ZNS-Wirkstoffe: Synthese und Eigenschaften von 3-Anilino-8-oxatropanen¹⁾⁺⁾

Fritz Eiden* und Alexander Kainz

Institut für Pharmazie und Lebensmittelchemie der Ludwig-Maximilians-Universität München, Sophienstraße 10, W-8000 München 2

Eingegangen am 14. November 1990

Aus den 8-Oxabicyclooctenonen- und -octanonen 3 und 4 entstehen mit Anilin und Metallhydriden bevorzugt die 3α -Isomeren der Anilinderivate 7 und 8. Die Konfiguration läßt sich $^1\text{H-NMR-spektroskopisch}$ und durch Ringschluß zum Scopolinanalogen 9b festlegen. Je nach N-Substitution werden die Pyranringe der α -Isomeren eingeebnet (7,8) oder zur Wanne deformiert (10,11,13). Die ringfixierten Anilinderivate 18 können aus 4 mit 2-Aminobenzaldehyd und Diboran gewonnen werden, wobei die Transverknüpfung bevorzugt ist. An Mäusen wurden bei einigen Substanzen ZNS-Wirkungen beobachtet.

CNS-Agents: Synthesis and Properties of 3-Anilino-8-oxatropanes¹⁾

Reaction of the 8-oxabicyclooctenone and -octanone derivatives 3 and 4 with aniline and metal hydrides yields the 3α -isomers of the aniline derivatives 7 and 8, preferably. The configuration can be determined by NMR-spectroscopy and by cyclization to the scopoline analogue 9b. Depending on the *N*-substitution the pyran rings of the α -isomers are flattened (7,8) or deformed to give a boat conformation (10,11,13). The conformationally restricted aniline derivative 18 can be obtained from 4 with 2-aminobenzaldehyde and diborane, *trans*-configuration is preferred in 18. Some substrates reveal CNS-effects in mice.

Viele ZNS-Wirkstoffe sind Anilinabkömmlinge: Dibenzoazepine (z.B. Imipramin), Benzodiazepine (z.B. Diazepam), N-Phenylimidazolidine (z.B. Fluspirilen), N-Phenylchinazoline (z.B. Methaqualon) oder Indolderivate (z.B. Oxypertin). Dazu gehören auch starke Schmerzmittel von der Art des Fentanyls (1), das in seiner analgetischen Potenz Morphin um ein Vielfaches übertrifft²⁾, sowie nach Struktur und Wirkung ähnliche Tropanderivate wie z.B. 2, dessen 3 β -Isomer erheblich stärker wirkt als das α -Isomer³⁾.

Angeregt durch diese Betrachtungen und im Zusammenhang mit Untersuchungen über Struktur-Aktivitätsbeziehungen bei ZNS-wirksamen Aminopyranen⁴⁾ haben wir eine Reihe von 3-Anilino-8-oxabicycloctenen und -octanen hergestellt und einige dieser Verbindungen auf ZNS-Wirkungen geprüft.

Synthese und Reaktionen einfacher 3-Anilino-8-oxatropane

Die Ketone 3 und $4^{5)}$ kondensierten mit Anilin bei Verwendung eines Extraktors mit CaH₂-Einsatz zu den Azomethinderivaten 5 und 6. Diese ließen sich nach Überführen in die Hydrochloride mit NaCNBH₃ bzw. Li(t-BuO)₃AlH reduzieren. Es entstanden die Diastereomerengemische 7α und 7β bzw. 8α und 8β . Die α - und β -Isomere von 7 und 8 konnten auch in Eintopfreaktionen aus 3 bzw. 4, Anilin und NaCNBH₃ gewonnen werden.

Die α- und β-Isomeren ließen sich ¹H-NMR-spektroskopisch nebeneinander nachweisen und chromatographisch

trennen. Wir fanden so, daß bei der Reduktion von 5 mit NaCNBH₃ die α- und β-Isomeren im Verhältnis 83:17 entstanden waren (spektroskopische Bestimmung). Bei der Reduktion von 6 mit NaCNBH₃ war das α:β-Verhältnis 89:11, mit dem sterisch anspruchsvolleren Li(t-BuO)₃AlH sogar 98:2 (MPLC-Bestimmungen). Erkennbar ist dabei, daß sich die Reduktionsmittel dem Azomethin bzw. dem Imminiumsalz bevorzugt von der räumlich weniger anspruchsvollen Seite nähern, und zwar um so eindeutiger, je korpulenter das Metallhydrid ist.

⁺⁾ Herrn Professor Dr. M. Protiva, Prag, mit den besten Wünschen zum 70. Geburtstag gewidmet.

18 Eiden und Kainz

Die β-Isomeren ließen sich in besseren Ausbeuten durch Reduktion von 5 bzw. 6 mit Natrium in Ethanol gewinnen. Der Anteil an β-Isomer stieg dabei auf etwa 70%.

Die 1 H-NMR-Spektren (CDCl₃) von 7α und 7β zeigen jeweils ein Singulett für zwei olefinische Protonen bei 6.43 bzw. 6.20 ppm, wobei der Tieffeldshift beim α -Isomer durch die Wechselwirkung von Ethen- und α -ständiger NH-Gruppe bedingt ist. Eine solche Signalverschiebung läßt sich auch bei 3-Hydroxy- und 3-Benzyloxy-8-oxabicyclooctenen beobachten⁶⁾. Dipolare Lösungsmittel mindern die intramolekulare HC=CH/NH-Wechselwirkung, so liegt das Olefinsignal von 7α in d_6 -DMSO bei 6.27, von 7β bei 6.24 ppm.

Beweisen ließ sich die so getroffene Zuordnung auch durch die Umsetzung von 7α mit Hg(OCOCH₃)₂. Es entstand die Quecksilberverbindung 9a und daraus durch Reduktion mit NaBH₄/NaOH das 2-Oxa-6-azatricyclononan 9b. Dieser Ringschluß hebt die Äquivalenz der C-1/C-5, C-2/C-4 und C-6/C-7-Atome in 7 auf, wie ein Vergleich von 13 C-NMR-Spektren zeigt: 7α zeigt neben den Aromatensignalen vier Singuletts bei 78.0, 30.2, 135.3 sowie 44.8 (C-3) ppm; 9b dagegen sieben Singuletts.

