

# Reactions of Cyclometalated Oxazoline Half-Sandwich Complexes of Iridium and Ruthenium with Alkynes and CO

David L. Davies,\* Omar Al-Duaij, John Fawcett, and Kuldip Singh

Department of Chemistry, University of Leicester, Leicester, LE1 7RH U.K.

Received December 18, 2009

The ligand 4,4-dimethyl-2-oxazolinylbenzene is easily cyclometalated by  $[IrCl_2Cp^*]_2$  or  $[RuCl-(MeCN)_2(p-cymene)]PF_6$  in the presence of sodium acetate. In the case of iridium the resultant complex dissolves in acetonitrile in the presence of KPF<sub>6</sub> to give an acetonitrile-coordinated cationic complex. The analogous complex is formed directly in the ruthenium cyclometalation reaction. These labile cationic complexes undergo insertion reactions with internal and terminal alkynes. Internal alkynes give only monoinsertion products, whereas terminal alkynes give mono- or di-insertion products. The cations will also react with CO, but no insertion occurs in this case.

### Introduction

Cyclometalated complexes have been known for a long time and have proven to be useful in organic synthesis and as catalysts or catalyst precursors.<sup>1</sup> However, much of the early work involved the use of stoichiometric amounts of the transition metal or required halogenated precursors to form the M-C bond, neither of which is desirable from a financial or atom-economic perspective. In recent years there has been substantial progress in catalytic C-H bond activation and subsequent C-C bond formation, which potentially provides a much cheaper and atom-economic methodology.<sup>2</sup> One of the most general strategies involves regioselective C-H functionalization dependent on coordination of an adjacent functional group; metalation of an ortho C-H bond of a substituted phenyl to form a five-membered ring is particularly common. Coupling a C-H bond activation step with an alkyne insertion into the cyclometalated M-C bond and subsequent reductive elimination is a potential route to heterocyclic products (Scheme 1). In this regard studies of the stoichiometric reactions of cyclometalated

complexes with alkynes are important to understand selectivity and reactivity issues in the catalytic processes.

Stoichiometric reactions of alkynes with cyclopalladated complexes have been widely studied and have found application in the sythesis of heterocyclic molecules.<sup>3–5</sup> The reactivity of half-sandwich cyclometalated complexes with unsaturated substrates is, however, comparatively little studied, possibly due to a lack of general routes to such complexes (see below). Early work by Pfeffer et al. showed that arene ruthenium cyclometalated complexes [RuCl-(DMBA)(arene)] (DMBAH = dimethylbenzylamine) would react with alkynes to form coordinated isoquinolinium salts, which could be liberated from the metal using copper salts as oxidants.<sup>6-8</sup> Recently Jones et al. have shown that related Cp\*Rh and Cp\*Ir cyclometalated phenylpyridine complexes undergo alkyne insertion and generate isoquinolinium salts at room temperature after oxidative coupling with CuCl<sub>2</sub>. Miura and co-workers have recently reported a number of catalytic reactions to form heterocycles in which they propose that cyclometalation at Cp\*Rh followed by alkyne insertion into the M-C bond are important steps in the catalytic cycle.<sup>10</sup> A similar sequence is likely involved in

<sup>\*</sup>Corresponding author. E-mail: dld3@le.ac.uk.

For general reviews of cyclometalated complexes see: (a) Pfeffer, M. Pure Appl. Chem. 1992, 64, 335. (b) Omae, I. Coord. Chem. Rev. 2004, 248, 995. For cyclopalladated complexes see for example: (c) Ryabov, A. D. Synthesis 1985, 233. (d) Dupont, J.; Pfeffer, M.; Spencer, J. Eur. J. Inorg. Chem. 2001, 1917. (e) Bedford, R. B. Chem. Commun. 2003, 1787.
 (f) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527.
 For a recent review of cycloruthenated complexes see: (g) Djukic, J. P.; Sortais, J. B.; Barloy, L.; Pfeffer, M. Eur. J. Inorg. Chem. 2009, 817.

<sup>(2) (</sup>a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (c) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (d) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. (e) Dyker, G., Ed. Handbook of C-H Transformations; Wiley-VCH: Weinheim, 2005.

<sup>(3) (</sup>a) Spencer, J.; Pfeffer, M.; Decian, A.; Fischer, J. J. Org. Chem. **1995**, 60, 1005. (b) Maassarani, F.; Pfeffer, M.; Spencer, J.; Wehman, E. J. Organomet. Chem. **1994**, 466, 265. (c) Beydoun, N.; Pfeffer, M.; Decian, A.; Fischer, J. Organometallics **1991**, 10, 3693. (d) Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F. Organometallics **1987**, 6, 1941. (e) Wu, G. Z.; Rheingold, A. L.; Heck, R. F. Organometallics **1986**, 5, 1922. (f) Wu, G. Z.; Geib, S. J.; Rheingold, A. L.; Heck, R. F. J. Org. Chem. **1988**, 53, 3238.

<sup>(4)</sup> Spencer, J.; Pfeffer, M.; Kyritsakas, N.; Fischer, J. Organometallics 1995, 14, 2214.

<sup>(5)</sup> Maassarani, F.; Pfeffer, M.; Leborgne, G. Organometallics 1987, 6, 2029.

<sup>(6)</sup> Pfeffer, M.; Sutter, J. P.; Urriolabeitia, E. P. Bull. Soc. Chim. Fr. **1997**, 134, 947.

<sup>(7)</sup> Abbenhuis, H. C. L.; Pfeffer, M.; Sutter, J.-P.; de Cian, A.; Fischer, J.; Ji, H. L.; Nelson, J. H. *Organometallics* **1993**, *12*, 4464.

<sup>(8)</sup> Ferstl, W.; Sakodinskaya, I. K.; Beydoun-Sutter, N.; LeBorgne, G.; Pfeffer, M.; Ryabov, A. D. *Organometallics* **1997**, *16*, 411.

<sup>(9)</sup> Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414.

<sup>(10) (</sup>a) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. *Chem. Commun.* 2009, 5141. (b) Kokubo, K.; Matsumasa, K.; Nishinaka, Y.; Miura, M.; Nomura, M. *Bull. Chem. Soc. Jpn.* 1999, *72*, 303. (c) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. *J. Org. Chem.* 2009, *74*, 6295. (d) Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. *J. Org. Chem.* 2009, *74*, 3478. (e) Shimizu, M.; Tsurugi, H.; Satoh, T.; Miura, M. *Org. Lett.* 2007, *9*, 1407. (g) Ueura, K.; Satoh, T.; Miura, M. *J. Org. Chem.* 2007, *9*, 1407. (g) Ueura, K.; Satoh, T.; Miura, M. *Angew. Chem.*, 1nt. Ed. 2008, *47*, 4019.

Scheme 1. Possible Catalytic Cycle for the Production of Heterocycles via C-H Activation and Alkyne Insertion



Cp\*Rh-catalyzed synthesis of indoles<sup>11</sup> and isoquinolines<sup>12</sup> reported by Fagnou. In the latter case Fagnou provided evidence to suggest that, in some cases at least, C–N reductive elimination can occur before oxidation by copper salts.<sup>12</sup>

In 2003 we reported a new route to half-sandwich (Cp\*M, M = Rh, Ir, or {*p*-cymene}Ru) cyclometalated complexes via an acetate-assisted C–H activation.<sup>13</sup> Subsequent studies by us<sup>14</sup> and others<sup>15</sup> have shown that these are ambiphilic metal ligand activations (AMLA),<sup>16</sup> involving an electrophilic metal center with assistance by hydrogen bonding to the free arm of a coordinated acetate. Having discovered a facile high-yield route to a range of half-sandwich cyclometalated complexes, we now disclose some of our results on the reactivity of cyclometalated oxazolines with alkynes that are relevant to the catalytic formation of heterocycles reported by Miura<sup>10</sup> and Fagnou.<sup>11,12</sup>

# **Results and Discussion**

Complex 1a was reacted with PhC=CPh in MeCN in the presence of excess KPF<sub>6</sub>. Monitoring the reaction by electrospray mass spectrometry showed that even after 72 h the reaction had not gone to completion. It is possible that MeCN competes with PhC=CPh to replace the chloride in 1a. The reaction is considerably slower than alkyne insertions observed by Pfeffer<sup>6,7</sup> and Jones<sup>9</sup> for related species when the reactions were conducted in methanol. It is known that alkyne insertions into cyclopalladated complexes are more efficient if the initial complex is cationic.<sup>5</sup> Hence we prepared the cationic MeCN complex 2a by reaction of 1a with KPF<sub>6</sub>.



