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Abstract 1-Substituted-N-tosyl-1,2,3,4-tetrahydroisoquin-

oline analogs (4a–4l) were synthesized using the modified

Pictet–Spengler reaction and evaluated for cytotoxicity. All

tetrahydroisoquinolines displayed cytotoxicity against

MOLT-3 cell lines, except for p-methoxy analog 4d. Inter-

estingly, the o-hydroxy derivative 4k was shown to be the

most potent cytotoxic against HuCCA-1, A-549 and MOLT-3

cell lines. The lowest IC50 value of 1.23 lM was observed for

MOLT-3 cells. Trimethoxy analog 4f exerted the most potent

activity against HepG2 with an IC50 of 22.70 lM, which is

lower than the reference drug, etoposide. QSAR studies

showed that total symmetry index (Gu), 3D-MoRSE (Mor31v

and Mor32u) and 3D Petitjean index (PJI3) were the most

important descriptors accounting for the observed cytotox-

icities. The most potent cytotoxic compound (4k) against

MOLT-3 had the highest Gu value, correspondingly the

inactive p-methoxy analog (4d) had the lowest Gu value. On

the other hand, the highest molecular mass compound (4f)

was shown to be the most potent cytotoxic against HepG2

cells. The studies disclose that tetrahydroisoquinolines 4f and

4k are potentially interesting lead pharmacophores that

should be further explored. The QSAR models provided

insights into the physicochemical properties of the investi-

gated compounds.

Keywords Cytotoxicity � Isoquinoline � Multiple linear

regression � Pictet–Spengler reaction � QSAR �
Sulfonamide

Introduction

Isoquinoline is an important class of heterocyclic scaffold

which is frequently found in many natural sources (Bentley

1998). Natural and synthetic isoquinoline alkaloids exhibit

a variety of pharmacological properties including antican-

cer, antimicrobial, antimalarial and anti-HIV activities

(Bermejo et al. 2002; Cui et al. 2006; González et al.

2007a; Iwasa et al. 2001; Pingaew et al. 2013; Saitoh et al.

2006; Scott and Williams 2002; Siengalewicz et al. 2008).

Sulfonamide moiety is present in diverse biologically

active molecules (Scozzafava et al. 2003). Aryl/heteroaryl

sulfonamides are known to exert antitumor properties.

Some of the modified analogs such as E7010 (ABT-751),

HMN-214, T138067 and T900607 have been evaluated in

clinical trials (Hu et al. 2008). Various biological studies of a

series of 1,2,3,4-tetrahydroisoquinolines based sulfonamide

have been previously documented. They have been revealed

to act as phenylethanolamine N-methyltransferase inhibitors

(Grunewald et al. 2005), matrix metalloproteinase inhibitors
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(Ma et al. 2004; Matter and Schwab 1999; Matter et al. 2002),

carbonic anhydrase inhibitors (Gitto et al. 2009, 2010),

bradykinin-1 antagonists (Huszár et al. 2008) as well as

potential ligands of the delta opioid receptor (Barn et al.

2001; Bourdier et al. 2007). Considering the interesting

bioactivities of the isoquinolines and sulfonamides has

prompted us to design and synthesize a series of 1,2,3,4-

tetrahydroisoquinoline derivatives bearing the sulfonamide

entity through the use of simple and efficient method.

The Pictet–Spengler reaction which involves the cycli-

zation of iminium ion derived from the condensation of

b-arylethylamine derivatives with aldehydes, is one of the

most important strategies for the construction of tetrahy-

droisoquinoline (Cox and Cook 1995; Larghi et al. 2005).

However, this method has a limitation regarding its pre-

requisite of electron donating substituents. Modifications to

the original approach by means of using the masked car-

bonyls and electron withdrawing groups, such as acyl or

sulfonyl moieties, bound to the starting b-arylethylamine

have been developed (Ito and Tanaka 1977; Lukanov et al.

1987; Orazi et al. 1986; Silveira et al. 1999, 2003, 2006). In

this article, we employed the modified Pictet–Spengler

reaction for the synthesis of a series of N-tosyl-1,2,3,4-

tetrahydroisoquinolines, by exploring the effects of various

substituents at the C-1 position of the tetrahydroisoquino-

line system. It is expected that not only the sulfonyl group

affects the cyclization by increasing the electrophilicity of

an iminium intermediate, but the sulfonyl group could also

be a useful feature governing the bioactivity. Although

some N-sulfonyltetrahydroisoquinoline analogs have been

previously known, however their cytotoxic activities have

apparently not yet been published. In this regard, the

cytotoxicities of N-sulfonyl-1,2,3,4-tetrahydroisoquinolines

were investigated. To provide insights into the effect that

substituents at the C-1 position has on their cytotoxicities,

the quantitative structure–activity relationship (QSAR) of

the compounds was investigated.

Materials and methods

Column chromatography was carried out using silica gel 60

(70–230 mesh ASTM). Analytical thin-layer chromatog-

raphy (TLC) was performed with silica gel 60 F254 alu-

minium sheets. 1H- and 13C-NMR spectra were recorded

on a Bruker AVANCE 300 NMR spectrometer (operating

at 300 MHz for 1H and 75 MHz for 13C). FTIR were

obtained using a universal attenuated total reflectance

attached on a Perkin–Elmer Spectrum One spectrometer.

Mass spectra were recorded on a Bruker Daltonics

(microTOF). Melting points were determined using a

Griffin melting point apparatus and were uncorrected.

