

PII: S0040-4020(96)00927-1

Preparation of *cis*-5-Methoxy-and-7-Methoxy-1-Acetoxy-1,2,3,4,4a,10a-Hexahydro-9(10*H*)-Phenanthrenone. An Epoxide-Arene Reaction Involving a Selective 1,2-Alkyl Shift Rearrangement.

Neeraj Garg,¹ Adolf Gogoll,² Christer Westerlund,³ Staffan Sundell,⁴ Anders Karlén,¹ and Anders Hallberg.^{1*}

1) Department of Organic Pharmaceutical Chemistry, Uppsala University, Box 574, S-751 23, Uppsala, Sweden.

²⁾ Department of Organic Chemistry, Uppsala University, Box 531, S-751 21, Uppsala, Sweden.

3) Medicinal Chemistry II, Astra Hässle AB, S-431 83, Mölndal, Sweden.

⁴) Department of Medicinal Biochemistry, Göteborg University, S-413 90, Göteborg, Sweden.

Abstract: The preparation of cis-1 α -acetoxy-7-methoxy-1,2,3,4,4a,10a-hexahydro-9(10H)phenanthrenone 5 was accomplished starting from 6-methoxy-1-tetralone. Reduction of 7-methoxy-1,2,3, 4,9,10-hexahydro-1-oxo-phenanthrene 8, acetylation and subsequent oxidation delivered 5. Application of an analogus procedure to the preparation of cis-1 β -acetoxy-5-methoxy-1,2,3,4,4a,10a-hexahydro-9(10H)phenanthrenone 6 was not feasible. A more elaborate route was developed for the synthesis of compound 6, where an epoxide-arene reaction involving a 1,2-alkyl shift rearrangement, constituted a highly selective key transformation. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Disulfide cyclization is a powerful method of reducing the conformational space of a peptide. This method enables the study of peptide bioactive conformations and may provide a starting point for conversion of peptides to compounds with less peptidic character. Recently Marshall *et al.* demonstrated the effects of side-chain cyclization between residues i and i+2, in different tripeptides, on restriction of the allowed backbone conformation.^{1,2} Cyclization of peptides with *trans*-4-mercaptoproline (MPt) and *cis*-4-mercaptoproline at one position, and Cys or Hcy (homocysteine) at the other position provided a new route to highly constrained bicyclic analogues. Particularly interesting was the cyclic tripeptide fragment Hcy-Tyr-Mpt which when incorporated in to the 3-5 position of the blood pressure regulating hormone angiotensin II (AngII) afforded an agonist almost equally potent to the native peptide.²

The conformational space for the disulfide bridged tripeptide Cys-Ala-Cys was also found to be restricted.¹ Theoretical calculations^{3,4} and NMR-spectroscopy⁴ suggest that the Cys-Tyr-Cys moiety preferentially adopts an inverse γ -turn conformation. This tripeptide fragment which has also been incorporated into the 3-5 position of AngII afforded a ligand with high affinity but no contractile activity.⁵

We have an interest in the preparation of secondary structure mimetics and were encouraged to synthesize rigid non-peptidergic structures mimicking the Hcy-aa-Mpt fragment 1 and the Cys-aa-Cys fragment 2, where aa is an amino acid residue. Molecular modelling and conformational analyses⁶ using MacroModel⁷ (version 4.5) suggested that the tricyclic compound 3 and 4 should provide proper scaffolds for these tripeptide units (Figure 1).

a)

Figure 1. Stereoview showing the fit of (a) 1 (solid lines) and 3 (dashed lines) and (b) 2 (solid lines) and 4 (dashed lines) in their lowest energy conformation as identified by the Monte Carlo search. For clarity, the hydrogens have been omitted from the picture.

We desired common synthetic intermediates that both allowed for flexible conversion into a mimetic of a specific peptide unit (e.g. X=NH₂, Y=COOH and R=p-CH₂C₆H₄OH) and into mimetics of their D-amino acid counterparts. We selected the tricyclic compounds 5 and 6 as suitable precursors for 3 and 4 and here report the non enantioselective synthesis of 5 and 6. Two entirely different synthetic approaches were used for the construction of the common carbon skeleton of the two regioisomers. The synthesis of 6 relied on an epoxyarene cyclization involving a highly selective 1,2-alkyl rearrangement from a phenonium ion.