- (11) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
- (12) Guimond, N.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 12050.
  (13) Davies, D. L.; Al-Duaij, O.; Fawcett, J.; Giardiello, M.; Hilton, S. T.; Russell, D. R. Dalton Trans. 2003, 4132.
- (14) (a) Davies, D. L.; Donald, S. M. A.; Al-Duaij, O.; Macgregor,
   S. A.; Polleth, M. J. Am. Chem. Soc. 2006, 128, 4210. (b) Boutadla, Y.;
   Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Trans.
   2009, 5887.
- (15) Li, L.; Brennessel, W. W.; Jones, W. D. Organometallics 2009, 28, 3492.
- (16) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. *Dalton Trans.* **2009**, 5820.





Tight 1. Wolecular structure and atom-numbering scheme for the cation of **2a** with 50% displacement ellipsoids. All H atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir-N(1) 2.118(3), Ir-N(2) 2.050(3), Ir-C(1) 2.068(3), Ir-C(14)2.153(3), Ir-C(15) 2.173(3), Ir-C(16) 2.167(4), Ir-C(17)2.170(3), Ir-C(18) 2.240(3), Ir-C(22) 2.168(6), C(1)—Ir-N(1)77.08(12), C(1)—Ir-N(2) 88.62(12), N(1)—Ir-N(2) 82.85(11).

The <sup>1</sup>H NMR spectrum of **2a** shows four multiplets in the aromatic region as expected; however, the oxazoline methyls give rise to a broad singlet at  $\delta$  1.47, while the CH<sub>2</sub> protons are observed as a sharp singlet at  $\delta$  4.58 and coordinated NCMe gives a broad singlet at  $\delta$  2.42, 0.42 ppm downfield from free NCMe. The equivalence of the CMe<sub>2</sub> and of the CH<sub>2</sub> protons suggests that the complex is fluxional on the NMR time scale via dissociation of MeCN accompanied by epimerization at the metal center; such a process has been observed previously for [Ru(MeCN)(DMBA)(arene)]<sup>+.17</sup> The <sup>1</sup>H NMR spectrum at 273 K showed two sharp singlets at  $\delta$ 1.44 and 1.54 for the CMe<sub>2</sub> protons and the broad singlet due to NCMe resolved into two singlets at  $\delta$  2.42 (coordinated NCMe) and 2.02 (free NCMe) (10:1 ratio), the latter observation consistent with exchange of free and coordinated NCMe being slow at this temperature. Further cooling to 233 K led to resolution of the CH<sub>2</sub> signal to two mutually coupled doublets at  $\delta$  4.40 and 4.70; hence, at this temperature epimerization is slow compared to the NMR time scale.

The structure of **2a** has been determined by X-ray crystallography and is shown in Figure 1, with selected bond distances and angles. The complex adopts the expected pseudo-octahedral structure and confirms the coordination of NCMe. The chelate bite angle C(1)-Ir(1)-N(1) $[77.08(12)^{\circ}]$  is similar to that  $[78.0(2)^{\circ}]$  in the related [IrCl-(Phpy)Cp\*]<sup>9,18</sup> (PhpyH = 2-phenylpyridine). The M-N(1) bond length [2.118(3) Å] is longer than M-N(2) [2.050(3) Å], consistent with a bond to an sp<sup>2</sup> rather than an sp-hybridized nitrogen. As found for other cyclometalated Cp\*Rh/Ir complexes, the Cp\* is bonded in an asymmetric fashion with three shorter Ir-C distances (ca. 2.16 Å) and two longer Ir-C distances (ca. 2.25 Å).<sup>13,18,19</sup>

(19) Scheeren, C.; Maasarani, F.; Hijazi, A.; Djukic, J. P.; Pfeffer, M.; Zaric, S. D.; LeGoff, X. F.; Ricard, L. *Organometallics* **2007**, *26*, 3336.

<sup>(17)</sup> Robitzer, M.; Ritleng, V.; Sirlin, C.; Dedieu, A.; Pfeffer, M. C. R. Chim. 2002, 5, 467.

<sup>(18)</sup> Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K. Organometallics **2009**, 28, 433.

## Article

We have previously reported that acetate-assisted cyclometalation of oxazolines with [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub> failed.<sup>13</sup> However, we can now report that if the reaction is carried out in acetonitrile at 45 °C starting from [RuCl(MeCN)<sub>2</sub>(pcymene)[[PF<sub>6</sub>], then the reaction works, providing acetonitrile complex 2b. This process is similar to that used previously by Pfeffer et al. for cyclometalation of benzylamines except that NaOH was used as base in those cases.<sup>20</sup> The <sup>1</sup>H NMR spectrum of 2b shows appropriate signals for the cyclometalated oxazoline, namely, four multiplets in the aromatic region, two singlets at  $\delta$  1.47 and 1.57 due to the methyls, and a singlet for the CH<sub>2</sub> protons, which are accidentally equivalent, at  $\delta$  4.50. The *p*-cymene shows the expected signals for a chiral complex, and the coordinated NCMe gives a broad singlet at  $\delta$  2.21, 0.2 ppm downfield from free NCMe. The inequivalence of the oxazoline methyls and of the p-cymene protons suggests that, unlike 2a discussed above, the rate of epimerization of 2b is slow on the NMR time scale. It is known that ligand substitution is much slower for arene ruthenium complexes than the corresponding Cp\*Ir ones.<sup>21</sup>

Having prepared cationic cyclometalated species 2a,b, containing labile MeCN ligands, these complexes were then reacted with alkynes. Reaction of 2a with PhC=CPh occurred within a few hours ar room temperature in dichloromethane to give monoinsertion product **3a**. The <sup>1</sup>H NMR spectrum of 3a shows signals due to the Cp\*, the oxazoline ligand, and PhC=CPh in a 1:1:1 ratio. The CMe<sub>2</sub> group gives rise to two singlets at  $\delta$  1.31 and 1.37; the CH<sub>2</sub> protons are also inequivalent, giving two mutually coupled doublets at  $\delta$ 4.27 and 4.58. The inequivalence of the CH<sub>2</sub> protons and the methyls of the CMe2 group is consistent with the metal center being chiral and shows that epimerization at the metal is slow on the NMR time scale. A singlet integrating to 3H at  $\delta$  2.00 is assigned to NCMe protons. This signal and that for the Cp\* are both upfield (0.42 and 0.48 ppm, respectively) of the corresponding signals in 2a, suggesting they are affected by the presence of ring currents. The NOESY spectrum shows cross-peaks between the signals for Cp\* and the doublets for  $H^3$  and  $H^6$ , confirming that the Cp<sup>\*</sup> lies over the original cyclometalated phenyl (see X-ray structure of 3b below). Similar upfield shifts of Cp\* resonances have been observed for benzene bis(oxazoline) complexes, which have a similar seven-membered chelate ring.<sup>22</sup>



The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum shows the expected signals with the original cyclometalated carbon now being observed at ca.  $\delta$  146, about 33 ppm upfield compared with **2a**, a large shift, consistent with insertion of alkyne into the M–C bond,



**Figure 2.** Molecular structure and atom-numbering scheme for the cation of **3b** with 50% displacement ellipsoids. All H atoms are omitted for clarity. The <sup>i</sup>Pr and Me groups of the *p*-cymene are disordered. Selected bond distances (Å) and angles (deg): Ru-C(17) 2.095(4), Ru-N(1) 2.123(3), Ru-N(2) 2.053(3), C-(17)-C(10) 1.336(6); C(17)-Ru-N(1) 81.50(13), C(17)-Ru-N(2) 88.73(16), N(1)-Ru-N(2) 89.80(13).

as found by Pfeffer,<sup>7</sup> not into the M–N bond.<sup>23</sup> The FAB mass spectrum of **3a** shows an ion at m/z 679 due to [M – NCMe]<sup>+</sup>, confirming the presence of PhC=CPh.

Ruthenium complex 3b was obtained similarly from the reaction of 2b with PhC=CPh in CH<sub>2</sub>Cl<sub>2</sub> but required a longer reaction time (24 h), consistent with the slower rate of substitution at arene ruthenium compared with Cp\*Ir.<sup>21</sup> The <sup>1</sup>H NMR spectrum of the crude product showed more than one Ru(p-cymene) complex; however, after filtration through silica only one product, **3b**, remained. The  ${}^{1}$ H NMR spectrum of 3b is similar to that of 3a with signals for the *p*-cymene replacing the Cp\*. As found in **3a**, the NCMe protons in **3b** are strongly shielded at  $\delta$  1.78, 0.43 ppm upfield from **2b**; the four multiplets of the *p*-cymene are also shifted 0.5–0.8 ppm upfield from **2b**. The CMe<sub>2</sub> group gives rise to two singlets at  $\delta$  1.09 and 1.59, and the CH<sub>2</sub> protons are also inequivalent, giving two mutually coupled doublets at  $\delta$  4.34 and 4.47. These observations confirm that epimerization at the metal is slow on the NMR time scale.