General procedure for the synthesis of N-sulfonyl-

1,2,3,4-tetrahydroisoquinolines (4a–4l)

A mixture of sulfonamide 3 (0.67 mmol) and appropriate

aldehyde (0.72 mmol) in formic acid or trifluoroacetic acid

(15 mL) was stirred under reflux for 0.5–27 h and then

allowed to cool to room temperature. The reaction mixture

was added to 30 mL of ice cool water and the product was

extracted with CH2Cl2 (2 9 30 mL). Combined extracts

were washed with saturated aqueous NaHCO3, dried (anh.

Na2SO4) and evaporated to dryness under reduced pres-

sure. The crude product was purified by silica gel column

chromatography.

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-isoquinoline (4a)

85 % yield. mp 144–145 �C [144–145 �C (Ito and Tanaka

1977)]. 1H NMR (300 MHz, CDCl3): d (ppm) 2.40 (s, 3H,

ArCH3), 2.82 (t, J = 5.8 Hz, 2H, C4), 3.30 (t, J = 5.8 Hz,

2H, C3), 3.79, 3.80 (2 s, 6H, 2 9 OCH3), 4.14 (s, 2H, C-1),

6.48 (s, 1H, C5-ArH), 6.52 (s, 1H, C8-ArH), 7.30 (d,

J = 8.0 Hz, 2H, C30-ArH2), 7.69 (d, J = 8.0 Hz, 2H, C20-
ArH2); 13C NMR (75 MHz, CDCl3): d (ppm) 21.5, 28.4,

43.8, 47.2, 55.9, 109.0, 111.3, 123.4, 125.0, 127.7, 129.7,

133.3, 143.6, 147.7, 147.9. IR (UATR) cm-1: 1612, 1518,

1342, 1161, 1116. TOF-MS m/z: 348.1271 (Calcd for

C18H22NO4S: 348.1270).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-methylisoquinoline (4b)

89 % yield. mp: 150–151 �C [150 �C (Hazebroucq 1966)].
1H NMR (300 MHz, CDCl3): d (ppm) 1.43 (d, J = 6.7 Hz,

3H, CHCH3), 2.34 (s, 3H, ArCH3), 2.36–2.68 (m, 2H, C4),

3.30–3.41, 3.75–3.92 (m, 2H, C3), 3.77, 3.81 (2 s, 6H,

2 9 OCH3), 5.03 (q, J = 6.7 Hz, 1H, C1), 6.42, 6.49 (2 s,

2H, C5-ArH, C8-ArH), 7.17 (d, J = 7.8 Hz, 2H, C30-
ArH2), 7.64 (d, J = 7.8 Hz, 2H, C20-ArH2); 13C NMR

(75 MHz, CDCl3): d (ppm) 21.4, 23.3, 27.3, 38.5, 51.7,

55.9, 56.0, 109.5, 111.4, 124.7, 126.9, 129.5, 129.7, 138.1,

143.0, 147.6, 147.8. IR (UATR) cm-1: 1612, 1518, 1323,

1154, 1125. TOF-MS m/z: 362.1423 (Calcd for

C19H24NO4S: 362.1421).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-phenylisoquinoline (4c)

92 % yield. mp: 122–123 �C. 1H NMR (300 MHz,

CDCl3): d (ppm) 2.36 (s, 3H, CH3), 2.40–2.65 (m, 2H, C4),

3.15–3.30, 3.71–3.90 (m, 2H, C3), 3.78, 3.84 (2 s, 6H,

2 9 OCH3), 6.19 (s, 1H, C1), 6.46 (s, 2H, C5-ArH, C8-

ArH), 7.13 (d, J = 8.0 Hz, 2H, C300-ArH2), 7.19–7.31 (m,
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5H, C20-ArH2, C30-ArH2, C40-ArH), 7.58 (d, J = 8.2 Hz,

2H, C200-ArH2); 13C NMR (75 MHz, CDCl3): d (ppm)

21.4, 26.1, 38.7, 55.8, 55.9, 58.8, 110.7, 111.2, 125.6,

126.0, 127.0, 127.6, 128.2, 128.8, 129.3, 137.9, 141.5,

143.0, 147.5, 148.2. IR (UATR) cm-1: 1611, 1516, 1336,

1157, 1116. TOF-MS m/z: 424.1583 (Calcd for

C24H26NO4S: 424.1577).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(4-methoxyphenyl)-

isoquinoline (4d)

35 % yield. mp: 119–120 �C. 1H NMR (300 MHz, CDCl3):

d (ppm) 2.36 (s, 3H, CH3), 2.40–2.65 (m, 2H, C4), 3.12–3.30,

3.70–3.90 (m, 2H, C3), 3.78, 3.80, 3.84 (3 s, 9H,

3 9 OCH3), 6.16 (s, 1H, C1), 6.45 (s, 2H, C5-ArH, C8-ArH),

6.81 (d, J = 8.0 Hz, 2H, C300-ArH2), 7.13 (d, J = 7.7 Hz,

4H, C20-ArH2, C30-ArH2), 7.59 (d, J = 8.2 Hz, 2H, C200-
ArH2); 13C NMR (75 MHz, CDCl3): d (ppm) 21.4, 26.1,

38.5, 55.3, 55.8, 55.9, 58.3, 110.7, 111.2, 113.5, 125.9, 127.0,

129.3, 130.0, 133.8, 138.0, 142.9, 147.5, 148.1, 159.1. IR

(UATR) cm-1: 1609, 1509, 1336, 1157, 1118. TOF-MS m/z:

454.1694 (Calcd for C25H28NO5S: 454.1683).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(3-hydroxy-4-methoxyphenyl)-

isoquinoline (4e)

54 % yield. mp: 171–172 �C. 1H NMR (300 MHz, CDCl3): d
(ppm) 2.30 (s, 3H, CH3), 2.00–2.60 (m, 2H, C4), 3.12–3.30,