Die ¹H-NMR-Spektren der α-isomeren Anilinderivate von 7 und 8 zeigen für das 3-βH-Triplett eine Kopplungskonstante von $J_{3,2\beta} = J_{3,4\beta} = 6-7$ Hz. Das spricht für einen Winkel 3-βH/2-αH bzw. 3-βH/4-αH von 90° und damit für eine abgeflachte Sesselform des Pyranrings. Das 3-αH-Signal der β-Isomeren von 7 und 8 tritt als 7-Linienmultiplett auf (vier Linien der drei Tripletts überlagern sich). Die Kopplungskonstante von 11-12 Hz ist durch die *trans*-diaxiale Anordnung von 3-αH und 2- bzw. 4-βH bedingt.

 7α und β sowie 8α und β setzten sich mit Propionsäurechlorid nach Zusatz von Pyridin/4-Dimethylaminopyridin zu den Aniliden 10α und β sowie 11α und β um, die sich durch Kristallisation trennen ließen. Die tertiären Amine 12α und β erhielten wir aus $8\alpha/\beta$ mit Propionsäure/NaBH₄. 10α reagierte mit *m*-Chlorperbenzoesäure zum Epoxid 13.

Beim Propansäureanilid 10α beträgt die Kopplungskonstante $J_{1,2\beta} = J_{5,4\beta} = 8$ Hz. Durch Einstrahlen bei 5.27 ppm (Entkoppeln von 3- β H) ändert sich das Signal der 2- bzw. 4- β -Protonen vom dt zum dd (J = 12.9/8.0 Hz), das 2- bzw. 4-H-Signal (ddd) wird zum d (br). Diese Werte passen am besten zu einem Wannenkonformeren mit ekliptisch stehenden Protonen (1-H/2- β H bzw. 5-H/4- β H). Auch beim Epoxid 13 stehen die Brückenkopfprotonen (1-H, 5-H) ekliptisch zu den β -ständigen Protonen am C-6/C-8 ($J_{1.8\beta} = J_{5.68} = 9.3$ Hz), d.h. bei 13 überwiegt die Wannenform.

Die Isomeren der β -Anilidreihe 10β und 11β zeigen (im Vergleich zu Spektren von 3 und 4) unveränderte 3- α H-und 1-H/5-H-Kopplungsmuster, so daß hier eine Sesselkonformation anzunehmen ist.

Den Spektren zufolge liegt also der Pyranring in den β -konfigurierten Anilino-oxatropanen in der Sesselform vor, während bei den α -Isomeren eine Deformation des Sessels festzustellen ist, die von der Einebnung (7α und 8α) bis zum Umklappen in die Wannenform (10α , 11α , 13) geht offensichtlich eine Folge der Wechselwirkung zwischen der Ethen-/Ethanbrücke und der α -Aminogruppe in 3-Position.

Tab. 1: ¹H-NMR-Daten (CDCl₃) des Protons in 3-Stellung der α - und β -Isomeren von 7, 8, 10, 11 und 13

	α -Isomer (3- β H)		β -Isomer (3- α H)	
	[ppm]	Signalmuster J[Hz]	[ppm]	Signalmuster J[Hz]
7	3.85	t 7.0	3.75	tt 6.0/11.0
8	3.69	t(br) 5.9	3.75	tt 6.0/12.0
10	5.27	tt8.0/8.0	5.08	tt 6.6/10.5
11	4.75	tt 6.0/11.7	5.17	tt 5.4/11.7
13	4.61	tt 7.2/11.2	-	-

Synthese und Reaktionen ringfixierter Anilino-oxatropane

3 und 4 kondensierten mit 2-Aminobenzaldehyd und KOH/Ethanol nach Art einer *Friedländer*-Synthese zu den Chinolinderivaten 14 und 15, deren ¹H-NMR-Spektren den Verlust an Molekülsymmetrie erkennen lassen, z.B. durch verschiedene δ-Werte der Brückenkopf- und Ethenprotonen.

14 und 15 reagierten mit CH₃I zu den N-Methyl-chinoliniumsalzen 16 und 17. Diese ließen sich mit NaBH₄ nicht zu isolierbaren Reduktionsprodukten umsetzen. Wir erhielten jedoch CH₂-fixierte Anilinderivate bei der Reduktion von 15 mit Diboran/Pyridin in Essigsäure. Es entstand überwiegend das *trans*-Isomer 18-trans, daneben in kleinen Mengen das cis-Isomer 18-cis und das transanellierte N-Ethylderivat 19 (durch Reduktion des N-Acetylderivats). 18-trans reagierte mit CH₂O/NaCNBH₃ zum N-Methylderivat 20a, mit Propionsäurechlorid und Pyridin/4-Dimethylaminopyridin zum Amid 20b.

Die ¹H-NMR-Daten des Protons in 5a-Stellung von **18**trans und **18-**cis lassen die Verknüpfung von Cycloheptanund Tetrahydrochinolinring erkennen. Im 5a-H-Signal (dt)

zeigt das Dublett (J = 7.7 Hz) die Kopplung des axialständigen 5a- α -Protons mit dem äquatorialstehenden 6- α H, das Triplett (9.7 Hz) die Kopplung von 5a- α H mit den beiden axialständigen 6- β - und 10a- β -Protonen an. Das gleiche gilt für die Spektren 19 und 20b. Im Signalmuster des 5a-Pro-

Tab. 2: ¹H-NMR-Daten (CDCl₃) des 5a-Protons in 18-trans, 18-cis, 19 und 20b sowie des 3-Protons in den Oxacocainisomeren 21 und 22

	[ppm]	Signalmuster J[Hz]	Konfiguration
18-trans	3.15	dt 7.7/9.7	5a-αH
19	3.08	dt 4.7/10.2	5a-αH
20b	4.10	dt 4.2/11.7	5a-αH
21	5.61	dt 6.2/11.5	3- <i>β</i> H
18-cis	3.67	t(br) 4.5	5a-βH
22	5.71	dt 1.1/4.1	3-αH

tons von **18-cis** fehlt eine große Kopplungskonstante: Das Triplett bei 3.67 ppm gibt die Kopplung mit den beiden β-ständigen (axialstehenden) 6- und 10a-Protonen wieder.