RESULTS AND DISCUSSION

For the preparation of **5** we used the tricyclic unsaturated ketone **8** as a key intermediate^{8a-h} (scheme 1). We synthesised **8** in an over all yield of 38% from commercially available 6-methoxy-1-tetralone **7**, following the reaction sequence reported by Stork^{8b} and which was later modified by Nagata.^{8d} Subsequent hydrogenation^{9a,9b} of **8** on Pd/C at a pressure of one atmosphere in ethyl acetate furnished the desired *cis*-diasterioisomer **9** in 34% yield. No *trans*-diastereomers were formed according to a NMR analysis of the crude product. Alternative reductive methods producing mixture of diastereomers are available.^{10a-p} Acetylation of the hydroxyl group in **9** and subsequent oxidation¹¹ with 3,5-DMP and chromium trioxide in dichloromethane led to the target compound **5** in 54% yield. The same oxidative conditions¹¹ permitted conversion of **12** to the ketone **13** in 41% yield. The benzylic oxidation¹¹ also occurred smoothly when the carbomethoxy derivative **15** was subjected to the reaction conditions, and **16**, a conceivable alternative precursor for **3**, was isolated. The conversion of the methoxy derivative **10** to the corresponding carbomethoxy compound **15** was achieved by ether cleavage and palladium-catalysed carbonylation of the triflate **14** (scheme 1).

We planned to prepare 6 from the unsaturated tricyclic ketone 30 essentially following the reaction sequence discussed above. No synthetic route to the isomer 30 had been described previously and 8-methoxy-1-tetralone is not commercially available. We assumed that 24 should provide a suitable key intermediate for synthesis of $30.^{12a-h}$ Two synthetic routes^{12c,12e} to the 2-methoxy intermediate 24 were explored (scheme 2). We first applied a recently reported reaction sequence used by Hauser^{12e} to the synthesis of a closely related analogue; compound 24, substituted in the aromatic ring with a methyl group in the *para*-position to the alkyl chain. Thus, reaction of 2-methoxybenzaldehyde with the Grignard reagent derived from 1-bromo-3-(phenylthio)propane in THF furnished the hydroxy sulfide 18 in 73% yield. Reductive removal of the hydroxyl group and subsequent oxidative conversion of the phenylthio group provided the aldehyde 20. A second Grignard reaction followed by two oxidative steps furnished a keto aldehyde that smoothly cyclized and underwent dehydration to give 24.

Reagents and conditions: (a) Zn, HgCl₂, methyl γ -bromocrotonate, benzene-diethyl ether; (b) Raney-Ni, dioxane, H₂ (1 atm.); (c) KHCO₃, MeOH-H₂O; (d) ZnCl₂, AcOH, Ac₂O (e) NaOH, MeOH-H₂O; (f) Pd-C, ethyl acetate, H₂ (1 atm.); (g) Ac₂O, DMAP, CH₂Cl₂; (h) 3, 5-DMP-CrO₃, CH₂Cl₂; (i) BBr₃, CH₂Cl₂; (j) N-Phenyl-trifluoromethanesulfonimide, Et₃N, CH₂Cl₂; (k) Pd(OAc)₂, DPPP, Et₃N, MeOH, DMF, CO (2.5 atm.).

Scheme 1

MeO

Reagents and conditions: (a) PhS(CH₂)₃Br, Mg, THF; (b) AlCl₃, LAH, ether; (c) NCS, CCl₄; (d) CuO, CuCl₂, acetone-H₂O; (e) PhS(CH₂)₄Br, Mg, THF; (i) PCC-Celite, CH₂Cl₂; (g) HClO₄-THF-H₂O; (h) Na-NH₃, THF; (i) hydroquinone, 1,2-dichloroethane, HCl-H₂O; (j) H₂O₂, NaOH, MeOH-H₂O; (k) SnCl₄, CH₂Cl₂; (l) PPA; (m) Raney Ni, 2N NaOH, ethanol, H₂ (1 atmp); (n) Ac₂O, DMAP, CH₂Cl₂; (o) 3,5-DMP-CrO₃, CH₂Cl₂.