Recrystallization from dichloromethane/hexane gave X-ray quality crystals of **3b**. The crystal structure is shown in Figure 2, with selected bond distances and angles. The complex adopts the expected pseudo-octahedral structure and confirms that the alkyne has, as expected, inserted into the M-C bond rather than the M-N bond,<sup>23</sup> with formation of a seven-membered ring. The C(17)-Ru(1)-N(1)chelate bite angle of the seven-membered ring [81.50(13)<sup>o</sup>] is larger than that [77.08(12)°] in the five-membered ring of 2a. The oxazoline ring is rotated out of the plane of the phenyl [C(4)-C(9)] with a dihedral angle [N(1)-C(3)-C(4)-C(9)] of 52.8°, which is much larger than the corresponding angle  $(4.5^{\circ})$  in **2a**. Presumably, this occurs as a consequence of the expansion in ring size. Similar tilting of the oxazoline ring is seen in benzene bisoxazoline complexes with a seven-membered ring.<sup>22</sup> The structure also shows that

<sup>(20)</sup> Fernandez, S.; Pfeffer, M.; Ritleng, V.; Sirlin, C. Organometallics **1999**, *18*, 2390.

<sup>(21)</sup> Dadci, L.; Elias, H.; Frey, U.; Hornig, A.; Koelle, U.; Merbach, A. E.; Paulus, H.; Schneider, J. S. *Inorg. Chem.* **1995**, *34*, 306.

<sup>(22)</sup> Davies, D. L.; Fawcett, J.; Garratt, S. A.; Russell, D. R. Organometallics 2001, 20, 3029.

<sup>(23)</sup> Cabeza, J. A.; del Rio, I.; Grepioni, F.; Moreno, M.; Riera, V.; Suarez, M. Organometallics 2001, 20, 4190.

the NCMe lies in the region of the ring current of the phenyl [C(18)-C(23)] and the *p*-cymene is tilted to lie over the ring [C(4)-C(9)]. These features account for the high-field shifts observed in the <sup>1</sup>H NMR spectrum of **3b** (see above). Similar features are expected for **3a**.

To assess the regioselectivity of the alkyne insertion, reaction of 2a with PhC=CCO<sub>2</sub>Et was investigated. The <sup>1</sup>H NMR spectrum of the crude product showed only one species. A singlet at  $\delta$  2.77 assigned to a coordinated NCMe is at much lower field than in **3a** ( $\delta$  2.00), suggesting that it is not affected by a ring current of an adjacent phenyl, consistent with phenyl being on the carbon atom adjacent to the phenyl oxazoline, i.e., isomer 4a. The Cp\* is observed at  $\delta$ 1.41, 0.4 ppm upfield from 2a, consistent with a ring-current effect from the originally cyclometalated phenyl. The CMe<sub>2</sub> group gives rise to two sharp singlets at  $\delta$  1.31 and 1.46, with the OCH<sub>2</sub> protons being observed as two doublets at  $\delta$  4.23 and 4.53; the inequivalence is consistent with epimerization at the metal being slow on the NMR time scale. Two multiplets are observed at  $\delta$  1.38 and 3.79, assigned to the CO<sub>2</sub>Et protons. The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum shows the expected number of carbon signals, and the FAB mass spectrum shows an ion at m/z 676 due to  $[M - NCMe]^+$ . The IR spectrum shows  $\nu$ (C=N) at 1624 cm<sup>-1</sup>, similar to that in the starting cationic complex with  $\nu$ (C=O) at 1695 cm<sup>-1</sup>, confirming the presence of PhC=CCO<sub>2</sub>Et. The spectroscopic data are consistent with isomer 4a; that is, the insertion occurs such that the ester group is found on the carbon atom adjacent to the metal, with the phenyl group being on the carbon atom adjacent to the phenyl oxazoline. The regioselectivity is the same as that found by Pfeffer for reaction of this alkyne with [RuCl(DMBA)(C<sub>6</sub>H<sub>6</sub>)],<sup>6</sup> which is oppposite that usually observed for insertion into the M–C bond of palladium complexes<sup>4,5,24</sup> and nickel complexes.<sup>25</sup> The regioselectivity of insertion of this alkyne has also been studied experimentally and computationally, and the regioselectivity was found to depend on the exact palladium precursor used; more electrophilic palladium species, particularly cationic ones, favored insertion with the ester next to the metal.<sup>26</sup>

It is notable that in most studies involving catalytic reactions of alkynes with cyclometalated intermediates there are relatively few examples that involve terminal alkynes,<sup>27</sup> and the first example in which the cyclometalated intermediate is generated by C–H activation was only reported in 2008.<sup>28</sup> This may be due to the greater reactivity of terminal alkynes leading to polymerization reactions and/or the possibility of forming vinylidene complexes. Similarly to our knowledge the only example of a stoichiometric reaction of a halfsandwich cyclometalated complex with a terminal alkyne is that of [CoI(DMBA)(Cp)],<sup>29</sup> which reacts only with terminal alkynes. Hence, we thought it would be informative to test the reaction of **2a,b** with PhC=CH.

- (26) Kelly, A. E.; Macgregor, S. A.; Willis, A. C.; Nelson, J. H.;
  Wenger, E. *Inorg. Chim. Acta* 2003, 352, 79.
- (27) (a) Korivi, R. P.; Cheng, C.-H. Org. Lett. 2005, 7, 5179.
   (b) Korivi, R. P.; Wu, Y.-C.; Cheng, C.-H. Chem. Eur. J. 2009, 15, 10727.

(28) Chuan-Che, L.; Rajendra Prasad, K.; Chien-Hong, Ć. *Chem.*— *Eur. J.* **2008**, *14*, 9503.

(29) Meneghetti, M. R.; Grellier, M.; Pfeffer, M.; Fischer, J. Organometallics 2000, 19, 1935.

In the course of our preliminary studies of the reaction of PhC≡CH with the chloride complex 1a even when only one equivalent of alkyne was used, the ES mass spectrum often showed ions due to a mixture of products corresponding to insertion of one or two equivalents of alkyne, suggesting that insertion of a second molecule of PhC=CH occurred at a similar rate to the first insertion. To try to overcome these difficulties, we again started from the acetonitrile complex **2a**. Reaction of PhC=CH with **2a** in 1:1 ratio in CH<sub>2</sub>Cl<sub>2</sub> led to formation of a monoinsertion complex, 5a, in 86% yield after 1 h. The <sup>1</sup>H NMR spectrum of the product showed only one isomer was present. The signal for the coordinated NCMe was observed at  $\delta$  1.99, more than 0.4 ppm upfield from the corresponding signal in 2a, consistent with a ring current from an adjacent phenyl, as discussed previously for 3a. This suggests that the phenyl of PhC≡CH is adjacent to iridium and the product is 5a rather than 5a' (confirmed by X-ray crystallography; see below). Unfortunately the signal for the alkyne proton is underneath signals for the alkyne phenyl, so NOE effects could not be used to corroborate the assignment of which regioisomer was formed. The CMe<sub>2</sub> group gave two singlets at  $\delta$  1.14 and 1.29, and the OCH<sub>2</sub> protons were observed as two mutually coupled doublets at  $\delta$ 4.11 and 4.42. The inequivalence of the CH<sub>2</sub> protons and of the methyls of the CMe<sub>2</sub> group is consistent with the chiral center at the metal and that epimerization at the metal is slow on the NMR time scale. The  ${}^{13}C{}^{1}H$  NMR spectrum of 5a shows the expected signals. FAB mass spectrometry showed only a peak at m/z 602 [M - NCMe]<sup>+</sup> corresponding to monoinsertion of PhC≡CH.



The corresponding reaction was also attempted with the cycloruthenated complex 2b. The <sup>1</sup>H NMR spectrum of the crude product showed a mixture of species; however after filtration through silica only one product was isolated. The <sup>1</sup>H NMR spectrum is similar to that of 5a but with signals due to the *p*-cymene in place of the Cp\*. Notably the signal for coordinated NCMe is observed at  $\delta$  1.85, 0.36 ppm upfield from that in 2b, consistent with the phenyl of the alkyne being next to ruthenium, and the product is 5b not 5b'. Unfortunately, as for 5a, due to the overlap of signals NOE effects could not be used to corroborate the assignment of

<sup>(24)</sup> Pfeffer, M.; Rotteveel, M. A.; Le Borgne, G.; Fischer, J. J. Org. Chem. 2002, 57, 2147.