Diese Zuordnung paßt gut zu den entspr. ¹H-NMR-Daten der in 2- und 3-Stellung monosubstituierten oxaanalogen Cocaindiastereomeren 21 und 22⁷).

Pharmakologische Prüfungen

Die Oxatropanyl-propananilide 10 und 13 zeigten im Ir-win-Screening⁸⁾ an der Maus bei 200 mg/kg deutlich zentraldämpfende Eigenschaften, wobei 13 stärker wirksam war als 10. Im Writhing-Test⁸⁾ wurde für 13 ein ED₅₀-Wert von 64 mg/kg ermittelt. Beim Propylanilinderivat 12 (α und β) wurden neben einer serotoninantagonistischen Wirkung eine Blutdrucksenkung beobachtet, die wahrscheinlich durch Beeinflussung des Angiotensin-Systems verursacht wird.

Dem Fonds der Chemischen Industrie danken wir für die finanzielle Unterstützung unserer Untersuchungen, den Herren Dr. J. Schünemann und Dr. G. Höfner aus unserem Institut für die Wirkungsprüfungen und Herrn Dr. H. Lentzen (Dr. Madaus, Köln) für die pharmakologischen Untersuchungen der Substanzen 12α/β.

Experimenteller Teil

NMR-Spektren: Wenn nicht anders angegeben in CDCl₃.

V1: Allgemeine Vorschrift zur reduktiven Aminierung der Ketone 3 bzw. 4 mit $NaCNBH_3$

Unter Eis/Kochsalzkühlung wurden zu einer Lösung von 1 ml (10 mmol) Anilin in 4 ml MeOH nacheinander 2 ml einer 5N methanolischen HCI-Lsg. (10 mmol)), 2.2 mmol Keton in 10 ml MeOH, 95 mg (1.5 mmol) NaCNBH3 und 0.8 g Molekularsiebstäbchen (3 Å) gegeben. Man ließ unter Lichtausschluß und Umschütteln 4 d bei RT stehen, dann wurde abfiltriert, i.Vak. abdestilliert, der Rückstand unter Kühlung mit 2N HCI-Lsg. auf pH 2 eingestellt, mit wenig Et2O extrahiert, die wäßrige Phase mit konz. Na-OH alkalisiert (pH 12), mit CH_2Cl_2 ausgeschüttelt, die org. Schicht getrocknet (Na2SO4) und i.Vak. eingeengt.

V2: Allgemeine Vorschrift zur Darstellung von Propionsäureamiden aus Anilinderivaten

Zu einer Lösung von 1 mmol Anilin-Derivat in 5 ml THF wurden 0.26 ml (3 mmol) Propionsäurechlorid gegeben, die Suspension wurde mit 0.24 ml (3 mmol) eisgekühltem Pyridin und 12 mg (0.1 mmol) 4-Dimethylaminopyridin versetzt und 20 h bei RT gerührt. Nach Zugabe von 2N HCl (pH 2) wurde mit CH_2Cl_2 ausgeschüttelt, mit 2N NaOH gewaschen, über Na_2SO_4 getrocknet und i.Vak. eingedampft. Der Rückstand wurde rotationschromatographisch (rc) oder durch Kristallisation gereinigt.

V3: Allgemeine Vorschrift zur Methylierung sekundärer Amine mit $\rm H_2CO$ und $\rm NaCNBH_3$

1 mmol Amin wurde in 5 ml NaOH gelöst, unter Eiskühlung nacheinander mit 0.8 ml (10 mmol) 36proz. Formaldehyd-Lösung und 160 mg (2.5 mmol) NaCNBH₃ versetzt, mit Eisessig auf pH 5-6 eingestellt und bei RT gerührt. Es wurde i.Vak. abdestilliert, der Rückstand mit 2N HCl versetzt und mit Et₂O gewaschen, die wäßrige Schicht mit festem KOH unter Kühlung auf pH 10 eingestellt, mit CHCl₃ extrahiert, über Na₂SO₄ getrocknet und i.Vak. eingeengt.

(1α-H,5α-H)-8-Oxabicyclo[3.2.1]oct-6-en-3-on (3)

Aus 27.3 ml (0.2 mmol) Pentachloraceton, 100 ml einer 2-mol. Lösung von Natriumtetrafluorpropanolat in Tetrafluorpropanol und 128 ml (2 mol) Furan modifiziert nach Lit.⁵⁾. Das chlorierte Cycloaddukt wurde ohne sc-Reinigung zu 3 umgesetzt. Nach Destillation farbloses Öl, das bei Kühlung erstarrt; Sp_{0.6} 58°C; Schmp. 38-39°C), Ausb. 53%. Analysen und Spektraldaten stimmen mit Lit.⁵⁾ überein.

1αH,5α-H)-8-Oxabicyclo[3.2.1]octan-3-on (4)

Durch katalytische Reduktion von 12.7 g (0.1 mol) 3 in 50 ml Ethylacetat (EtAc) mit 1.27 g Pd/C (10%) und H₂ in einer *Parr*-Apperatur (3 Torr, RT, 6 h) entstand ein farbloses Öl. Sp_{0.001} 35°C (Lit.⁵⁾: Sp_{0.05} 43-44°C), Ausb. 11.8 g (93%); erstarrt bei Kühlung.