Scheme 2

The Taber reaction^{12c} provided a considerably more convenient route to **24**. Reaction of 2-methoxybenzoic acid **25** with sodium in ammonia and subsequent addition of 2-methoxybenethyl bromide **26** and acidic treatment gave a 29% yield of **24**. Epoxidation^{12f} of **24** followed by stannic chloride mediated epoxide cyclialkylation¹³ to give **29** and subsequent dehydration provided **30**. Attempted cyclization of **24** by treatment with Lewis acid^{12e} produced a complex mixture.

The structure of **29** was established by NMR (see experimental section) and by X-ray crystallography¹³ (figure 2). Taylor has studied Friedel-Craft cyclization extensively.^{14a,14b} It was reported that 1,2-epoxy-5-(*m*-methoxyphenyl) pentane produced a mixture of compounds derived from *ortho*- and *para*-substitution and accordingly we expected a similar mixture to be formed from a *meta*-methoxy derivative in our system. However, an analysis of Dreiding models suggested that a nucleophilic attack at the epoxide by the *ipso*-carbon *ortho* to the methoxy group in **27** should be favoured. An *ipso*-carbon attack and subsequent 1,2-alkyl shift of the primary alkyl chain occurred exclusively and no derivative associated with migration of the ring system from a postulated charged spiro intermediate **28** was observed.

Hydrogenation^{9a} of **30** on Raney Ni at one atmosphere in ethanol gave a mixture of **31** and **32** (difficult to separate) in 93% yield, which was acetylated to give a mixture of **33** and **34** in 76% yield. Oxidation¹¹ of the mixture of **33** and **34** with 3,5-DMP and chromium trioxide in dichloromethane delivered target compounds **6** and **35** in 41% and 27% yield respectively after chromatographic separation (Scheme 2).

We conclude that 5 and 6, two potential precursors of the cyclic tripeptide mimetics 3 and 4, can be prepared from the corresponding tricyclic ketones 8 and 30, respectively. While the key intermediate 8 was synthesised conveniently according to a literature procedure, a more elaborate reaction sequence was required to obtain the ketone 30. The latter compound was prepared by a highly selective 1,2 alkyl rearrangement from an intermediate phenonium ion.

Figure 2. X-ray Diffraction Structure of 29.

EXPERIMENTAL SECTION

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. NMR spectra were recorded for ¹H at 270 MHz and 400 MHz, for ¹³C at 67.8 MHz, on a Jeol JNM-EX-270 or a Varian Unity 400 instrument. Chemical shifts are indirectly referenced to TMS by the solvent signal (CDCl₃: 7.26 and 77.0). Signal assignments were made from homonuclear and hetronuclear correlated spectra. NOEs were detected by NOE difference spectra or NOSEY spectra. TLC was carried out using Merck pre-coated silica gel 60F₂₅₄ plates in 15-50% diethyl ether in hexane; the spot were detected with UV light. Column chromatography was carried out using Merck G60 silica gel and gradient elution with diethyl ether and hexane. The elemental analyses were performed by MikroKemi AB, Uppsala, Sweden. A Jeol SX102 instrument was used for recording mass spectra. THF and diethyl ether were dried and distilled from sodium and benzophenone. Dichloromethane was dried over MgSO₄. All other commercial chemicals were used without further purification.