<sup>(25) (</sup>a) Bennett, M. A.; Macgregor, S. A.; Wenger, E. *Helv. Chim. Acta* **2001**, *84*, 3084. (b) Edwards, A. J.; Macgregor, S. A.; Rae, A. D.; Wenger, E.; Willis, A. C. *Organometallics* **2001**, *20*, 2864.



Figure 3. Molecular structure and atom-numbering scheme for the cation of 5a with 50% displacement ellipsoids. All H atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir-N(1) 2.095(4), Ir-N(2) 2.058(6), Ir-C(11) 2.079(5), Ir-C(18) 2.234(6), Ir-C(19) 2.247(6), Ir-C(20) 2.171(5), Ir-C(21) 2.169(6), Ir-C(22) 2.168(6), C(10)-C-(11) 1.331(8); C(11)-Ir-N(1) 81.7(2), C(11)-Ir-N(2) 85.92(9), N(1)-Ir-N(2) 86.3(2).

which regioisomer was formed. The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum showed the expected signals, and the FAB mass spectrum showed an ion at m/z 512 due to  $[M - NCMe]^+$ , confirming insertion of PhC=CH.

Careful recrystallization of 5a and 5b from dichloromethane/ether gave crystals suitable for X-ray diffraction, and the structures are shown in Figures 3 and 4, respectively, with selected distances and angles. Each complex adopts the expected pseudo-octahedral structure and shows that the alkyne has inserted into the M-C bond to form a sevenmembered ring. In both cases the phenyl of the alkyne is on the carbon attached to the metal. The bond lengths and angles are similar in both complexes. In **5b** the Ru-C(11)bond length [2.097(3) Å] and the chelate angle N(1)-Ru-(1)-C(11) [83.49(10)°] are similar to the PhC=CPh insertion product **3b** [2.095(4) Å and  $81.50(13)^{\circ}$ , respectively], although the Ru–N(1) bond length [2.094(2) Å] is shorter than that [2.123(3) Å] in 3b. As found in 3b, in both 5a and 5b the oxazoline is rotated out of the plane of the phenyl C(4)-C(9) (dihedral angle N(1)-C(3)-C(4)-C(9) = 48.4° and 44.5°, respectively). In 5a, as found in 2a (see above) the Cp\* is bonded in an asymmetric fashion with three shorter Ir–C distances (ca. 2.17 Å) and two longer Ir–C distances (ca. 2.24 Å).<sup>13,18,19</sup> The structures confirm that the NCMe lies in the region of the ring current of the alkyne phenyl and that the Cp\* and p-cymene lie over the original cyclometalated phenyl ring.

To investigate possible electronic effects on the regioselectivity of the alkyne insertion, HC=CCO<sub>2</sub>Et was also reacted with **2a**. The <sup>1</sup>H NMR spectrum of the reaction mixture showed only one product, **6a**. The <sup>1</sup>H NMR spectrum of **6a** shows the signal for coordinated NCMe protons at  $\delta$  2.71, downfield relative to **3a** and **5a** but similar to **4a**, since there is no phenyl substituent on the alkyne. The CMe<sub>2</sub> group shows two sharp singlets at  $\delta$  1.22 and 1.37, with the OCH<sub>2</sub> protons observed as two doublets at  $\delta$  4.11 and 4.38, the inequivalence consistent with epimerization at the metal being slow



Figure 4. Molecular structure and atom-numbering scheme for the cation of 5b with 50% displacement ellipsoids. All H atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Ru-C(11) 2.097(3), Ru-N(1) 2.094(2), Ru-N(2) 2.059(2), C(10)-C(11) 1.347(4); C(11)-Ru-N(1) 83.49(10), C(11)-Ru-N(2) 86.53(7), N(1)-Ru-N(2) 86.14(10).

on the NMR time scale. Two multiplets at  $\delta$  1.27 and 4.11 are assigned to the CO<sub>2</sub>Et protons, and the original alkyne proton (H<sup>7</sup>) is observed as a singlet at  $\delta$  7.48. A NOESY spectrum showed that  $(H^7)$  is adjacent to  $(H^6)$ , confirming that the insertion occurs with the CO<sub>2</sub>Et ending up on the carbon atom adjacent to the metal. The  ${}^{13}C{}^{1}H$  NMR spectrum showed the expected number of carbon signals, and the FAB mass spectrum showed an ion at m/z 600 due to  $[M - NCMe]^+$ . The IR spectrum showed  $\nu(C=N)$  at 1622 cm<sup>-</sup> similar to that in the starting complex 2a, and  $\nu$ (C=O) at 1682 cm<sup>-1</sup>, confirming the incorporation of HC=CCO<sub>2</sub>Et. Pfeffer previously suggested that the regioselectivity of alkyne insertion with [RuCl(DMBA)(arene)] depends mainly on steric factors.<sup>6,7</sup> However, the fact that the regioselectivity we observe for HC≡CCO<sub>2</sub>Et is the same as that for PhC≡CCO<sub>2</sub>Et suggests that at least in these cases, with an alkyne containing one very electron-withdrawing substituent, electronic factors are also important.

Having observed clean insertion reactions with one equivalent of PhC=CH, the reaction of 2a with two equivalents of PhC≡CH was attempted. Monitoring the reaction by electrospray mass spectrometry suggested that the reaction was complete after two hours The <sup>1</sup>H NMR spectrum of the product showed a 1:1:2 ratio of the Cp\*, oxazoline, and alkyne ligands, as expected for the formation of a di-insertion product. The Cp\* signal was observed at  $\delta$  1.76, 0.42 ppm downfield compared with the monoinsertion complex 5a, suggesting it is no longer influenced by a ring current. The CMe<sub>2</sub> group gave two singlets at  $\delta$  1.18 and 1.37, and the OCH<sub>2</sub> protons were observed as two mutually coupled doublets at  $\delta$  2.94 and 4.18. In addition, two singlets were observed at  $\delta$  4.68 and 6.41 due to the original alkyne protons; there is no sign of a signal for MeCN. The FAB mass spectrum showed an ion at m/z 704, corresponding to the di-insertion of PhC=CH with no coordination of MeCN.

Fortunately we were able to obtain suitable crystals of 7a and have been able to determine its structure by X-ray crystallography (see Figure 5). The structure shows an eight-membered metallacycle formed by insertion of two molecules of PhC=CH into the M-C bond of 5a. The



Figure 5. Molecular structure and atom-numbering scheme for the cation of 7a with 50% displacement ellipsoids. All H atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir-N(1) 2.096(3), Ir-C(10) 2.150(4), Ir-C(11) 2.241(4), Ir-C(12) 2.093(4), Ir-C(26) 2.228(4), Ir-C(27) 2.250(4), Ir-C(28) 2.235(4), Ir-C(29) 2.167(4), Ir-C(30) 2.224(4), C(9)-C(10) 1.470(6), C(10)-C(11) 1.449(6), C(11)-C(12) 1.402(6), C(12)-C(19) 1.323(6), C(10)-Ir-N(1) 87.58(15).

organic fragment is bonded through the oxazoline nitrogen and has an  $\eta^3$ -interaction with three of the alkyne carbon atoms; isomerization of the end alkyne unit has occurred to give a vinylidene. The  $\eta^3$ -allyl is bonded asymmetrically with Ir-C(12) being the shortest bond (2.093(4) Å) and Ir-C(11) being the longest at 2.241(4) Å. The phenyl substituent [C(13)-C(18)] on the central carbon atom of the allyl is oriented anti with respect to the Cp\* on Ir.

We have established that insertion of alkynes into the M-C bond of cyclometalated phenyl oxazoline complexes occurs under very mild conditions if the starting complexes have an easily substituted ligand such as MeCN. Many cyclopalladated complexes undergo insertion reactions with CO as well as with alkynes.<sup>30</sup> To our knowledge there is only one report of half-sandwich cyclometalated complexes with CO,<sup>31</sup> and these do not undergo insertion; hence we have tested the reaction of **2a** with CO.

Carbon monoxide was bubbled through a solution of **2a** in CDCl<sub>3</sub>. After 1.5 h the <sup>1</sup>H NMR spectrum showed complete conversion to a new product, **8a**. After recrystallization the <sup>1</sup>H NMR spectrum of **8a** shows no MeCN present, the CMe<sub>2</sub> group is observed as two singlets at  $\delta$  1.30 and 1.50, and the OCH<sub>2</sub> protons are observed as two mutually coupled doublets at  $\delta$  4.20 and 4.22. These observations are consistent with a chiral metal center and that, unlike **2a**, no epimerization occurs on the NMR time scale. The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum shows the expected signals for the Cp\* and oxazoline ligand with an additional signal at  $\delta$  165.52 assigned to a terminal CO. The FAB mass spectrum shows a molecular ion at *m*/*z* 

530 and a fragment ion at m/z 502 [M – CO]<sup>+</sup>. The  $\nu$ (CO) absorption is observed at 2042 cm<sup>-1</sup> as expected for a terminal CO and similar to those (2030 and 2036 cm<sup>-1</sup>) reported for analogous complexes.<sup>31</sup> There was no evidence for any insertion product under these reaction conditions.