N-Phenyl- $(1\alpha-H.5\alpha-H)-8$ -oxabicyclo[3.2.1]oct-6-en-3-imin (5)

3.7 g (30 mmol) 3 wurden mit 8.3 ml (90 mmol) Anilin (frisch destilliert) und katalytischen Mengen p-Toluolsulfonsäure 2 d am Extraktor (CaH₂ Einsatz) in 40 ml Toluol rückfließend erhitzt. Nach Destillation entstand ein gelbliches Öl, Sdp_{-0.008} 100-110°C, das bei Kühlung erstarrte. Farblose Kristalle (MeOH), Schmp. 94-95°C; Ausb. 4.1 g (68%).- C₁₃H₁₃NO (199.3) Ber. C 78.4 H 6.57 N 7.0 Gef. 78.4 H 6.51 N 7.0 Molmasse: 199 (ms).- IR (KBr): 3080; 2950; 1650; 1590 cm⁻¹.- ¹H-NMR: 2.25-2.65 (m, 3H), 3.0 (dd, J = 5/15 Hz, 1H), 4.8-4.9 (m, 1H), 5-5.1 (m, 1H), 6.15 (dd, J = 2/6 Hz, 1H), 6.35 (dd, J = 2/6 Hz, 1H), 6.5-7.5 (m, 5H).

N-Phenyl- $(1\alpha-H,5\alpha-H)$ -8-oxabicyclo[3.2.1]octan-3-imin (6)

Nach der bei 5 angegebenen Vorschrift aus 3.8 g (30 mmol) 4. Farblose Kristalle (MeOH), Schmp. 56°C, Ausb. 4.5 g (74%).- $C_{13}H_{15}NO$ (201.3) Ber. C 77.6 H 7.51 N 7.0 Gef. C 77.5 H 7.5 N 7.0 Molmasse: 201 (ms).- IR (KBr): 3050; 2950; 1650; 1258 cm⁻¹.- ¹H-NMR: 1.3-2.6 (m, 7H), 2.85 (dd, J = 5/16 Hz, 1H), 4.25-4.55 (m, 1H), 4.55-4.85 (m, 1H), 6.6-7.5 (m, 5H).

N-Phenyl-(1- α H,5- α H)-8-oxabicyclo[3.2.1]oct-6-en-3 α -amin (7) und N-Phenyl-(1- α H,5- α H)-8-oxabicyclo[3.2.1]oct-6-en-3 β -amin (7 β)

A) Reduktion von 5 mit Metallhydriden

In eine Lösung von 1.5 g (7.5 mmol) 5 in 30 ml THF wurde unter Eiskühlung trockenes HCl-Gas eingeleitet, der Niederschlag abgesaugt, in THF suspendiert und bei -20°C mit 0.3 g (5 mmol) NaCNBH₃ bzw. 3.8 g (15 mmol) Li(t-BuO)₃AlH versetzt. Man ließ 4 h bei RT rühren, alkalisierte mit 2N NaOH, extrahierte mit Et₂O, trocknete (Na₂SO₄) und destillierte i.Vak. Dem Diastereomerengemisch (Ausb. 1.4 g (92%) wurde eine 1 H-NMR-Probe entnommen. Rc-Trennung (4 mm-Platte, Hexan/EtAc/(9 Me-OH/1 NH₄OH) = 95:5:1), Frakt. zu 10 ml). Zuerst wird 7 α , dann 7 β eluiert. B) Reduktive Aminierung von 3 mit NaCNBH₃

1.2 g (10 mmol) 3 wurden nach VI umgesetzt und aufgearbeitet. Nach Abtrennen von überschüssigem Anilin durch Destillation (Sdp_{-0.008} = 118°C) wurde rc-getrennt (siehe A). Dem Diastereomerengemisch (Ausb. 1.7 g (82%)) wurde eine ¹H-NMR-Probe entnommen.

C) Reduktion von 5 mit Natrium

Eine Lösung von 1.0 g (5 mmol) 5 in 8 ml EtOH wurde unter N_2 portionsweise mit 0.5 g (20 mmol) Na versetzt und 3.5 h rückfließend erhitzt. Es wurde i.Vak. abdestilliert, der Rückstand mit H_2O versetzt, mit Et_2O extrahiert, mit H_2O gewaschen, getrocknet (Na_2SO_4) und i.Vak. eingedampft. Dem Diastereomerengemisch, Ausb. 0.56 g (55%), wurde eine 1H -NMR-Probe entnommen. Rc-Trennung siehe A.

7 α : Farblose Kristalle, Schmp. 57-58°C.- C₁₃H₁₅NO (201.3) Ber. C 77.6 H 7.51 N 7.0 Gef. C 77.5 H 7.49 N 7.0 Molmasse: 201 (ms).- IR (KBr): 3360; 3040; 2935; 1595 cm⁻¹.- ¹H-NMR: 1.65 (d, J = 15 Hz, 2H), 2.3 (ddd, J = 4/7/15 Hz, 2H), 3.8 (t, J = 7 Hz, 1H), 3.75-4.5 (s(br), 1H, H/D-Tausch), 4.75 (d, J = 4 Hz, 2H), 6.43 (s, 2H), 6.5-7.35 (m, 5H).

 7β : Farblose Kristalle, Schmp. 137-138°C.- $C_{13}H_{15}NO$ (201.3) Ber. C 77.6 H 7.51 N 7.0 Gef. C 7.3 H 7.78 N 7.0 Molmasse: 201 (ms).- IR (KBr): 3325, 3015, 2940, 1595 cm⁻¹.- ¹H-NMR: 1.55 (ddd, J = 4/11/14 Hz, 2H), 2.1 (dd(br), J = 6/14 Hz, 2H), 3.75 (tt, J = 6/11 Hz, 1H), 3-4 (s(br), 1H, H/D-Tausch), 4.75-4.9 (m, 2H), 6.20 (s, 2H), 6.5-7.25 (m, 5H).

N-Phenyl-(1-αH,5-αH)-8-oxabicyclo[3.2.1]octan-3α-amin (8α) und N-Phenyl-(1-αH,5-αH)-8-oxabicyclo[3.2.1]octan-3β-amin (8β)

Wie bei 7:

A) aus 2.0 g (10 mmol) 6; Ausb. 1.3 g (65%) Diastereomerengemisch; B) aus 1.3 g (10 mmol) 4; Ausb. 1.5 g (73%) Diastereomerengemisch; C) aus 1.4 g (7 mmol) 6; Ausb. 0.7 g (50%) Diastereomerengemisch.

Das Diastereomerenverhältnis wurde durch MPLC bestimmt (Hexan/EtAc = 8:2, UV-Detektion: λ = 256 nm, 0.3 mmol Lösungen). Rc-Trennung (4 mm-Platte, Hexan/EtAc = 8:2 oder wie bei 7).