cis-1 α -Hydroxy-7-methoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (9): A solution of 8 (3.6 g, 15.8 mmol) in ethyl acetate (60 ml) containing 5% Pd-C (160 mg) was stirred under hydrogen (1 atmosphere) at room temperature for 16 h, then filtered through a short pad of celite. The solids were washed with ethyl acetate (50 ml), and the combined filtrates evaporated at reduced pressure. The residue was purified on a silica gel column to give 9 (1.23 g, 34%), (m.p 86-88 °C, crystallised from a mixture of diethyl ether and hexane).¹H-NMR (CDCl₃): 6.99 (d, 1H) Ar; 6.68 (dd, J = 2.6 Hz, 8.6 Hz, 1H) Ar; 6.62 (d, 1H) Ar; 3.89 (m, 1H) H-1; 3.77 (s, 3H) OMe; 2.92-2.66 (m, 3H) H-9, H-4_a; 2.25-2.17 (m, 1H) H-10_a; 1.97-1.34 (m, 9H) H-2, H-3, H-4, H-10, OH. ¹³C-NMR (CDCl₃): 157.3 (s) Ar; 137.4 (s) Ar; 133.6 (s) Ar; 129.8 (d) Ar; 113.2 (d) Ar; 111.9 (d) Ar; 72.5 (d) C-1; 55.1 (q) OMe; 40.8 (d) C-10_a; 39.6 (d) C-4_a; 30.9 (t) CH₂; 29.7 (t) C-9; 29.1 (t) CH₂; 24.1 (t) CH₂; 15.8 (t) C-10. Anal. calcd. for C₁₅H₂₀O₂: C, 77.6; H, 8.6. Found: C, 77.6; H, 8.6.

cis-1 α -Acetoxy-7-methoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (10): Compound 9 (1.16 g, 5.0 mmol) was treated with acetic anhydride (3.06 g, 30.0 mmol) and DMAP (61 mg, 0.5 mmol) in dichloromethane (20 ml) at room temperature for 2 h. The organic layer was washed with water (3 x 20 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give viscous liquid 10 (1.27 g, 93%). ¹H-NMR (CDCl₃): 6.98 (d, J = 8.6 Hz, 1H) Ar; 6.69 (dd, J = 2.9 Hz, 1H) Ar; 6.61 (d, 1H) Ar; 4.98 (dt, J = 4.6 Hz, 11.6 Hz, 1H) H-1; 3.76 (s, 3H) OMe; 2.84-2.72 (m, 3H) H-9, H-4a; 2.31-2.25 (m, 1H) H-10a; 2.08 (s, 3H) OAc; 1.86-1.43 (m, 8H) H-2, H-3, H-4, H-10. ¹³C-NMR (CDCl₃): 170.2 (s) (<u>C</u>=O)Me; 157.3 (s) Ar; 136.8 (s) Ar; 133.0 (s) Ar; 129.6 (d) Ar; 113.0 (d) Ar; 111.8 (d) Ar; 74.8 (d) C-1; 54.9 (q) OMe; 39.2 (d) C-10a; 37.8 (d) C-4a; 30.8 (t) CH₂; 29.4 (t) C-9; 25.6 (t) CH₂; 23.8 (t) CH₂; 21.2 (q) OAc; 16.6 (t) C-10. HRMS calcd. for C₁₇H₂₂O₃: 274.1569. Found: 274.1567.

cis-1 α -Acetoxy-7-methoxy-1, 2, 3, 4, 4a, 10a-hexahydro-9(10H)-phenanthrenone (5): Chromium trioxide (4.0 g, 40.0 mmol) was suspended in dichloromethane (20 ml) at -20 °C and DMP (3.84 g, 40.0 mmol) was added in one portion. After stirring at -20 °C for 15 min, compound 10 (548 mg, 2.0 mmol) in dichloromethane (5 ml) was added dropwise and the reaction mixture was stirred at -10 °C to -15 °C for 8 h. The reaction was poured into cold water (50 ml). The phases were separated and the aqueous layer was extracted with dichloromethane (2 x 20 ml). The combined organic layer was washed with water (2 x 15 ml) and brine (2 x 15 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give **5** (311 mg, 54%).¹H-NMR (400 MHz, CDCl₃): 7.50 (d, J = 2.9 Hz, 1H) H-8; 7.17 (d, J = 8.4 Hz, 1H) H-5; 7.09 (dd, J = 2.9 Hz, 8.4 Hz, 1H) H-6; 5.00 (ddd, J = 4.4 Hz, 4.4 Hz, 11.0 Hz, 1H) H-1; 3.84 (s, 3H) OMe; 2.91 (ddd, J = 4.0 Hz, 4.0 Hz, 11.8 Hz, 1H) H-4a; 2.83 (m, 1H) H-10a; 2.77 (m, 1H) H-10; 2.68 (dd, J = 4.0 Hz, 16.1 Hz, 1H) H-10; 2.06 (s, 3H) OAc; 1.89 (m, 1H) H-3; 1.84 (m, 1H) H-2; 1.73 (m, 1H) H-4; 1.58 (m, 2H) H-2, H-3; 1.50 (m, 1H) H-4. The stereochemistry is assigned by NOEs between H-1 and both H-4a and H-10a, which indicate that these three protons must be on the same face of the ring system.¹³C-NMR (CDCl₃): 197.8 (s) C=O; 170.2 (s) (<u>C</u>=O)Me; 158.4 (s) Ar; 140.2 (s) Ar; 132.2 (s) Ar; 129.8 (d) Ar; 122.3 (d) Ar; 108.9 (d) Ar; 73.4 (d) C-1; 55.5 (q) OMe; 39.5, 36.8 (2 x d) C-4a, C-10a; 33.4 (t) C-10; 29.3 (t) CH₂; 25.1 (t) CH₂; 23.5 (t) CH₂; 21.2 (q) OAc. Anal. calcd. for C₁₇H₂₀O₄x1/4H₂O: C, 69.7; H, 7.0. Found: C, 69.6; H, 7.2.