3.70–3.90 (m, 2H, C3), 3.73, 3.78, 3.83 (3 s, 9H, 3 9 OCH3),

6.06 (s, 1H, C1), 6.39, 6.40 (2 s, 2H, C5-ArH, C8-ArH),

6.63–6.76 (m, 3H, C20-ArH, C50-ArH, C60-ArH), 7.07 (d,

J = 8.1 Hz, 2H, C300-ArH2), 7.54 (d, J = 8.1 Hz, 2H, C200-
ArH2). 13C NMR (75 MHz, CDCl3): d (ppm) 21.4, 26.1, 38.6,

55.8, 55.9, 56.0, 58.4, 110.2, 110.7, 111.2, 115.1, 120.8,

125.9, 127.0, 129.2, 134.9, 138.0, 142.9, 145.2, 146.0, 147.5,

148.1. IR (UATR) cm-1: 3433, 1596, 1509, 1318, 1157, 1113.

TOF-MS m/z: 470.1629 (Calcd for C25H28NO6S: 470.1632).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(3,4,5-trimethoxyphenyl)-

isoquinoline (4f)

85 % yield. mp: 174–175 �C. 1H NMR (300 MHz,

CDCl3): d (ppm) 2.31 (s, 3H, CH3), 2.38–2.65 (m, 2H, C4),

3.15–3.30, 3.70–3.90 (m, 2H, C3), 3.69, 3.76, 3.80, 3.81

(4 s, 15H, 5 9 OCH3), 6.05 (s, 1H, C1), 6.36, 6.42, 6.44

(3 s, 4H, C5-ArH, C8-ArH, C20-ArH2), 7.10 (d, J = 8.0 Hz,

2H, C300-ArH2), 7.56 (d, J = 8.2 Hz, 2H, C200-ArH2); 13C

NMR (75 MHz, CDCl3): d (ppm) 21.4, 26.3, 38.9, 55.8,

56.0, 56.1, 58.9, 60.8, 106.2, 110.8, 111.2, 125.4, 126.1,

127.0, 129.3, 137.2, 138.1, 143.0, 147.4, 148.2, 152.9. IR

(UATR) cm-1: 1590, 1518, 1323, 1158, 1115. TOF-MS

m/z: 514.1912 (Calcd for C27H32NO7S: 514.1894).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(4-hydroxyphenyl)-isoquinoline

(4g)

34 % yield. mp: 146–147 �C. 1H NMR (300 MHz,

CDCl3): d (ppm) 2.31 (s, 3H, CH3), 2.25–2.55 (m, 2H, C4),

3.10–3.22, 3.65–3.80 (m, 2H, C3), 3.73, 3.78 (2 s, 6H,

2 9 OCH3), 6.10 (s, 1H, C1), 6.39, 6.40 (2 s, 2H, C5-ArH,

C8-ArH), 6.70 (d, J = 8.5 Hz, 2H, C30-ArH2), 7.02 (d,

J = 8.5 Hz, 2H, C20-ArH2), 7.08 (d, J = 8.1 Hz, 2H, C300-
ArH2), 7.54 (d, J = 8.1 Hz, 2H, C200-ArH2); 13C NMR

(75 MHz, CDCl3): d (ppm) 21.4, 26.0, 38.4, 55.8, 56.0,

58.4, 110.7, 111.2, 115.1, 125.9, 127.0, 129.3, 130.2,

133.5, 137.9, 143.1, 147.4, 148.1, 155.4. IR (UATR) cm-1:

3428, 1611, 1512, 1320, 1154, 1116. TOF-MS m/z:

440.1538 (Calcd for C24H26NO5S: 440.1532).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(4-hydroxy-3-methoxyphenyl)-

isoquinoline (4h)

57 % yield. mp: 125–126 �C. 1H NMR (300 MHz,

CDCl3): d (ppm) 2.35 (s, 3H, CH3), 2.40–2.64 (m, 2H, C4),

3.15–3.30, 3.80–3.90 (m, 2H, C3), 3.78, 3.83, 3.84 (3 s,

9H, 3 9 OCH3), 6.11 (s, 1H, C1), 6.42–6.48 (m, 3H, C5-

ArH, C8-ArH, C60-ArH), 6.76 (d, J = 8.2 Hz, 1H, C50-
ArH), 6.92 (d, J = 1.7 Hz, 2H, C20-ArH), 7.13 (d,

J = 8.2 Hz, 2H, C300-ArH2), 7.59 (d, J = 8.2 Hz, 2H, C200-
ArH2); 13C NMR (75 MHz, CDCl3): d (ppm) 21.4, 26.1,

38.5, 55.8, 55.9, 58.7, 110.7, 111.1, 111.5, 113.5, 121.8,

125.7, 126.0, 127.0, 129.3, 133.5, 138.1, 143.0, 145.2,

146.5, 147.4, 148.1. IR (UATR) cm-1: 3432, 1611, 1513,

1321, 1156. TOF-MS m/z: 470.1636 (Calcd for

C25H28NO6S: 470.1632).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(4-hydroxy-3,5-

dimethoxyphenyl)-isoquinoline (4i)

62 % yield. mp: 148–149 �C. 1H NMR (300 MHz,

CDCl3): d (ppm) 2.31 (s, 3H, CH3), 2.38–2.65 (m, 2H, C4),

3.15–3.28, 3.70–3.85 (m, 2H, C3), 3.72, 3.74, 3.80 (3 s,

6H, 4 9 OCH3), 5.48 (s, 1H, C1), 6.35 (s, 2H, C20-ArH2),

6.41, 6.42 (s, 2H, C5-ArH, C8-ArH), 7.10 (d, J = 8.2 Hz,

2H, C300-ArH2), 7.55 (d, J = 8.2 Hz, 2H, C200-ArH2). 13C

NMR (75 MHz, CDCl3): d (ppm) 21.4, 26.3, 38.7, 55.8,

56.0, 56.3, 58.9, 105.9, 110.8, 111.1, 125.6, 126.1, 127.0,

129.3, 132.7, 134.3, 138.1, 143.0, 146.7, 147.4, 148.1. IR

(UATR) cm-1: 3435, 1612, 1515, 1319, 1156, 1110. TOF-

MS m/z: 500.1729 (Calcd for C26H30NO7S: 500.1738).

