monomeric fraction (61 mg) which was further purified by PTLC $(hexane) to provide two \, isomers \, of 2-\{2,4,6-tris[bis(trimethylsilyl)-triangle and the second s$ methyl]phenyl}-2-(2,4,6-triisopropylphenyl)-4-phenyl-1,3,2oxaselenastannolane (33b) (isomer I, 15 mg and isomer II, 33 mg, 53%) as white crystals. The sterechemical configuration of the two isomers was not determined. Both isomers of 33b were recrystallized from ethanol-chloroform. 33b-I: mp 218-220 °C; ¹H NMR (CDCl₃) δ -0.35 (s, 9H), 0.02 (s, 9H), 0.03 (s, 9H), 0.04

(s, 18H), 0.09 (s, 9H), 1.22 (d, J = 6.9 Hz, 6H), 1.28 (br s, 12H),1.32 (s, 1H), 2.07 (s, 1H), 2.31 (s, 1H), 2.86 (sept, J = 6.9 Hz, 1H), 3.13 (br s, 2H), 3.71 (dd, J = 18 and 18 Hz, 1H), 4.62 (dd, J = 18 and 9 Hz, 1H), 4.67 (dd, J = 18 and 9 Hz, 1H), 6.33 (s, 1H), 6.47 (s, 1H), 7.04 (s, 2H), 7.15-7.38 (m, 5 H); ¹³C NMR (CDCl₃) $\delta 0.81$ (q), 0.93 (q), 1.09 (q), 1.25 (q), 1.31 (q), 1.47 (q), 23.97 (q), 29.13 (br q), 30.58 (d), 30.79 (d), 34.36 (d), 38.01 (d), 52.79 (d), 73.39 (t), 122.38 (d), 122.88 (d), 127.10 (d), 127.86 (d), 128.33 (d), 128.41 (d), 138.37 (s), 140.63 (s), 141.62 (s), 145.13 (s), 150.89 (s), 151.03 (s), 151.42 (s), 154.44 (s). Anal. Calcd for C50H90OSeSi8-Sn: C, 55.95; H, 8.45; Se, 7.36. Found: C, 55.65; H, 8.15; Se, 7.63. 33b-II: mp 193-195 °C; ¹H NMR (CDCl₃ at 57 °C, 400 MHz) δ 0.01 (br s, 18H), 0.09 (br s, 18H), 0.11 (br s, 18H), 1.25 (d, J = 6.9 Hz, 6H), 1.258 (br s, 6H), 1.35 (d, J = 6.4 Hz, 6H), 1.36 (s, 1H), 1.95 (br s, 1H), 2.09 (br s, 1H), 2.88 (sept, J = 6.9 Hz, 1H), 3.41 (br s, 2H), 3.77 (dd, J = 11 and 11 Hz, 1H), 4.54 (dd, J =4 and 11 Hz, 1H), 4.60 (dd, J = 4 and 11 Hz, 1H), 6.40 (br s, 1H), 6.52 (br s, 1H), 7.07 (s, 2H), 7.19-7.41 (m, 5H); ¹³C NMR (CDCl₃) $\delta 0.61$ (q), 0.95 (q), 1.06 (q), 1.27 (q), 1.36 (q), 1.83 (q), 23.26 (br q), 23.98 (q), 30.34 (d), 30.45 (d), 30.58 (d), 34.35 (d), 37.99 (d), 54.06 (d), 72.13 (t), 122.51 (d), 123.00 (d), 127.23 (d), 127.79 (d), 128.09 (d), 128.52 (d), 138.79 (s), 140.00 (s), 141.45 (s), 145.10 (s), 150.68 (s), 150.99 (s), 151.32 (s), 154.60 (s). Anal. Calcd for C50H90OSeSi6Sn: C, 55.95; H, 8.45; Se, 7.36. Found: C, 55.39; H, 8.25; Se, 7.85.

Crystal and Experimental Data for 26a,b, 27a,b, 31, 8, and 14.25 (a) 26a, b and 27a, b: Data were collected through a capillary glass tube with Cu K α radiation ($\lambda = 1.5418$ Å) on Enraf-Nonius CAD-4 diffractometer. Unique reflactions $(|F_0| > 3\sigma |F_0|, 6742$ for 26a; 6538 for 26b; 6986 for 27a; 7380 for 27b) were observed (4° $< 2\theta < 130^{\circ}$). Empirical absorption correction was applied and structure was solved by direct methods (MULTAN 78) using an SDP package and program systems Molen and/or UNICS III. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were refined isotropically. Some hydrogen atoms were found in D-fourier map and the others were located by calculation. Refinement was performed by the full-matrix leastsquares method with 398 (for 26a and 26b) and 397 (for 27a and 27b) variable parameters (anisotropic thermal parameters for non-hydrogen atoms, where the positions and thermal parameters for hydrogen atoms were not refined). (b) 31, 8, and 14: The intensity data ($2\theta \leq 55^{\circ}$) were collected on a Rigaku AFC5R diffractometer with graphite monochromated Mo K α radiation $(\lambda = 0.710 69 \text{ Å})$, and the structure was solved by direct methods. All calculations were perfomed using TEXSAN crystallographic software package of Molecular Structure Corporation. The nonhydrogen atoms were refined anisotropically, and all hydrogen atoms were located by calculation. The final cycle of full-matrix least-squares refinement was based on 8262 (for 31), 6588 (for 8), and 3701 (for 14) observed reflections $(I > 3\sigma(I)$ for 31 and 14, $I > 4\sigma(I)$ for 8) and 828 (for 31) and 541 (for 8 and 14) variable parameters respectively. In the case of 31, non-hydrogen atoms of the p-[bis(trimethylsilyl)methyl] group of the Tb group bound to Sn2 atom (C17, C73-C78, Si9, and Si10) were refined isotropically with the thermal parameters for carbon atoms being fixed $(U_{11} = 0.1267)$ because of their severe disorder.

Acknowledgment. This work was partially supported by Grand-in-Aid for Scientific Research on Priority Area (No. 03215101) from the Ministry of Education, Science and Culture, Japan. We are grateful to Shin-etsu Chemical and Toso Akzo Co. Ltd. for chlorosilanes and alkyllithiums, respectively.

Supplementary Material Available: Crystallographic data and tables listing atomic coordinates, temperature factors, bond lengths and angles, and torsional angles for 26a, 26b, 27a, 27b, 31, 8, and 14 (211 pages). Ordering information is given on any current masthead page.

OM930105T

⁽²⁵⁾ Atomic coordinates, bond lengths and angles, and thermal parameters for 8 and 14 have been deposited at the Cambridge Data Centre. $^{\rm 14b}$