80: Farblose Kristalle ((i-Pr)₂O), Schmp. 55-56°C.- $C_{13}H_{17}NO$ (203.3) Ber. C 76.8 H 8.43 N 6.9 Gef. C 76.8 H 8.47 N 7.0 Molmasse: 203 (ms).-IR (KBr): 3360; 3020; 2930; 1600 cm⁻¹.- ¹H-NMR: 1.73 (dd, J = 1.3/14.8 Hz, 2H), 1.98-2.12 (m, 4H), 2.24 (dt, J = 14.8/5.9 Hz, 2H), 3.69 (t(br), J = 5.9 Hz, 1H), 3.86 (s(br), 1H, H/D-Tausch), 4.38-4.42 (m, 2H), 6.53-7.2 (m, 5H).

8 β : Farblose Kristalle, Schmp. 146-147°C.- $C_{13}H_{17}NO$ (203.3) Ber. C 76.8 H 8.43 N 7.0 Gef. C 76.7 H 8.5 N 6.9 Molmasse: 203 (ms).- IR (KBr): 3300; 3010; 2950; 1595 cm⁻¹.- ¹H-NMR: 1.35-2.25 (m, 8H), 2.5-3.5 (s(br), 1H, H/D-Tausch), 3.75 (tt, J = 6/12 Hz, 1H), 4.4-4.65 (m, 2H), 6.5-7.3 (m, 5H).

6-Phenyl-(1-αH,3-αH-2-oxa-6-azatricyclo[3.3.1.0^{3.7}]nonan (9b)

Eine Lösung von 0.3 g (1.5 mmol) 7α in 10 ml THF und 1.9 g (6 mmol) $Hg(OAc)_2$ in 10 ml H_2O wurde 7 d bei RT gerührt. Dann wurde mit 10 ml 2N NaOH und 0.46 g (12 mmol) NaBH $_4$ in 10 ml 2N NaOH versetzt und kräftig gerührt. Es wurde abzentrifugiert, mit CHCl $_3$ extrahiert, i.Vak. eingeengt und über eine Säule filtriert (20 g Kieselgel Hexan/EtAC = 1:1). Rc-Trennung (2 mm-Platte, Hexan/EtAC = 9:1, Fraktionen zu 10 ml). Blaßgelbe Kristalle, Schmp. $48-50^{\circ}$ C; Ausb. 24 mg (8%).- $C_{13}H_{15}NO$ (201.3) Ber. C 77.6 H 7.51 N 7.0 Gef. C 77.5 H 7.56 N 6.9 Molmasse: 201 (ms).- IR (Film): 2950, 1600 cm $^{-1}$.- 1 H-NMR: 1.66-1.74 (m, 3H), 1.85 (dt, J=11/4.4 Hz, 1H), 2.23 (d, J=5.1 Hz, 1H), 4.22 (s(br), 1H), 4.57 (t, J=4.4 Hz, 1H), 4.86 (s(br), 1H), 6.71-7.26 (m, 5H).

 $N-[(1-\alpha H,5-\alpha H)-8-Oxabicyclo[3.2.1]oct-6-en-3\alpha-yl]-N-phenyl-propanamid (10\alpha) und <math>N-[(1-\alpha H,5-\alpha H)-8-Oxabicyclo[3.2.1]oct-6-en-3\beta-yl]-N-phenylpropanamid (188)$

10α: 0.8 g (4 mmol) 7α wurden nach V2 umgesetzt und aufgearbeitet. Farblose Kristalle ((i-Pr)₂O), Schmp. 105-106°C; Ausb. 0.7 g (65%).-C₁₆H₁₉NO₂ (257.3) Ber. C 74.7 H 7.44 N 5.4 Gef. C 74.7 H 7.47 N 5.5 Molmasse: 257 (ms).- IR (KBr): 3060; 2970; 1650; 1595; 1585 cm⁻¹.-

¹H-NMR: 0.95 (t, J = 7.3 Hz, 3H), 1.48 (ddd, J = 1.2/8/12.9 Hz, 2H), 1.9 (q, J = 7.3 Hz, 2H), 2.25 (dt, J = 12.9/8 Hz, 2H), 4.75 (d(br), J = 8 Hz, 2H), 5.27 (tt, J = 8/8 Hz, 1H), 6.03 (s, 2H), 6.95-7.52 (m, 5H).

10β: 0.4 g (2 mmol) 7β wurden nach V2 umgesetzt und aufgearbeitet. Farblose Kristalle ((i-Pr)₂O), Schmp. 60-61°C; Ausb. 0.38 g (74%).-C₁₆H₁₉NO₂ (257.3) Ber. C 74.7 H 7.44 N 5.4 Gef. C 74.9 H 7.21 N 5.4 Molmasse: 257 (ms).- IR (KBr): 3050; 2950; 1650: 1590 cm⁻¹.- ¹H-NMR: 0.91 (t, 7.3 Hz, 3H), 1.54-1.61 (m, 4H), 1.81 (q, J = 7.3 Hz, 2H), 4.6-4.7 (m, 5H).

N-((1-αH,5-αH)-8-Oxabicyclo[3.2.1]octan-3α-yl)-N-phenylpropanamid (11α) und N-((1-αH,5-αH)-8-Oxabicyclo[3.2.1]octan-3β-yl)-N-phenylpropanamid (119)

11 α : 0.81 g (4 mmol) 8 α wurden nach V2 umgesetzt und aufgearbeitet. Farblose Kristalle ((i-Pr)₂O), Schmp. 95-96°C; Ausb. 0.63 g (60%).-C₁₆H₂₁NO₂ (259.4) Ber. C 74.1 H 8.16 N 5.4 Gef. C 74.0 H 8.19 N 5.4 Molmasse: 259 (ms).- IR (KBr): 3040; 2960; 1650; 1590; 1580 cm⁻¹.-

1H-NMR: 1 (t, J = 7.3 Hz, 3H), 1.2-1.98 (m, 8H), 2.36 (ddd, J = 6/8.2/12.6 Hz, 2H), 4.34-4.46 (m, 2H), 4.75 (tt, J = 6/11.7 Hz, 1H), 7-7.45 (m, 5H).