In conclusion, we have shown that both internal and terminal alkynes will insert into half-sandwich cyclometalated phenyl oxazoline complexes. In all cases if only one equivalent of alkyne is used, then monoinsertion products can be isolated. The insertion seems to favor the isomer with the more electron-withdrawing group next to the metal, but more studies are needed to confirm the generality of this. In no case does reductive elimination with concomitant C–N bond formation occur spontaneously, and we have not yet examined whether oxidizing agents can promote this transformation. The MeCN ligand of 2a is also easily displaced by CO; however in this case no subsequent insertion is observed.

#### **Experimental Section**

The reactions described were carried out under nitrogen using dry solvents; however, once isolated as pure solids, the compounds can be handled in air. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were obtained using Bruker ARX250 or 300 MHz spectrometers, with CDCl<sub>3</sub> as solvent, unless otherwise stated. Chemical shifts were recorded in ppm (with tetramethylsilane as internal reference). FAB mass spectra were obtained on a Kratos concept mass spectrometer using NOBA as matrix. The electrospray (ES) mass spectra were recorded using a micromass Quattra LC mass spectrometer with dichloromethane or methanol as solvent. Infrared spectra were run as solids in a diamond ATR cell using a Perkin-Elmer Spectrum 1 instrument. Microanalyses were performed by the Elemental Analysis Service (University of North London). All starting materials were obtained from Aldrich, with the exception of [IrCl<sub>2</sub>Cp\*]<sub>2</sub>,<sup>32</sup> [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub>,<sup>33</sup> complex **1a**, and oxazoline,<sup>34</sup> which were prepared by literature methods.

**Preparation of 2a.** A mixture of **1a** (70 mg, 0.13 mmol) and KPF<sub>6</sub> (55 mg, 0.30 mmol) in acetonitrile was stirred overnight. The mixture was filtered through Celite to remove excess KPF<sub>6</sub>; the filtrate was evaporated to dryness and was washed with hexane. The complex was recrystallized from dichloromethane/ hexane, giving **2a** as a yellow solid (75 mg, 83.3%). Anal. Calcd for C<sub>23</sub>H<sub>30</sub>IrN<sub>2</sub>OPF<sub>6</sub>: C, 40.17, H, 4.40, N, 4.07. Found: C, 40.29, H, 4.37, N, 3.97. <sup>1</sup>H NMR: δ 1.47 (br, 6H, 2×Me), 1.80 (s, 15H, Cp\*), 2.42 (br, 3H, NCMe), 4.58 (s, 2H, CH<sub>2</sub>), 7.15 (dt, 1H, *J* 7, 5, 1, H<sup>4</sup>), 7.33 (dt, 1H, *J* 7, 1.5, H<sup>5</sup>), 7.48 (dd, 1H, *J* 7, 5, 1.5, H<sup>3</sup>), 7.75 (d, 1H, *J* 7, 5, H<sup>6</sup>). <sup>13</sup>C NMR: δ 3.45 (NCMe), 9.87 (C<sub>5</sub>Me<sub>5</sub>), 27.00 (Me), 28.27 (Me), 67.96 (CMe<sub>2</sub>), 82.78 (OCH<sub>2</sub>), 90.96 (C<sub>5</sub>Me<sub>5</sub>), 119.64 (NCMe), 123.74, 127.36, 133.38, 135.20 (C<sup>3</sup>, C<sup>4</sup>, C<sup>5</sup>, C<sup>6</sup>), 156.64 (NCO), 179.26 (C<sup>1</sup>Ir). MS (FAB): *m*/*z* 502 [M - NCMe]<sup>+</sup>. IR: ν(C=N) 1622 cm<sup>-1</sup>.

**Preparation of 2b.** A mixture of NaOAc (34 mg, 0.41 mmol), [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub> (100 mg, 0.16 mmol), the oxazoline (57 mg, 0.33 mmol), and KPF<sub>6</sub> (120 mg, 0.65 mmol) was heated at 45 °C in acetonitrile for 3 h. The mixture was filtered throph Celite, evaporated to dryness, and washed with ether to give **2b** as a green solid (180 mg, 92%). Anal. Calcd for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>ORuPF<sub>6</sub>: C, 46.39, H, 4.91, N, 4.70. Found: C, 46.23, H, 4.80, N, 4.62. <sup>1</sup>H NMR:  $\delta$  0.84 (d, 3H, *J* 7, CH*MeMe'*), 1.09 (d, 3H, *J* 7, CHMe*Me'*), 1.47 (s, 3H, oxaz-Me), 1.57 (s, 3H, oxaz-Me), 2.14 (s, 3H, Cy-Me), 2.21 (s, 3H, NCMe), 2.48 (sept, 1H, *J* 7, CyC*H*MeMe), 4.50 (s, 2H, NCH<sub>2</sub>), 5.21 (d, 1H, *J* 6, Cy), 5.26

<sup>(30)</sup> For example see: (a) Thompson, J. M.; Heck, R. F. J. Org. Chem. 1975, 40, 2667. (b) Tollari, S.; Cenini, S.; Tunice, C.; Palmisano, G. Inorg. Chim. Acta 1998, 272, 18. (c) Tollari, S.; Demartin, F.; Cenini, S.; Palmisano, G.; Raimondi, P. J. Organomet. Chem. 1997, 527, 93. (d) Lindsell, W. E.; Palmer, D. D.; Preston, P. N.; Rosair, G. M.; Jones, R. V. H.; Whitton, A. J. Organometallics 2005, 24, 1119.

<sup>(31)</sup> Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Organometallics 2008, 27, 2795.

<sup>(32)</sup> White, C.; Yates, A.; Maitlis, P. M. *Inorg. Synth.* 1992, 29, 228.
(33) Bennett, M. A.; Smith, A. K. *J. Chem. Soc., Dalton Trans.* 1974, 233

<sup>(34)</sup> Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C.; Faucher, A.-M.; Edwards, J. P. J. Org. Chem. **1995**, 60, 4884.

(d, 1H, *J* 6, Cy), 5.92 (d, 2H, *J* 6, Cy), 6.07 (d, 1H, *J* 6, Cy), 7.08 (dt, 1H, *J* 7.5, 1, H<sup>4</sup>), 7.29 (dt, 1H, *J* 7.5, 1.5 H<sup>5</sup>), 7.40 (dd, 1H, *J* 7.5, 1, H<sup>3</sup>), 8.03 (d, 1H, *J* 7.5, H<sup>6</sup>). <sup>13</sup>C NMR:  $\delta$  3.54 (NCMe), 18.97 (Cy-*Me*C<sub>6</sub>H<sub>4</sub>), 21.35, 23.54 (Cy-CH*MeMe'*), 27.65, 28.04 (oxaz-MeMe') 31.28 (CyCHMeMe), 67.28 (<sup>*i*</sup>CMe<sub>2</sub>), 81.55, 82.24, 91.35, 91.37, (CH (C<sub>6</sub>H<sub>4</sub>Cy)), 81.95 (CH<sub>2</sub>), 104.64, 105.92 (C (C<sub>6</sub>H<sub>4</sub> Cy)), 124.03 (NCMe), 123.83, 126.99, 131.92, 139.72 (C<sup>3</sup>, C<sup>4</sup>, C<sup>5</sup>, C<sup>6</sup>), 173.12 (NCO), 175.92 (C<sup>1</sup>Ru). MS (FAB): *m*/*z* (%) 410 [M]<sup>+</sup>, 451 [M - NCMe]<sup>+</sup>. IR: *v*(C=N) 1622 cm<sup>-1</sup>.