cis-1 α -Acetoxy-7-hydroxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (11): To a solution of 10 (1.23 g, 4.5 mmol) in dichloromethane (15 ml) was added 1 N boron tribromide (9 ml, 9.0 mmol) in dichloromethane dropwise over 15 min at -78 °C. The reaction mixture was stirred at -78 °C for 30 min and then kept in a refrigerator for 16 h at -12 °C. The reaction mixture was poured into cold water (40 ml), extracted with diethyl ether (3 x 30 ml) and the combined organic layer washed with water (2 x 20 ml) and brine (2 x 15 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give 11 (1.06 g, 91%). ¹H-NMR (CDCl₃): 6.81 (d, J = 8.3 Hz, 1H) Ar; 6.51 (dd, J = 2.7 Hz, 1H) Ar; 6.45 (d, 1H) Ar; 4.88 (dt, J = 5.3 Hz, 1H) H-1; 2.70-2.60 (m, 3H) H-9, H-4_a; 2.16 (m, 1H) H-10_a; 2.00 (s, 3H) OAc; 1.75-1.34 (m, 8H) H-2, H-3, H-4, H-10. ¹³C-NMR (CDCl₃): 170.9 (s) (<u>C</u>=O)Me; 154.1 (s) Ar; 136.8 (s) Ar; 132.0 (s) Ar; 129.6 (d) Ar; 114.6 (d) Ar; 112.8 (d) Ar; 75.2 (d) C-1; 39.2 (d) C-10_a; 37.8 (d) C-4_a; 30.7 (t) CH₂; 29.0 (t) C-9; 25.5 (t) CH₂; 23.6 (t) CH₂; 21.1 (q) OAc; 16.4 (t) C-10. HRMS calcd. for C₁₆H₂₀O₃: 260.1412. Found: 260.1385.

cis-1 α -7-Bisacetoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (12): Compound 11 (1.04 g, 4.0 mmol) gave 12 (1.16 g, 96%) using similar conditions described above for 10. ¹H-NMR (CDCl₃): 7.05 (d, J = 8.3 Hz, 1H) Ar; 6.82-6.79 (m, 2H) Ar; 4.98 (dt, J = 4.9 Hz, 11.5 Hz, 1H) H-1; 2.82-2.75 (m, 3H) H-9, H-4_a; 2.27 (s, m, 4H) OAc, H-10_a; 2.08 (s, 3H) OAc; 1.86-1.44 (m, 8H) H-2, H-3, H-4, H-10. ¹³C-NMR (CDCl₃): 170.2 (s) (<u>C</u>=O)Me; 169.5 (s) (<u>C</u>=O)Me; 148.2 (s) Ar; 138.3 (s) Ar; 137.1 (s) Ar; 129.7 (d) Ar; 121.2 (d) Ar; 118.6 (d) Ar; 74.6 (d) C-1; 39.6 (d) C-4_a; 37.5 (d) C-10_a; 30.6 (t) CH₂; 29.1 (t) C-9; 25.6 (t) CH₂; 23.8 (t) CH₂; 21.2 (q) OAc; 20.9 (q) OAc; 16.4 (t) C-10. HRMS calcd. for C₁₈H₂₂O₄: 302.1518. Found 302.1520.