11β: 0.41 g (2 mmol) 8β wurden nach V2 umgesetzt und aufgearbeitet. Farblose Kristalle ((i-Pr)₂O), Schmp. 81°C; Ausb. 0.32 g (61%).- C₁₆H₂₁NO₂ (259.4) Ber. C 74.1 H 8.16 N 5.4 Gef. C 74.1 H 8.3 N 5.5 Molmasse: 259 (ms).- IR (KBr): 3030; 2940; 1650; 1580 cm⁻¹.- ¹H-NMR: 1.0 (t, J = 7.3 Hz, 3H), 1.52 (ddd, J = 3.3/11.4/12.5 Hz, 2H), 1.65 (dd, J = 5.4/12.5 Hz, 2H), 1.68-1.96 (m, 6H), 4.34-4.38 (m, 2H), 5.17 (tt, J = 5.4/11.4 Hz, 1H), 7.02-7.47 (m, 5H).

 $N-((2-\alpha H,5-\alpha H)-8-Oxabicyclo[3.2.1]octan-3\alpha-yl)-N-propylanilin$ (12 α) und $N-((1-\alpha H,5-\alpha H)-8-Oxabicyclo[3.2.1]octan-3<math>\beta$ -yl)-N-propylanilin (12 β)

12 α : Zu einer Lösung aus 0.5 g (2.5 mmol) 8 in 30 ml Propionsäure wurden unter Eiskühlung portionsweise 0.75 g (20 mmol) NaBH₄ gegeben, dann wurde 2 h auf 50°C erwärmt, nach Abkühlen mit konz. NaOH-Lösung alkalisiert, mit Et₂O extrahiert und getrocknet (Na₂SO₄). Rc-Reinigung (2 mm-Platte, Hexan/EtAc = 9:1, Fraktionen zu 10 ml). Farblose Flüssigkeit, die bei Kühlung erstarrt, Schmp. 37-38°C; Ausb. 0.5 g (81%).- C₁₆H₂₃NO (245.4) Ber. C 78.3 H 9.45 N 5.7 Gef. C 78.3 H 9.47 N 5.7 Molmasse: 245 (ms).- IR (Film): 3020; 2950; 1595; 1575 cm⁻¹.- ¹H-NMR: 0.87 (t, J = 7.5 Hz, 3H), 1.41-2.02 (m. 8H), 2.24 (ddd, J = 6.5/8.1/13.7 Hz, 2H), 3.01-3.05 (m, 2H), 3.98 (tt, J = 6.5/8.9 Hz, 1H), 4.4-4.44 (m, 2H), 6.74-7.25 (m, 5H).

12β: Analog 12 aus 0.5 g (2.5 mmol) 8β. Farblose Kristalle ((i-Pr)₂O),

Schmp. 79-80°C; Ausb. 0.45 g (73%).- $C_{16}H_{23}NO$ (245.4) Ber. C 78.3 H 9.45 N 5.7 Gef. C 78.3 H 9.54 N 5.6 Molmasse: 245 (ms).- IR (KBr): 3050; 2950; 1590 cm⁻¹.- ¹H-NMR: 0.9 (t, J = 7.5 Hz, 3H), 1.52-1.57 (m, 2H), 1.66 (dd, J = 5.2/12.5 Hz, 2H), 1.82-2.03 (m, 6H), 3.06 (t, J = 8.1 Hz, 2H), 4.08 (tt, J = 5.2/11.7 Hz, 1H), 4.47-4.5 (m, 2H), 6.66-7.21 (m, 5H).

 $N-((2-\alpha H, 4-\alpha H)-3, 9-Dioxa-tricyclo[3-3.1.0^{2.4}]$ nonan- 7α -yl)-N-phenyl propanamid (13)

0.3 g (1.1 mmol) **10** α wurden mit 0.4 g 55proz. (1.3 mmol) 3-Chlorperbenzosäure 5 h in 10 ml rückfließend erhitzt. Es wurde mit gesättigter Na₂CO₃-Lösung gewaschen, i.Vak. abdestilliert und der Rückstand aus (i-Pr)₂O/EtAc umkristallisiert. Farblose Kristalle, Schmp. 144°C; Ausb. 0.18 g (59%).- C₁₆H₁₉NO₃ (273.3) Ber. C 70.3 H 7.01 N 5.1 Gef. C 70.2 H 7.02 N 5.1 Molmasse: 273 (ms).- IR (KBr): 3050; 2960; 1650; 1595 cm⁻¹.- ¹H-NMR: 1.01 (t, J = 7.4 Hz, 3H), 1.45 (ddd, J = 1.9/11.2/12.5 Hz, 2H), 1.92 (q, J = 7.4 Hz, 2H), 2.26 (ddd, J = 7.2/9.3/12.5 Hz, 2H), 3.4 (s, 2H), 4.28 (dd, J = 1.9/9.3 Hz, 2H), 4.61 (tt, J = 7.2/11.2 Hz, 1H), 7-7.5 (m, 5H).

7\(\beta\),10\(\beta\)-Epoxy-6,7-dihydro-10H-cyclohepta-8-en[b]chinolin (14)

Wie bei 15 (s.u.) beschrieben aus 0.87 g (7 mmol) 3, 0.43 g (3.5 mmol) 2-Aminobenzaldehyd, 1.7 ml 5proz. ethanol. KOH in 17 ml EtOH; Reaktionszeit: 7 d. Farblose Kristalle, Schmp. 119°C, Ausb. 0.41 g (57%).-C₁₄H₁₁NO (209.3) Ber. C 80.4 H 5.3 N 6.7 Gef. C 80.4 H 5.35 N 6.6 Molmasse: 209 (ms).- IR (KBr): 3030; 2950; 1605; 1595 cm⁻¹.- UV (MeOH): λ max (log ϵ) = 215 (4.33), 235 nm (4.4).- ¹H-NMR: 2.8 (d, J = 18 Hz, 1H), 3.6 (dd, J = 5/18 Hz, 1H), 5.3 (d, J = 5 Hz, 1H), 5.55 (s(br), 1H), 6.2 (dd, J = 1/6 Hz, 1H), 6.5 (dd, J = 1/6 Hz, 1H), 7.4-8.2 (m, 5H darunter 7.75 (s)).