Cytotoxicity of N-tosyl-1,2,3,4-tetrahydroisoquinolines
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1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(4-bromophenyl)-

isoquinoline (4j)

84 % yield. mp: 120–121 �C. 1H NMR (300 MHz,

CDCl3): d (ppm) 2.32 (s, 3H, CH3), 2.30–2.60 (m, 2H, C4),

3.05–3.20, 3.65–3.85 (m, 2H, C3), 3.74, 3.80 (2 s, 6H,

2 9 OCH3), 6.09 (s, 1H, C1), 6.37, 6.41 (2 s, 2H, C5-ArH,

C8-ArH), 7.06 (d, J = 8.5 Hz, 2H, C20-ArH2), 7.09 (d,

J = 8.5 Hz, 2H, C30-ArH2), 7.37 (d, J = 8.0 Hz, 2H, C300-
ArH2), 7.54 (d, J = 8.2 Hz, 2H, C200-ArH2). 13C NMR

(75 MHz, CDCl3): d (ppm) 21.5, 26.1, 38.8, 55.8, 55.9,

58.2, 110.5, 111.2, 121.8, 125.0, 126.0, 127.0, 129.4,

130.5, 131.4, 137.7, 140.7, 143.2, 147.6, 148.3. IR (UATR)

cm-1: 1611, 1516, 1339, 1158, 1117. IR (UATR) cm-1:

1611, 1516, 1339, 1158, 1117. TOF-MS m/z: 502.0676

(Calcd for C24H25BrNO4S: 502.0682).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(2-hydroxyphenylisoquinoline

(4k)

52 % yield. mp: 96–97 �C. 1H NMR (300 MHz, CDCl3): d
(ppm) 2.30 (s, 3H, CH3), 2.30–2.60 (m, 2H, C4),

3.17–3.32, 3.77–3.92 (m, 2H, C3), 3.75, 3.85 (2 s, 6H,

2 9 OCH3), 6.27 (s, 1H, C1), 6.32, 6.33 (2 s, 2H, C5-ArH,

C8-ArH), 6.46 (d, J = 7.6 Hz, 1H, C30-ArH), 6.70 (t,

J = 7.6 Hz, 1H, C50-ArH), 7.05 (d, J = 7.6 Hz, 1H, C60-
ArH), 7.08 (d, J = 8.2 Hz, 2H, C300-ArH2), 7.20 (t,

J = 7.6 Hz, 1H, C40-ArH), 7.61 (d, J = 8.2 Hz, 2H, C200-
ArH2). 13C NMR (75 MHz, CDCl3): d (ppm) 21.5, 25.1,

38.4, 54.7, 55.8, 55.9, 110.3, 110.9, 117.9, 119.7, 124.2,

125.7, 126.4, 127.1, 129.5, 129.9, 130.0, 136.4, 143.9,

147.7, 148.3, 155.4. IR (UATR) cm-1: 3405, 1611, 1517,

1322, 1151, 1119. TOF-MS m/z: 440.1531 (Calcd for

C24H26NO5S: 440.1526).

1,2,3,4-Tetrahydro-6,7-dimethoxy-2-[(4-

methylphenyl)sulfonyl]-1-(3-pyridyl)-isoquinoline (4l)

94 % yield. 1H NMR (300 MHz, CDCl3): d (ppm) 2.31 (s,

3H, CH3), 2.40–2.60 (m, 2H, C4), 3.05–3.20, 3.80–3.90

(m, 2H, C3), 3.71, 3.78 (2 s, 6H, 2 9 OCH3), 6.17 (s, 1H,

C1), 6.36, 6.44 (2 s, 2H, C5-ArH, C8-ArH), 7.12 (d,

J = 7.9 Hz, 2H, C300-ArH2), 7.45–7.60 (m, 3H, C50-ArH,

C200-ArH2), 7.97 (d, J = 7.7 Hz, 1H, ArH), 8.35 (s, 1H,

ArH), 8.63 (d, J = 4.1 Hz, 1H, ArH). 13C NMR (75 MHz,

CDCl3): d (ppm) 21.4, 26.0, 39.5, 55.9, 56.0, 56.5, 110.0,

111.6, 122.6, 125.5, 126.2, 127.0, 129.7, 136.7, 140.8,

141.8, 143.8, 143.9, 144.0, 148.1, 149.0. IR (UATR) cm-1:

1688, 1611, 1517, 1338, 1158, 1115. TOF-MS m/z:

425.1536 (Calcd for C23H25N2O4S: 425.1530).

Cytotoxic assay

The cytotoxic assay was performed as previously described

by Tengchaisri and co-workers (Tengchaisri et al., 1998).

Briefly, cell lines suspended in RPMI 1640 containing

10 % fetal bovine serum (FBS) were seeded at 1 9 104

cells (100 lL) per well in a 96-well plate, and incubated in

humidified atmosphere, 95 % air, 5 % CO2 at 37 �C. After

24 h, additional medium (100 lL) containing the test

compound and vehicle was added to a final concentration

of 50 lg/mL, 0.2 % dimethyl sulfoxide (DMSO), and

further incubated for 3 days. After that, the cells were fixed

with EtOH–H2O (95:5, v/v), stained with crystal violet

solution, and lysed with a solution of 0.1 N HCl in MeOH.