Preparation of 3a. PhC≡CPh (67 mg, 0.38 mmol) and KPF<sub>6</sub> (103 mg, 0.56 mmol) were added to a solution of 1a (100 mg, 0.19 mmol) in acetonitrile; after stirring for 72 h, no insertion was observed by ESMS. Other experiments (see above) show that at this stage 2a was formed. The acetonitrile was replaced by dichloromethane, and the solution was stirred for 24 h and filtered through Celite to remove excess KPF<sub>6</sub>. The filtrate was evaporated to dryness and then washed with hexane to give 3a as a yellow solid (122 mg, 76%). Anal. Calcd for C<sub>37</sub>H<sub>40</sub>IrN<sub>2</sub>OPF<sub>6</sub>: C, 51.32; H, 4.66; N, 3.24. Found: C, 51.12; H, 4.53; N, 3.31. <sup>1</sup>H NMR: δ 1.31 (s, 3H, CMeMe'), 1.37 (s, 3H, CMeMe'), 1.41 (s, 15H, Cp\*), 2.00 (s, 3H, NCMe), 4.27 (d, 1H, J9, OCHH'), 4.58 (d, 1H, J9, OCHH'), 6.30 (br, 1H, Ph), 6.74 (br m, 2H, Ph), 6.81 (br m, 2H, Ph), 6.99 (m, 5H, H<sup>6</sup>, Ph), 7.24 (m, 2H, H<sup>4</sup>, Ph), 7.31 (dt, 1H, J 7.5, 1.5, H<sup>5</sup>), 7.72 (dd, 1H J 7.5, 1, H<sup>3</sup>). <sup>13</sup>C NMR:  $\delta$ 2.35 (NCMe), 8.74 ( $C_5Me_5$ ), 24.64, 27.57 (2×Me), 72.31 (CMeMe'), 81.50  $(CH_2)$ , 91.66  $(C_5Me_5)$ , 124.80 (NCMe), 124.17, 125.32, 125.95, 127.52, 128.12, 131.72 132.40, 134.14 (Ar-H), 141.88 (C<sup>2</sup>), 146.3, 147.91 (C<sup>1</sup>, C<sup>7</sup>), 151.38 (C, Ph of alkyne), 152.40 (C<sup>8</sup>), 169.16 (CNO). MS (FAB): m/z 679 [M – NCMe]<sup>+</sup>. IR:  $\nu$ (C=N) 1624 cm<sup>-1</sup>

Preparation of 3b. PhC≡CPh (33 mg, 0.19 mmol) was added to solution of 2b (100 mg, 0.17 mmol) in dichloromethane. After stirring for 24 h the solution was evaporated to dryness and then washed with hexane. The <sup>1</sup>H NMR spectrum suggested the compound was not pure, so it was washed through a short plug of silica (DCM/NCMe) to give 3b as a pure complex as a green solid (66 mg, 51%). Anal. Calcd for C37H39RuN2OPF6: C, 57.43, H, 5.08, N, 3.62. Found: C, 55.81, H, 4.67, N, 3.29. <sup>1</sup>H NMR: δ 1.09 (s, 3H, oxz Me), 1.11 (d, 1H, J7, CHMeMe'), 1.31 (d, 1H, J 7, CHMeMe'), 1.59 (s, 3H, oxz Me), 1.78 (s, 3H, NCMe), 2.27 (s, 3H, Me-Cy), 2.90 (sept, 1H, J 7, CHMeMe'), 4.34 (d, 1H, J9, OCHH'), 4.35 (d, 1H, J6, Cy), 4.47 (d, 1H, J9, OCHH'), 4.54 (d, 1H, J 6, Cy), 5.10 (d, 1H, J 6, Cy), 5.65 (d, 1H, J 6, Cy), 6.18 (d, 1H, J 8, Ph), 6.73 (t, 1H, J 7.5, Ph), 6.83 (m, 3H, Ph), 6.96 (m, 3H, Ph), 7.14 (d, 1H, J 7.5, H<sup>6</sup>), 7.31 (m, 3H, H<sup>4</sup> Ph), 7.38 (dt, 1H, J 7.5, 1.5, H<sup>5</sup>), 7.62 (dd, 1H, J 7.5, 1, H<sup>3</sup>). <sup>13</sup>C NMR: δ 2.99 (NCMe), 19.57 (Me-Cy), 22.74, 24.45 (CHMeMe'), 25.44, 28.28 (2×Me), 31.61 CH(<sup>i</sup>Pr)), 71.08 (CMe<sub>2</sub>), 81.57 (OCH<sub>2</sub>), 80.32, 85.32, 88.09, 91.28 (CH(C<sub>6</sub>H<sub>4</sub>)), 109.46, 112.61 (C(C<sub>6</sub>H<sub>4</sub>), 126.46 (NCMe), 124.32, 125.57, 126.25, 127.80, 128.49, 131.80 132.02, 133.58, (Ar-H),141.87 (C<sup>2</sup>), 145.92, 148.88 (C<sup>1</sup>, C<sup>7</sup>), 151.54 (<sup>'</sup>C, Ph of alkyne), 168.64 (C<sup>9</sup>), 171.46 (C<sup>8</sup>). MS (FAB): m/z 588 [M - NCMe]<sup>+</sup>. IR:  $\nu$ (C=N) 1602 cm<sup>-1</sup>

**Preparation of 4a.** PhC≡CCO<sub>2</sub>Et (21 mg, 0.12 mmol) was added to solution of **2a** (75 mg, 0.11 mmol) in dichloromethane; after stirring for 3 h, the solution was filtered through Celite, evaporated to dryness, and then washed with hexane. The <sup>1</sup>H NMR spectrum suggested the compound was not pure, so it was washed through a short plug of silica (DCM/NCMe) to give **4a** as a beige solid (66 mg, 51%). Anal. Calcd for C<sub>34</sub>H<sub>40</sub>Ir-N<sub>2</sub>O<sub>3</sub>PF<sub>6</sub>: C, 47.38, H, 4.68, N, 3.25. Found: C, 47.25, H, 4.63, N, 3.16. <sup>1</sup>H NMR:  $\delta$  1.31 (s, 3H, CMeMe'), 1.38 (m, 3H, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.41 (s, 15H, Cp\*), 1.46 (s, 3H, CMeMe'), 2.77 (s, 3H, NCMe), 3.79 (m, 2H, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 4.23 (d, 1H, J 9, OCHH'), 4.53 (d, 1H, J 9, OCHH'), 7.06 (m, 3H, Ph), 7.26 (m, 2H, H<sup>4</sup>, H<sup>6</sup>, Ph), 7.36 (m, 1H, H<sup>5</sup>), 7.68 (dd, 1H, J7.5, 1, H<sup>3</sup>). <sup>13</sup>C NMR:  $\delta$  4.12 (NCMe), 8.53 (C<sub>5</sub>Me<sub>5</sub>), 14.15 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 24.63, 27.24 (2xMe), 59.48 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 72.79 (CMeMe'),

81.65 (OCH<sub>2</sub>), 91.93 ( $C_5$ Me<sub>5</sub>), 124.56 (NCMe), 126.67, 127.05, 128.22, 129.96 131.92, 132.52, 133.61 (Ar-H), 142.64 (C<sup>8</sup>), 144.69 (C<sup>1</sup>), 168.71 (CNO) (other quaternary carbons are not seen). MS (FAB): m/z 676 [M - NCMe]<sup>+</sup>. IR:  $\nu$ (C=N): 1624 cm<sup>-1</sup>;  $\nu$ (C=O) 1695 cm<sup>-1</sup>.

**Preparation of 5a.** Phenylacetylene (11 mg, 0.11 mmol) was added to solution of 2a (73 mg, 0.11 mmol) in dichloromethane, and the mixture was stirred for 1 h. The mixture was then filtered through Celite to remove excess  $KPF_6$ , and the filtrate was evaporated to dryness and washed with hexane to give 5a as a pale yellow solid (72 mg, 86%). Anal. Calcd for C<sub>31</sub>H<sub>36</sub>Ir-N<sub>2</sub>OPF<sub>6</sub>: C, 47.14, H, 4.59, N, 3.55. Found: C, 47.28, H, 4.37, N, 3.47. <sup>1</sup>H NMR: δ 1.14 (s, 3H, CMeMe'), 1.29 (s, 3H, CMeMe'), 1.34 (s, 15H, Cp\*), 1.99 (s, 3H, NCMe), 4.11 (d, 1H, J9, OCHH'), 4.42 (d, 1H, J9, OCHH'), 6.97 (m, 2H, Ph), 7.06 (m, 2H, H<sup>7</sup>, Ph), 7.20 (m, 4H, H<sup>4</sup>, H<sup>6</sup>, Ph), 7.41 (dt, 1H, J 7.5, 1.5, H<sup>5</sup>), 7.63 (dt, 1H, J 8, 1.5, H<sup>3</sup>). <sup>13</sup>C NMR: δ 2.67 (NCMe), 8.93 (C<sub>5</sub>Me<sub>5</sub>), 24.89, 27.33 (2×Me), 72.66 (CMeMe'), 81.08 (CH<sub>2</sub>), 91.55 (C<sub>5</sub>Me<sub>5</sub>), 121.84 (NCMe), 122.97 (<sup>i</sup>C, Ph), 125.82, 127.02, 125.82, 132.07, 132.11, 133.02 (Ar-H), 132.11 (C<sup>7</sup>), 143.63 (C<sup>1</sup>), 152.59 (<sup>*i*</sup>C, Ph of alkyne), 155.68 (C<sup>8</sup>), 169.00 (CNO). MS (FAB): m/z 602 [M - NCMe]<sup>+</sup>. IR:  $\nu$ (C=N)  $1527 \text{ cm}^{-1}$ 