 7β , 10β -Epoxy-7,8,9,10-tetrahydro-6H-cyclohepta[b]chinolin (15)

Zu einer Lösung von 0.62 g (5 mmol) 4 und 0.3 g (2.5 mmol) 2-Aminobenzaldehyd in 10 ml EtOH wurde unter N_2 1 ml ethanol. KOH (5%) gegeben, 4 d bei RT gerührt, mit H_2O verdünnt, mit CH_2Cl_2 extrahiert, getrocknet (Na_2SO_4) und i.Vak. destilliert. Der Rückstand wurde rc-gereinigt (4 mm-Platte, $CH_2Cl_2/EtAc = 8/2$, Fraktionen zu 20 ml). Farblose Kristalle ((i-Pr) $_2O$), Schmp. $120^{\circ}C$, Ausb. 0.2 g (83%).- $C_{14}H_{13}NO$ (211.3) Ber. C 79.6 H 6.2 N 6.6 Gef. C 79.5 H 6.21 N 6.5 Molmasse: 211 (ms).- IR (KBr): 2950; 1605; 1595; 1560 cm $^{-1}$.- 1 H-NMR: 1.6-2.6 (m, 4H), 2.9 (d, J = 18 Hz, 1H), 3.65 (dd, J = 5/18 Hz, 1H), 4.75-5.1 (m, 1H), 5.2-5.3 (m, 1H), 7.35-8.2 (m, 5H darunter 7.75 (s)).

N-Methyl-7B,10B-epoxy-6,7-dihydro-10H-cyclohepta-8-en[b]chino-linium-iodid (16)

Zu einer Lösung von 0.3 g (1.5 mmol) 14 in 5 ml Acetonitril wurde 1 ml (16 mmol) CH₃I gegeben, 12 h rückfließend erhitzt, abgekühlt und der ausgefallene Niederschlag abgesaugt. Gelbe Kristalle, Schmp. 209-210°C (Z); Ausb. 0.46 g (89%).- $C_{15}H_{14}NOI$ (351.2) Ber. C 51.3 H 4.02 N 4.1 Gef. C 51.2 H 4.03 N 4.0- MS: 224 $(C_{15}H_{14}NO^+)$.- IR (KBr): 3000; 2880; 1625; 1580 cm⁻¹.- UV (MeOH): λ max $(\log \varepsilon) = 211$ (4.44), 241 (4.52), 328 nm (3.98).- 1 H-NMR $(d_6$ -DMSO): 3.3 (d, J = 19 Hz, 1H), 3.9 (dd, J = 6/19 Hz, 1H), 4.5 (s, 3H), 5.5 (dd, J = 1/6 Hz, 1H), 5.95 (d, J = 1 Hz, 1H), 6.45 (dd, J = 1/6 Hz, 1H), 7.9-8.9 (m, 4H), 9.1 (s, 1H).

N-Methyl-7\(\beta\),10\(\beta\)-epoxy-7,8,9,10-tetrahydro-6H-cyclohepta[b]chinolinium-iodid (17)

Wie bei **16** aus 0.21 g (1 mmol) **15** und 1 ml (16 mmol) CH₃I. Gelbe Kristalle, Schmp. 225-227°C; Ausb. 0.27 g (76%).- $C_{15}H_{16}NOI$ (353.2) Ber. C 51.0 H 4.57 N 3.9 Gef. C 50.6 H 4.53 N 3.9.- MS: 226 ($C_{15}H_{16}NO^+$).- IR (KBr): 2950; 1635; 1605; 1580 cm⁻¹.- ¹H-NMR: 2.26-2.59 (m, 4H). 3.7 (dd, J = 6.3/18.7 Hz, 1H), 3.95 (d, J = 18.7 Hz, 1H), 4.62 (s, 3H), 5.04 (t. J = 6.3 Hz, 1H), 5.43 (d, J = 6 Hz, 1H), 7.86-8.36 (m, 4H), 8.52 (s, 1H).

7B,10B-Epoxy-5a,6,7,8,9,10,10a,11-octahydro-5H-cyclohepta[b]chinolin (18 cis und trans) und N-Ethyl-7β,10β-epoxy-5a,6,7,8,9,10,10a,11-octahydro-cyclohepta[b]

chinolin (19)

Eine gekühlte Lösung von $0.6~\mathrm{g}$ ($2.7~\mathrm{mmol}$) 15 in $10~\mathrm{ml}$ Eisessig wurde mit einer Lösung von 1.68 g (19 mmol) Pyridin-Boran in 10 ml Eisessig bei RT 14 h gerührt. Unter Kühlung wurde mit konz. NaOH alkalisiert, mit CHCl3 und Ether extrahiert, die vereinigten Extrakte wurden i.Vak. abdestilliert, der Rückstand wurde mit 2N HCl versetzt, 30 min gerührt, erneut alkalisiert (pH 10), mit CHCl3 ausgeschüttelt, getrocknet (Na2SO4) und das Lösungsmittel i. Vak. verdampft. 18cis, 18trans und 19 wurden rc-getrennt (4 mm-Platte, Hexan/EtAc = 85:15, Fraktionen zu 20 ml). Zuerst wird 19, dann 18 cis und 18 trans eluiert.

19: Farbloses Öl; Ausb. 40 mg (6%).- C₁₆H₂₁NO (243.4).- Molmasse: 243 (ms).- IR (KBr): 3050; 2950; 1595; 1570 cm⁻¹.- 1 H-NMR: 1.05 (t, J = 7 Hz, 3H), 1.66-2.14 (m, 7H), 2.51-2.56 (m, 2H), 3 ± 08 (dt, J = 4.7/10.2 Hz, 1H), 3.2 (dq, J = 15.6/7.1 Hz, 1H), 3.45 (dq, J = 15.6/7.1 Hz, 1H), 4.27 (dd, J = 15.6/7.1 Hz, 1H)J = 3/7 Hz, 1H), 4.54-4.58 (m, 1H), 6.6-7.09 (m, 4H).