The absorbance was measured at 550 nm. The number of

surviving cells was determined from the absorbance. Eto-

poside and/or doxorubicin were used as the reference

drugs.

Computational analysis

Data set

The IC50 (lM) values of cytotoxicity against HepG2 and

MOLT-3 cell lines were converted to pIC50 by taking the

negative logarithm to the base of 10 of the IC50 values. The

molecular structures of the 12 compounds investigated in

this study are presented in Fig. 1.

Quantum chemical and molecular descriptors calculation

Molecular structures of the compounds were drawn using

GaussView (Dennington II et al. 2003). Geometric opti-

mization was initially performed at the semi-empirical

method AM1 (Austin Model 1) and finally optimized at the

DFT level using Becke’s three-parameter hybrid method

using the Lee–Yang–Parr correlation functional (B3LYP)

together with the 6–31 g(d) basis set in the Gaussian 03 W

package (Frisch et al. 2004). Quantum chemical descriptors

were obtained from the optimized structure, which inclu-

ded: total energy (Etotal), highest occupied molecular orbital

energy (EHOMO), lowest unoccupied molecular orbital

energy (ELUMO), total dipole moment (l) of the molecule,

electron affinity (EA), the ionization potential (IP), energy

difference of HOMO and LUMO (EHOMO - ELUMO),

Mulliken electronegativity (v), hardness (g), electrophilic-

ity (x), softness (S), electrophilic index (xi), highest neg-

ative charge (Q-), highest positive charge (Q?) and mean

absolute atomic charge (Qm) (Karelson et al. 1996; Parr

et al. 1978, 1999; Parr and Pearson 1983; Thanikaivelan

et al. 2000). Furthermore, an additional set of 3,224

descriptors were obtained from the Dragon software (Talete

2007) using the optimized structure as input data. The
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molecular descriptors from Dragon can be classified into 22

categories: 48 Constitutional descriptors, 119 Topological

descriptors, 47 Walk and path counts, 33 Connectivity

indices, 47 Information indices, 96 2D autocorrelation, 107

Edge adjacency indices, 64 Burden eigenvalues, 21 Topo-

logical charge indices, 44 Eigenvalue-based indices, 41

Randic molecular profiles, 74 Geometrical descriptors, 150

RDF descriptors, 160 3D-MoRSE descriptors, 99 WHIM

descriptors, 197 GETAWAY descriptors, 154 Functional

group counts, 120 Atom-centred fragments, 14 Charge

descriptors, 29 Molecular properties, 780 2D binary fin-

gerprints and 780 2D frequency fingerprints.

Multivariate analysis

The independent variables are comprised of quantum

chemical and molecular descriptors while the dependent

variables are the cytotoxicity pIC50 values. Multivariate
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analysis was performed using multiple linear regression

(MLR) using Waikato Environment for Knowledge Anal-

ysis (Weka), version 3.4.5. (Witten et al. 2011).

Multiple linear regression

The MLR models were calculated to obtain the following

equation:

Y ¼ B0 þ
X

BnXn ð1Þ

where Y is the pIC50 values of the compounds, B0 is the

intercept, and Bn are the regression coefficients of the

descriptors Xn.

Data sampling

Leave-one-out cross-validation (LOO-CV) was used as a

data sampling approach to separate the data set as a

training set and testing set. LOO-CV is a practical and

reliable method for testing significance. Briefly, one data

sample was left out and used as the testing set and the

remaining N - 1 samples were used as the training set. In

this respect, each member of the data set had a chance to be

used as the testing set to predict the dependent variable (Y).

Statistical analysis

Sample outliers were identified using ±2 standardized

residual as the cutoff criteria where values exceeding the

cutoff will be removed. Standardization of the residuals

(difference of actual and predicted values) was calculated

according to the following equation:

xstn
ij ¼

xij � �xjPN
i¼1 ðxij � �xjÞ2=N

ð2Þ

where xij
stn is the standardized value, xij is the value of each

sample, �xj is the mean of each descriptors and N is the

sample size of the data set.

Calculated descriptors from Dragon that are constant or

near-constant were implied to be redundant and were,

therefore, removed using the Unsupervised Forward

Selection algorithm of UFS, version 1.8. The UFS algo-

rithm was previously described by Whitley et al. (2000)

and Nantasenamat et al. (2005). Furthermore, significant

descriptors were selected using stepwise regression as

performed by SPSS Statistics 18.0 (SPSS Inc., USA). Inter-

correlation among the descriptors was calculated using

Pearson’s correlation coefficient as implemented in SPSS

Statistics 18.0 (SPSS Inc., USA).

Evaluation of the predictive ability of the QSAR models

were assessed using the following statistical parameters:

correlation coefficient (r), square of correlation coefficient

(R2), root mean square error (RMSE), predictive power of

the model (Q2), F value and critical F value (Alves et al.

2001; Nantasenamat et al. 2008a, 2009, 2010).

Results and discussion

Chemistry

4-Methyl-N-(2-(3,4-dimethoxyphenyl)ethyl)-benzenesul-

fonamide 3 was readily prepared by the condensation of

homoveratrylamine 1 with p-toluenesulfonyl chloride 2 in

methylene chloride catalyzed by sodium carbonate as shown

in Scheme 1 (Pingaew et al. 2013). With the availability of

the starting benzenesulfonamide 3 in hand, we then inves-

tigated the condensation of key sulfonamide 3 with various

aldehydes under Brönsted acid condition (i.e. HCOOH,

CF3COOH). The reactions readily furnished the cyclization

product, N-tosyl-1,2,3,4-tetrahydroisoquinoline analogs (4)

in moderate to good yields (34–94 %) as shown in Table 1.