Preparation of 5b. PhC≡CH (33 mg, 0.33 mmol) was added to solution of 2b (194 mg, 0.33 mmol) in dichloromethane; after stirring overnight, the mixture was filtered through Celite, evaporated to dryness, and then washed with hexane. The <sup>1</sup>H NMR spectrum suggested the compound was not pure, so it was washed through a short plug of silica (DCM/NCMe) to give 5b as an orange solid (120 mg, 53%). Anal. Calcd for C<sub>31</sub>H<sub>35</sub>Ru-N<sub>2</sub>OPF<sub>6</sub>: C, 53.37, H, 5.06, N, 4.02. Found: C, 53.47, H, 5.01, N, 3.95. <sup>1</sup>H NMR:  $\delta$  1.00 (s, 3H, oxz Me), 1.18 (d, 1H, J 7, CHMeMe'), 1.21 (d, 1H, J 7, CHMeMe'), 1.58 (s, 3H, oxz Me), 1.85 (s, 3H, NCMe), 2.06 (s, 3H, Me-Cy), 2.71 (sept, 1H, J 7, CHMeM'), 4.32 (d, 1H, J 9, OCHH'), 4.35 (d, 1H, J 9, OCHH'), 4.39 (dd, 1H, J 6, 1, Cy), 5.03 (dd, 1H, J 6, 1, Cy), 5.35 (dd, 1H, J 6, 1, Cy), 5.41 (dd, 1H, J 6, 1, Cy), 7.12 (m, 4H, H<sup>7</sup> Ph), 7.29 (m, 4H, H<sup>4</sup>, H<sup>6</sup>, Ph), 7.50 (dt, 1H, *J* 7.5, 1.5, H<sup>5</sup>), 7.68 (d, 1H, *J* 7.5, H<sup>3</sup>). <sup>13</sup>C NMR:  $\delta$  3.05 (NCMe), 19.43 (Me-Cy), 22.73, 23.69 (CHMeMe'), 25.28, 27.63 (2×Me), 31.37 (CH('Pr)), 71.01 (CMe<sub>2</sub>), 80.58 (CH<sub>2</sub>), 82.00, 84.76, 87.84, 88.68 (CH(C<sub>6</sub>H<sub>4</sub>)), 108.07, 113.97 (C(C<sub>6</sub>H<sub>4</sub>), 124.01 (NCMe), 125.60, 125.90, 127.28, 128.05, 130.66 131.43, 132.08 (Ar-H), 132.32 (C<sup>7</sup>), 143.72 (C<sup>1</sup>), 152.48 (<sup>i</sup>C, Ph of alkyne), 168.57 (CNO), 176.01 (C<sup>8</sup>). MS (FAB): m/z 512 [M - NCMe]<sup>+</sup>. IR:  $\nu$ (C=N) 1635 cm<sup>-1</sup>.

**Preparation of 6a.** EtO<sub>2</sub>CC≡CH (21 mg, 0.22 mmol) was added to solution of **2a** (75 mg, 0.11 mmol) in dichloromethane. After stirring for 3 h, the mixture was filtered through Celite, evaporated to dryness, and then washed with hexane to give **6a** as a pale yellow solid (70 mg, 82%). Anal. Calcd for C<sub>28</sub>H<sub>36</sub>Ir-N<sub>2</sub>O<sub>3</sub>PF<sub>6</sub>: C, 42.80, H, 4.62, N, 3.57. Found: C, 42.70, H, 4.51, N, 3.56. <sup>1</sup>H NMR: δ 1.22 (s, 3H, CMeMe'), 1.27 (m, 3H, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.30 (s, 15H, Cp\*), 1.37 (s, 3H, CMeMè), 2.71 (s, 3H, NCMe), 4.11 (m, 3H, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, overlap, d, 1H, J9, OCHH'), 4.38 (d, 1H, J9, OCHH'), 7.22 (m, 2H, H<sup>4</sup>, H<sup>6</sup>), 7.45 (dt, 1H, J7.5, 1.5, H<sup>5</sup>), 7.48 (s, 1H, H<sup>7</sup>), 7.62 (d, 1H, J7.5, H<sup>3</sup>). <sup>13</sup>C NMR: δ 3.93 (NCMe), 8.61 (C<sub>5</sub>Me<sub>5</sub>), 14.84 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 24.81, 27.37 (2×Me), 60.52 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 72.99 (CMeMe'), 81.14 (OCH<sub>2</sub>), 91.67 (C<sub>5</sub>Me<sub>5</sub>), 123.25 (NCMe), 126.95, 131.82, 132.43, 133.09 (C<sup>3</sup>, C<sup>4</sup>, C<sup>5</sup>, C<sup>6</sup>), 136.60 (C<sup>7</sup>), 141.65, 144.01 (C<sup>1</sup>, C<sup>8</sup>), 168.64 (CNO), 174.70 (CO<sub>2</sub>). MS (FAB): m/z 600 [M – NCMe]<sup>+</sup>. IR: ν(C=N) 1622 cm<sup>-1</sup>; ν(C=O) 1682 cm<sup>-1</sup>.

**Preparation of 7a.** PhC=CH (21.6 mg, 0.22 mmol) was added to solution of **2a** (73 mg, 0.11 mmol) in dichloromethane; after stirring for 2 h, the mixture was filtered through Celite, evaporated to dryness, and then washed with hexane to give **7a** as a brown solid (80 mg, 89%). Anal. Calcd for  $C_{37}H_{39}IrNOPF_6$ : C, 52.23, H, 4.62, N, 1.65. Found: C, 52.23, H, 4.54, N, 1.64. <sup>1</sup>H NMR:  $\delta$  1.18 (s, 3H, CMeMe'), 1.37 (s, 3H, CMeMe'), 1.76