18 cis: Farblose Kristalle, Schmp. 137°C, Ausb. 0.7 g (12%).- C₁₄H₁₇NO (215.3) Ber. C 78.1 H 7.96 N 6.5 Gef. C 78.2 H 7.92 N 6.5.- IR (KBr): 3315; 3005; 2900; 1595 cm⁻¹. H-NMR: 1.52 (d, J = 14.3 Hz, 1H), 1.68-2.48 (m, 7H, darunter 2.23 (dt, J = 14.3/4.5 Hz und 2.45 (d, J = 17.6 Hz)), 3.07 (dd, J = 17.6 Hz) 9.5/17.6 Hz, 1H), 3.42 (s, 1H, H/D-Tausch), 3.67 (t, J = 4.5 Hz, 1H), 4.19 (dd, J = 3.7/7.3 Hz, 1H), 4.41 (dd, J = 4.5/7.3 Hz, 1H), 6.43-6.98 (m, 4H).

18 trans: Farblose Kristalle, Schmp. 110-111°C; Ausb. 0.41 g (64%).-C₁₄H₁₇NO (215.3) Ber. C 78.1 H 7.96 N 6.5 Gef. C 78.0 H 7.93 N 6.4 Molmasse: 215 (ms).- IR (KBr): 3300; 2930; 1600; 1575 cm⁻¹.- ¹H-NMR: 1.66-2.08 (m, 7H), 2.49 (dd, J = 12.7/15.8 Hz, 1H), 2.6 (dd, J = 5.2/15.8Hz, 1H), 3.15 (dt, J = 7.7/9.7 Hz, 1H), 3.25-3.8 (s(br), 1H, H/D-Tausch), 4.3 (dd, J = 3.2/7.3 Hz, 1H), 4.51-4.53 (m, 1H), 6.5-7 (m, 4H).

N-Methyl-7\(\beta\),10\(\beta\)-epoxy-5a,6,7,8,9,10,10a,11-octahydrocyclohepta[b] chinolin (20a)

0.37 g (1.7 mmol) 18 trans wurden nach V3 umgesetzt (Reaktionszeit 2 h) und aus (i-Pr)₂O umkristallisiert. Blaßgelbe Kristalle, Schmp. 84-85°C, Ausb. 0.25 g (64%).- C₁₅H₁₉NO (229.3) Ber. C 78.6 H 8.35 N 6.1 Gef. C 78.2 H 8.73 N 6.0 Molmasse: 229 (ms).- IR (KBr): 3025; 2950; 1600; 1575 cm^{-1} .- ¹H-NMR: 1.55-2.25 (m, 7H), 2.55 (d, J = 12 Hz, 2H), 2.8 (s, 3H), 2.9-2.95 (m, 1H), 4.3 (d, J = 4 Hz, 1H), 4.6 (m, 1H), 6.6-7.2 (m, 4H).

 $(7\beta, 10\beta - Epoxy - 5a, 6, 7, 8, 9, 10, 10a - octahydrocyclohepta[b] chinolin - 5 - yl)$

0.34 g (1.6 mmol) 18 trans wurden nach V2 umgesetzt. Der Rückstand wurde aus (i-Pr)₂O/EtOa umkristallisiert, farblose Kristalle, Schmp. 162-163°C, Ausb. 0.26 g (61%).- C₁₇H₂₁NO₂ (271.4) Ber. C 75.2 H 7.8 N 5.2 Gef. C 75.2 H 7.85 N 5.1 Molmasse: 271 (ms).- IR (KBr): 2920; 1640; 1595 cm⁻¹. $^{-1}$ H-NMR: 1.08 (t, J = 7.3 Hz, 3H), 1.56 (dt, J = 2.9/11.7 Hz, 1H), 1.71-2.37 (m, 7H), 2.44 (dd, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 2.53-2.65 (m, 2H), 4.1 (dt, J = 2.2/11.7 Hz, 1H), 4.1 (dt, J = 2.2/11.4.2/11.7 Hz, 1H), 4.38-4.39 (m, 1H), 4.47-4.48 (m, 1H), 7.08-7.18 (m, 4H).

Literatur

- 134. Mitt. über Untersuchungen an Pyranen; 133. Mitt.: F. Eiden und F. Denk, Arch. Pharm. (Weinheim) 324, 353 (1991); 132. Mitt. F. Eiden, B. Wünsch und J. Schünemann, ibid. 323, 481 (1990).
- A.F. Casy und R.T. Parfitt in Opioid Analgesis, S. 287, Plenum Press, New York und London 1986; R.G. Lenz, D.E. Walters, S.M. Evans, A.J. Hopfinger und D.L. Hammond in Opiates, S. 362, Academic Press Inc., Orlando San Diego 1986.
- T.N. Riley und J.R. Bagley, J. Med. Chem. 22, 1167 (1979); J. Heterocycl. Chem. 14, 599 (1977).
- U.a. F. Eiden, M. Schmidt, B. Deus-Neumann und M.H. Zenk, Arch. Pharm. (Weinheim) 320, 130 (1987); F. Eiden und P. Gmeiner, ibid. 320, 213 (1987); F. Eiden, M. Schmidt und H. Buchborn, ibid. 320, 348 (1987); F. Eiden, P. Gmeiner und H. Lotter, Liebigs Ann. Chem. 1988, 125; F. Eiden und P. Gmeiner, Arch. Pharm. (Weinheim) 321, 297 (1988); F. Eiden und B. Wünsch, ibid. 323, 393 (1990).
- H.M.R. Hoffmann, G. Greenwood und A.E. Hill, J. Am. Chem. Soc. 95, 1338 (1973); B. Föhlisch, E. Gehrlach und B. Geywitz, Chem. Ber. *120*, 1815 (1987).
- A. Kainz, Dissertation Universität München 1990.
- F. Eiden und A. Kainz, Arch. Pharm. (Weinheim) 323, 191 (1990).
- F. Eiden, P. Gmeiner und J. Schünemann, Arch. Pharm. (Weinheim) [Ph908] 321, 325 (1988).