The results showed that the synthesis of N-sulfonyl-1,2,3,4-

tetrahydroisoquinolines depended on the reactivity of alde-

hyde. The more reactive aldehyde such as formaldehyde,

could be obtained in mild formic acid (entry 1) instead of the

strong acid, TFA, which was employed in the cases of other

aldehydes (entries 2–12). The formation of the desired iso-

quinolines (4) was confirmed by 1H NMR spectra which

showed the absence of the NH proton, while the singlet of

methine proton at d in the range of 5–7 ppm was displayed

indicating that the cyclized products (4c–4l) were formed. In

addition, the singlet of methylene proton at d 4.14 ppm and

the quartet of methine proton at d 5.03 ppm were observed

Table 1 Chemical yield of the N-sulfonyl-1,2,3,4-tetrahydroiso-

quinolines (4a–4l)

Entry Isoquinoline R Time

(h)

Yield

(%)

1a 4a H 1 85

2 4b Me 0.5 89

3 4c C6H5 2 92

4 4d 4-OMe-C6H4 27 35

5 4e 3-OH,4-OMe-C6H3 5 54

6 4f 3,4,5-(OMe)3-C6H3 12 85

7 4g 4-OH-C6H4 27 34

8 4h 3-OMe,4-OH-C6H3 5 57

9 4i 3,5-(OMe)2,4-OH-C6H3 8 62

10 4j 4-Br-C6H4 2 84

11 4k 2-OH-C6H4 27 52

12 4l 3-C5H4N 5 94

TFA, reflux for 4b–4l
a HCOOH, reflux for 4a
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for 1-unsubstituted isoquinoline 4a and 1-methylisoquino-

line 4b, respectively. The structures of all obtained com-

pounds were further supported by 13C NMR, 2D NMR, IR as

well as HRMS.

Cytotoxic activity

For an assessment of the cytotoxicity (Tengchaisri et al.

1998), the synthesized isoquinoline analogs 4a–4l (Fig. 1)

were evaluated against HuCCA-1, HepG2, A549 and

MOLT-3 human cancer cell lines as summarized in

Table 2. All of the tested compounds displayed inhibition

activities against MOLT-3 cell lines, except for p-methoxy

analog 4d. The analog 4d also exhibited no cytotoxicity

against other tested cell lines. All the investigated cells

were inhibited by analogs 4k and 4l. Interestingly, the

analog 4k was shown to be the most potent cytotoxic

against HuCCA-1, A549 and MOLT-3 cells. In particular,

compound 4k had the lowest IC50 value of 1.23 lM against

MOLT-3 cell. On the other hand, trimethoxy analog 4f was

the most potent compound (IC50 = 22.70 lM) against

HepG2 cell and was stronger than the reference drug,

etoposide. These cytotoxics contain the common core

structure of N-tosyl-1,2,3,4-tetrahydroisoquinoline, but

with different substituents (R) at the C-1 position. It was

noted that high cytotoxicity (MOLT-3) was achieved when

R was aromatic (phenyl) as compared to alkyl (CH3) and H

substituents. This could be due to hydrophobic effect that

enhances its absorption to cells. Comparable result was

also observed for heterocyclic pyridyl group at C-1 as seen

for analog 4l. Among the tested analogs, p-methoxy com-

pound (4d, R = p-OMeC6H4) was shown to be an inactive

cytotoxic (IC50 [ 110.09 lM). Remarkable cytotoxicity

was found when R displayed the p-OHC6H4 (4g,

IC50 = 20.06 lM) and p-BrC6H4 (4j, IC50 = 22.69 lM)

substituents. However, unsubstituted phenyl analog (4c)

exerted higher cytotoxic effect (IC50 15.49 lM) than the

substituted p-OH (4g) and p-Br (4j) compounds. Intro-

duction of di-OMe groups to 3- and 5-positions of the

analog 4g furnished compound 4i with lower cytotoxicity

(IC50 40.61 lM) than the parent compound 4g. It was

notable that 3,4,5-trimethoxy analog 4f exhibited greater

activity (IC50 9.24 lM) than the trisubstituted 3,5-dime-

thoxy-4-hydroxyphenyl analog 4i. It is likely that the tri-

methoxy analog 4f bears appropriate lipophilic moiety for

cell absorption when compared to 3,4,5- trisubstituted

phenyl analog 4i. It was also observed that substituents at

3- and 3,5-positions of 4-hydroxyphenyl analog 4g pro-

vided analogs 4h and 4i, respectively, with decreasing

cytotoxicities. Conversely, the inactive 4-OMe analog (4d)

was changed to be active compounds 4e and 4f when the

corresponding 3- and 3,5-substituents were placed on the

phenyl group of 4d. Significant results were observed when

the OH group was substituted on the ortho-position of the

phenyl group as seen for the most potent analog 4k.