Table 1. Crystallographic Data for 2a, 3b, 5a, 5b, and 7a

|                                               | 2a                                                                 | 3b                                                                 | 5a                                                                 | 5b                                                                 | 7a                                    |
|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|
| empirical formula                             | C <sub>23</sub> H <sub>30</sub> F <sub>6</sub> IrN <sub>2</sub> OP | C <sub>37</sub> H <sub>37</sub> F <sub>6</sub> N <sub>2</sub> OPRu | C <sub>31</sub> H <sub>36</sub> F <sub>6</sub> IrN <sub>2</sub> OP | C <sub>31</sub> H <sub>35</sub> F <sub>6</sub> N <sub>2</sub> OPRu | $C_{75}H_{80}Cl_2F_{12}Ir_2N_2O_2P_2$ |
| fw                                            | 687.66                                                             | 771.73                                                             | 789.79                                                             | 697.65                                                             | 1786.69                               |
| temperature/K                                 | 150(2)                                                             | 150(2)                                                             | 150(2)                                                             | 150(2)                                                             | 150(2)                                |
| cryst syst                                    | monoclinic                                                         | triclinic                                                          | monoclinic                                                         | monoclinic                                                         | triclinic                             |
| space group                                   | C2/c                                                               | $P\overline{1}$                                                    | P2(1)/c                                                            | P2(1)/c                                                            | $P\overline{1}$                       |
| a/Å                                           | 25.528(4)                                                          | 9.4592(12)                                                         | 13.9443(10)                                                        | 15.3684(8)                                                         | 10.2780(12)                           |
| b/Å                                           | 12.890(2)                                                          | 10.6699(13)                                                        | 12.4836(8)                                                         | 8.6735(5)                                                          | 10.6585(13)                           |
| c/Å                                           | 15.351(3)                                                          | 19.855(3)                                                          | 18.8176(13)                                                        | 22.3405(12)                                                        | 16.300(2)                             |
| $\alpha/deg$                                  | 90                                                                 | 93.500(2)                                                          | 90                                                                 | 90                                                                 | 90.631(2)                             |
| $\beta$ /deg                                  | 95.196(3)                                                          | 103.563(2)                                                         | 106.414(1).                                                        | 96.764(1)                                                          | 97.335(2)                             |
| γ/deg                                         | 90                                                                 | 114.285(2)                                                         | 90                                                                 | 90                                                                 | 101.336(2)                            |
| $U/\text{\AA}^3$                              | 5030.4(15)                                                         | 1747.4(4)                                                          | 3142.2(4)                                                          | 2957.2(3)                                                          | 1735.3(4)                             |
| Z                                             | 8                                                                  | 2                                                                  | 4                                                                  | 4                                                                  | 1                                     |
| density (calcd)/Mg/m <sup>3</sup>             | 1.816                                                              | 1.467                                                              | 1.670                                                              | 1.567                                                              | 1.710                                 |
| abs coeff/ mm <sup>-1</sup>                   | 5.435                                                              | 0.558                                                              | 4.363                                                              | 0.650                                                              | 4.034                                 |
| F(000)                                        | 2688                                                               | 788                                                                | 1560                                                               | 1424                                                               | 886                                   |
| cryst size/mm                                 | $0.22 \times 0.20 \times 0.09$                                     | $0.29 \times 0.21 \times 0.18$                                     | 0.34 	imes 0.13 	imes 0.07                                         | $0.29 \times 0.21 \times 0.18$                                     | $0.21 \times 0.11 \times 0.09$        |
| theta range/deg                               | 1.60 to 26.00                                                      | 2.13 to 25.00                                                      | 1.52 to 26.00                                                      | 1.33 to 25.00                                                      | 1.26 to 27.00                         |
| index ranges                                  | $-31 \le h \le 31$ ,                                               | $-11 \le h \le 11$ ,                                               | $-17 \le h \le 17$ ,                                               | $-18 \le h \le 18$ ,                                               | $-13 \le h \le 13,$                   |
|                                               | $-15 \le k \le 15,$                                                | $-12 \le k \le 12,$                                                | $-15 \le k \le 15,$                                                | $-10 \le k \le 10,$                                                | $-13 \le k \le 13,$                   |
|                                               | $-18 \le l \le 18$                                                 | $-23 \le l \le 23$                                                 | $-23 \le l \le 23$                                                 | $-26 \le l \le 26$                                                 | $-20 \le l \le 20$                    |
| reflns collected                              | 19 090                                                             | 12 602                                                             | 23 528                                                             | 20816                                                              | 14726                                 |
| indep reflns $(R_{int})$                      | 4938 [R(int) = 0.0335]                                             | 6076 [R(int) = 0.0310]                                             | 6165 [R(int) = 0.0787]                                             | 5210 [R(int) = 0.0896]                                             | 7434 [R(int) = 0.0305]                |
| data/restraints/params                        | 4938/0/315                                                         | 6076/0/458                                                         | 6165/72/440                                                        | 5210/0/431                                                         | 7434/0/449                            |
| goodness-of-fit, $F^2$                        | 1.057                                                              | 1.044                                                              | 0.955                                                              | 1.056                                                              | 0.972                                 |
| final <i>R</i> indices $[I > 2\sigma(I)]$     | R1 = 0.0240,<br>wR2 = 0.0648                                       | R1 = 0.0524,<br>wR2 = 0.1352                                       | R1 = 0.0420,<br>wR2 = 0.0884                                       | R1 = 0.0446,<br>wR2 = 0.1205                                       | R1 = 0.0345,<br>wR2 = 0.0694          |
| <i>R</i> indices (all data)                   | R1 = 0.0271,<br>wR2 = 0.0659                                       | R1 = 0.0598,<br>wR2 = 0.1408                                       | R1 = 0.0558,<br>wR2 = 0.0936                                       | R1 = 0.0471,<br>wR2 = 0.1229                                       | R1 = 0.0400,<br>wR2 = 0.0713          |
| largest diff peak and hole/e ${\rm \AA}^{-3}$ | 1.549 and -1.662                                                   | 1.199 and -0.730                                                   | 3.595 and -0.827                                                   | 1.255 and -1.132                                                   | 1.882 and -1.679                      |

(s, 15H, Cp\*), 2.94 (d, 1H, J 9, OCHH'), 4.18 (d, 1H, J 9, OCHH'), 4.68 (s, 1H, H<sup>7</sup>), 6.41 (s, 1H, H<sup>10</sup>), 7.02 (m, 3H, Ph), 7.13 (m, 3H, Ph), 7.34 (m, 2H, Ph), 7.40 (dt, 1H, J 6.5, 1.5, H<sup>4</sup>), 7.50 (m, 2H, Ph), 7.55 (dd, 1H, J 7, 1, H<sup>6</sup>), 7.77 (dt, 1H, J 7, 1.5, H<sup>5</sup>), 7.83 (dd, 1H, J 7.5, 1, H<sup>3</sup>). <sup>13</sup>C NMR:  $\delta$  9.50 (C<sub>5</sub>*M*e<sub>5</sub>), 25.99, 27.66 (2×Me), 48.58 (C<sup>7</sup>), 71.01 (*C*MeMe'), 80.44 (OCH<sub>2</sub>), 95.99 (*C*<sub>5</sub>Me<sub>5</sub>), 104.92 (C<sup>9</sup>), 119.84 (C<sup>10</sup>), 127.37, 127.47, 127.90, 128.51, 128.69, 131.65, 132.32 133.64 (Ar-H), 123.98, 125.38 (<sup>i</sup>C, Ph), 133.75, 138.24 (C<sup>1</sup>, C<sup>8</sup>), 152.61 (<sup>i</sup>C), 165.33 (CNO). MS (FAB): *m*/*z* 704 [M]<sup>+</sup>. IR:  $\nu$ (C=N) 1604 cm<sup>-1</sup>.

**Preparation of 8a.** CO was bubbled through a solution of **2a** (42 mg, 0.62 mmol) in CDCl<sub>3</sub> for 1.5 h. The solution was evaporated to dryness and was recrystallized from dichloromethane/hexane to give **8a** as a yellow precipitate (38 mg, 92.3.3%). Anal. Calcd for C<sub>22</sub>H<sub>27</sub>IrN<sub>2</sub>O<sub>2</sub>PF<sub>6</sub>: C, 39.17, H, 4.03, N, 2.08. Found: C, 39.05, H, 3.96, N, 1.97. <sup>1</sup>H NMR: δ 1.30 (s, 3H, Me), 1.50 (s, 3H, Me), 2.00 (s, 15H, Cp\*), 4.20 (d, 1H, *J* 5, C*HH'*) 4.22 (d, 1H, *J* 5, C*HH'*), 7.30 (dt, 1H, *J* 7.5, 1, H<sup>4</sup>), 7.43 (dt, 1H, *J* 7, 1.5, H<sup>5</sup>), 7.63 (m, 2H, H<sup>3</sup>, H<sup>6</sup>). <sup>13</sup>C NMR: δ 10.05 (C<sub>5</sub>Me<sub>5</sub>), 27.05 (Me), 27.85 (Me), 69.20 (*C*Me<sub>2</sub>), 81.99 (OCH<sub>2</sub>), 102.17 (*C*<sub>5</sub>Me<sub>5</sub>), 126.01, 129.12, 134.42, 136.27 (C<sup>3</sup>, C<sup>4</sup>, C<sup>5</sup>, C<sup>6</sup>), 144.76 (C<sup>2</sup>), 165.52 (CO), 180.44 (C<sup>1</sup>Ir). MS (FAB): *m/z* 530 [M]<sup>+</sup>, 502 [M − CO]<sup>+</sup>. IR: *ν*(C≡O) 2042 cm<sup>-1</sup>, *ν*(C=N) 1614 cm<sup>-1</sup>.

**X-ray Crystal Structure Determinations.** Details of the structure determinations of crystals of **2a**, **3b**, **5a**, **5b**, and **7a** are given in Table 1. Data were collected on a Bruker Apex 2000 CCD diffractometer using graphite-monochromated Mo K $\alpha$  radiation,  $\lambda = 0.7107$  Å at 150 K. The data were corrected for Lorentz and polarization effects, and empirical absorption corrections (SADABS).<sup>35</sup> were applied in all cases. The structures were solved by Patterson methods and refined by full-matrix least-squares on  $F^2$  using the program SHELXTL.<sup>36</sup> All hydrogen atoms bonded to carbon were included in calculated positions (C–H = 0.96 Å) using a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters without positional restraints. Figures were drawn using the program ORTEP.<sup>37</sup>

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre, CCDC Nos. 758499–758503.

Acknowledgment. We thank the Saudi Arabian government (O.A.-D.) for a studentship and Johnson Matthey for a loan of iridium trichloride and ruthenium trichloride.

**Supporting Information Available:** This material is available free of charge via the Internet at http://pubs.acs.org.

<sup>(35)</sup> SADABS, Version 6.02; Bruker Inc.: Madison, WI, 1998–2000.

<sup>(36)</sup> SHELXTL, Version 6.10; Bruker Inc.: Madison, WI, 1998–2000.

<sup>(37)</sup> Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.