Obviously, the o-OH analog 4k had 16-fold higher

Table 2 Cytotoxic activity of compounds 4a–4l against four cancer cell lines

Compound Cytotoxic activity (IC50, lM)a

HuCCA-1 HepG2 A549 MOLT-3

4a [143.62 [143.62 [143.62 65.58 ± 0.83

4b [124.26 111.83 ± 7.07 [124.26 55.81 ± 0.48

4c [117.88 [117.88 [117.88 15.49 ± 1.08

4d [110.09 [110.09 [110.09 [110.09

4e [106.35 [106.35 [106.35 36.67 ± 0.42

4f [97.24 22.70 ± 0.58 [97.24 9.24 ± 0.23

4g [113.60 79.52 ± 2.65 [113.60 20.06 ± 0.21

4h [106.35 85.08 ± 7.07 [106.35 41.20 ± 0.81

4i [99.97 79.97 ± 9.50 [99.97 40.61 ± 0.28

4j [99.59 [99.59 [99.59 22.69 ± 0.05

4k 43.17 ± 2.82 44.69 ± 4.72 56.80 ± 5.46 1.23 ± 0.07

4l 72.92 ± 1.41 49.39 ± 3.60 117.61 ± 1.41 12.42 ± 0.33

Etoposideb ND 27.18 ± 5.29 ND 0.041 ± 0.004

Doxorubicinb 0.64 ± 0.21 0.42 ± 0.03 0.70 ± 0.03 ND

Cancer cell lines are HuCCA-1 human cholangiocarcinoma cancer cells, HepG2 human hepatocellular carcinoma cell line, A549 human lung

carcinoma cell line and MOLT-3 human lymphoblastic leukemia cell line

ND not determined
a The assays were performed in triplicate
b Etoposide and/or doxorubicin were used as the reference drugs
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cytotoxicity than the p-OH compound 4g. This could be

assumed that o-OHC6H4 at C-1 is very important for the

cytotoxic activity against MOLT-3 cells. It is reasonable to

explain that OH group at the o-position may participate in

the formation of intramolecular H-bond with the N-sulfo-

nyl group of the target molecule 4k.

QSAR modeling

Compounds that act as cytotoxics against cancer cell lines,

particularly, MOLT-3 and HepG2 were selected for the

study. Molecular structures of the compounds were con-

structed and optimized for calculating quantum chemical

and molecular descriptors using Gaussian and Dragon

software, respectively. Successful utilization of these

descriptors in the development of QSAR models have

previously been reported (Nantasenamat et al. 2007a, b,

2008b; Prachayasittikul et al. 2010; Suksrichavalit et al.

2009; Suvannang et al. 2011; Worachartcheewan et al.

2009, 2011, 2012). Descriptors were generated using

DRAGON to yield 3,224 variables where constant or near-

constant descriptors were removed to obtain a set of 1,292

descriptors. The Dragon descriptor together with the set of

15 descriptors from Gaussian software were standardized

according to Eq. (2) to further remove redundant descrip-

tors using the UFS software. This resulted in a set of 11

descriptors which comprises of (i) Molecular properties:

GVWAI-80, (ii) 2D autocorrelation indices: GATS6v, (iii)

Geometrical descriptors: PJI3, (iv) WHIM descriptors: Gu,

(v) 2D frequency fingerprints: F06[N–O], (vi) Atom-cen-

tred fragments: C-024 (vii) GETAWAY descriptors: R5e?

and R4u?, (viii) 3D-MoRSE descriptors: Mor31v and

Mor32u and (ix) quantum chemical descriptors: LUMO.

These descriptors were then subjected to stepwise MLR

method to further select important descriptors using the

SPSS software.

The significant descriptors for predicting the cytotoxic

activity against MOLT-3 cell lines as obtained from step-

wise MLR are displayed in Table 3. Two descriptors such

as Mor32u (3D-MoRSE—signal 32/unweighted) and Gu

(G total symmetry index/unweighted) were found to be

responsible for cytotoxic activity against MOLT-3 cell.

The descriptors were used to construct QSAR model using

MLR according to Eq. (1). The QSAR equation (model 1)

and model evaluations are displayed in Table 4. It was

found that the r and RMS values obtained from the training

set were 0.8899 and 0.2229, respectively, while the r and

RMS values of the LOO-CV testing set were 0.7541 and

0.3247, respectively. Their predicted values of cytotoxicity

are presented in Table 3.

The results showed that compounds (4g, 4j, 4k) with

high Gu values had high cytotoxic activity against MOLT-

3 cells. The analog 4k had the highest Gu value of 0.192

and was found to be the most potent compound. On the

other hand, the inactive compound 4d had the lowest Gu

value (0.167). It was observed that trimethoxy analog 4f

had the highest Mor32u value (-0.025) while exhibiting

high cytotoxicity (IC50 9.24 lM) against MOLT-3,

albeit at a relatively lower level than compound 4k

(IC50 1.23 lM). Recently, it has been reported that the

cytotoxicity of thiopyridines against MOLT-3 showed

good correlation with atomic mass descriptor, GATS4 m

(Worachartcheewan et al. 2011b).

Gu is a descriptor accounting for the G total symmetry

index/unweighted (González et al. 2007b; Zhang et al.

2009). This descriptor involves the information, shape and

other physicochemical properties of a molecular structure.

In this study, the highest Gu value was observed in com-

pound 4k which could be attributed to an intramolecular

hydrogen bonding of SO2 group and o-OHC6H4 group at

the C-1 position. Such interaction possibly arranges the

molecule to be in a highly symmetry position as compared

to the p-OH analog 4g. Mor32u and Mor31v are 3D-

MoRSE (3D Molecular Representation of structures based

on Electron diffraction) (Gosav et al. 2007; Habibi-Yan-

gjeh et al. 2009) descriptors that are related to the atomic

properties (e.g. atomic van der Waals volumes) to the

cytotoxic effect. The QSAR studies demonstrated that tri-

methoxy analog 4f, which has the highest molecular weight

also had the highest Mor32u value. The results suggested

that the highest inhibition against MOLT-3 cells required

the molecule to have high symmetry index (Gu) which

would correspondingly lead to appropriate interaction with

the target site of action (González et al. 2007b).

The three descriptors including PJI3 (3D Petitjean shape

index), Mor32u and Mor31v (3D-MoRSE—signal

31/weighted by atomic van der Waals volumes), which

Table 3 The important descriptors and predicted cytotoxic activity

of compounds 4a–4l against MOLT-3 cell lines

Compound Gu Mor32u Experimental

activity (pIC50)

Predicted

activity (pIC50)

4a 0.171 -0.211 -1.817 -1.559

4b 0.177 -0.305 -1.747 -1.374

4c 0.169 -0.171 -1.190 -1.813

4d 0.167 -0.272 -2.042 -1.963

4e 0.176 -0.305 -1.564 -1.462

4f 0.176 -0.025 -0.966 -0.832

4g 0.181 -0.343 -1.302 -1.214

4h 0.176 -0.439 -1.615 -1.791

4i 0.175 -0.447 -1.609 -1.916

4j 0.183 -0.345 -1.356 -1.046

4k 0.192 -0.265 -0.089 -0.727

4l 0.179 -0.226 -1.094 -1.120
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were obtained from stepwise MLR, were important vari-

ables for predicting the cytotoxicity against HepG2 as

displayed in Table 5. The descriptors used in the MLR

analysis to obtain the QSAR equation (model 2) are shown

in Table 4. It was observed that five compounds (4a, 4c–4e

and 4j) were inactive against HepG2 cell lines, thus seven

active compounds (4b, 4f–4i and 4k-4l) were used to

perform the MLR. We found that the r and RMS values

obtained for the training set were 0.9924 and 0.0277,

respectively, while the r and RMS values for the LOO-CV

testing set were 0.9563 and 0.0726, respectively. Their

predicted cytotoxic activity against HepG2 is shown in

Table 5.

It was found that the most potent compound 4f that

inhibited HepG2 cells had the highest Mor32u value of

-0.025, but had the lowest Mor31v value of 0.223. All the

investigated compounds had comparably high PJI3 values

(0.854–0.900), particularly, the 1-methyl analog 4b

(R = CH3) had the highest PJI3 value of 0.900. In the case

of compound 4a (R = H), it had the lowest PJI3 value of

0.854.

A compound with high molecular weight tends to have

high hydrophobic property that enhances its cell penetra-

tion ability as in the case of compound 4f which acts as the
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Table 5 The important descriptors and predicted cytotoxic activity

of compounds 4a–4l against HepG2 cell lines

Compound PJI3 Mor32u Mor31v Experimental

activity

(pIC50)

Predicted

activity

(pIC50)

4a 0.854 -0.211 0.269 [-2.157 –

4b 0.900 -0.305 0.352 -2.094 -2.218

4c 0.859 -0.171 0.278 [-2.071 –

4d 0.868 -0.272 0.369 [-2.042 –

4e 0.866 -0.305 0.227 [-2.027 –

4f 0.869 -0.025 0.223 -1.356 -1.448

4g 0.869 -0.343 0.344 -1.901 -1.845

4h 0.873 -0.439 0.258 -1.930 -1.880

4i 0.867 -0.447 0.344 -1.903 -1.988

4j 0.867 -0.345 0.293 [-1.998 –

4k 0.863 -0.265 0.28 -1.650 -1.646

4l 0.859 -0.226 0.396 -1.694 -1.676

Table 6 Inter-correlation matrix of the three significant descriptors

for predicting the pIC50 values of HepG2

Descriptors PJI3 Mor32u Mor31v

PJI3 1

Mor32u -0.1285 1

Mor31v 0.0569 -0.3440 1
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most potent cytotoxic against HepG2. On the other hand,

the analog 4f had the lowest atomic van der Waals volumes

(Mor31v). This could be due to the fact that the molecule

had small size or volume which makes it appropriate for

interacting with target cells.

To evaluate the inter-correlation of the molecular

descriptors, the Pearson’s correlation coefficient was cal-

culated in SPSS. The results showed that low inter-corre-

lation value of -0.166 were observed for descriptors from

the QSAR model of MOLT-3. Descriptors from the QSAR

model of HepG2 also presented low inter-correlation as

displayed in Table 6. Outlier compounds were not detected

when using the ±2 standardized residual as a cutoff criteria

according to Eq. (2). The performance of the QSAR model

gave R2 and Q2 values of 0.7919 and 0.5687, respectively,

for MOLT-3 and 0.9849 and 0.9145, respectively, for

HepG2 (Table 4). Such values indicated that the models

provided good predictive performance as the R2 values

were greater than 0.6 and the Q2 values were higher than

0.5 (Nantasenamat et al. 2009, 2010). Plots of the experi-

mental versus predicted activities of the compounds as

anticancer agents against MOLT-3 and HepG2 cell lines

are shown in Fig. 2a, b.

In conclusion, the synthesis of 1-substituted-N-tosyl-

1,2,3,4-tetrahydroisoquinoline analogs has been accom-

plished by the modified Pictet–Spengler reaction of phe-

nylethylbenzene sulfonamide with various aldehydes. Most

tetrahydroisoquinoline analogs displayed cytotoxicity

against MOLT-3 cell lines, in which the o-OH analog 4k is

the most potent compound. The trimethoxy analog 4f is the

most potent cytotoxic against HepG2 cells. QSAR studies

revealed that the total symmetry index (Gu), 3D-MoRSE

(Mor31v and Mor32u) and 3D Petitjean index (PJI3) were

the most significant descriptors for correlating the

molecular structures with their cytotoxicities. The most

potent cytotoxic (4k) against MOLT-3 had the highest Gu,

correspondingly the inactive compound (4d) had the lowest

Gu value. On the other hand, the highest molecular mass

compound (4f) was shown to be the most potent cytotoxic

against HepG2 cells. The studies demonstrated that tetra-

hydroisoquinolines 4f and 4k are interesting potential lead

pharmacophores that should be further explored. Further-

more, the obtained QSAR models are useful in the design

and synthesis of novel bioactive compounds.
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