cis-1 α -7-Bisacetoxy-1, 2, 3, 4, 4a, 10a-hexahydro-9(10*H*)-phenanthrenone (13): Compound 12 (906 mg, 3.0 mmol) gave 13 (393 mg, 41%) using similar conditions described above for 5. ¹H-NMR (CDCl₃): 7.70 (d, J = 2.3 Hz, 1H) Ar; 7.26-7.24 (m, 2H) Ar; 5.00 (dt, J = 4.3 Hz, 11.2 Hz, 1H) H-1; 3.03-2.64 (m, 4H) H-10, H-4_a, H-10_a; 2.30 (s, 3H) OAc; 2.06 (s, 3H) OAc; 1.95-1.47 (m, 6H) H-2, H-3, H-4. ¹³C-NMR (CDCl₃): 196.7 (s) C=O; 170.1 (s) (C=O)Me; 169.2 (s) (C=O)Me; 149.3 (s) Ar; 144.7 (s) Ar; 132.4 (s) Ar; 129.7 (d) Ar; 127.2 (d) Ar; 119.6 (d) Ar; 73.0 (d) C-1; 39.6, 36.4 (2 x d) C-4_a, C-10_a; 33.1 (t) C-10; 28.9 (t) CH₂; 24.9 (t) CH₂; 23.3 (t) CH₂; 21.0 (q) OAc; 20.8 (q) OAc. HRMS calcd. for C₁₈H₂₀O₅: 316.1311. Found 316.1308.

cis-1 α -Acetoxy-7-[(trifluoromethyl)-sulfomyl]-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (14): A mixture of 11 (780 mg, 3.0 mmol) and Et₃N (1.21 g, 12.0 mmol) in dichloromethane (15 ml) was stirred under N₂ at room temperature for 1 h. N-Phenyltrifluoromethane- sulfonimide (1.61 g, 4.5 mmol) was added, and the reaction mixture was stirred for 48 h at room temperature. The mixture was washed with 10% aqueous sodium bicarbonate (3 x 10 ml) and water (2 x 10 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give 14 (1.02 g, 86%). ¹H-NMR (CDCl₃): 7.11 (d, J = 8.3 Hz, 1H) Ar; 7.00 (dd, J = 2.6 Hz, 1H) Ar; 6.98 (d, 1H) Ar; 4.97 (dt, J = 4.6 Hz, 11.2 Hz, 1H) H-1; 2.95-2.71 (m, 3H) H-9, H-4_a; 2.34-2.24 (m, 1H) H-10_a; 2.08 (s, 3H) OAc; 1.92-1.35 (m, 8H) H-2, H-3, H-4, H-10. ¹³C-NMR (CDCl₃): 170.3 (s) (<u>C</u>=O)Me; 147.3 (s) Ar; 141.2 (s) Ar; 138.4 (s) Ar; 130.5 (d) Ar; 121.1 (d) Ar; 118.2 (d) Ar; 74.4 (d) C-1; 39.6 (d) C-4_a; 37.3 (d) C-10_a; 30.6 (t) CH₂; 29.1 (t) C-9; 25.5 (t) CH₂; 23.8 (t) CH₂; 21.2 (q) OAc; 16.2 (t) C-10. HRMS calcd. for C₁₇H₁₉F₃O₅S: 392.0905. Found: 392.0906.

cis-1 α -Acetoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene-7-methylester (15): A mixture of 14 (784 mg, 2.0 mmol), Et₃N (222 mg, 2.2 mmol), Pd(OAc)₂ (13 mg, 0.06 mmol), DPPP (49 mg, 0.12 mmol) and MeOH (3 ml) in DMF (40 ml) was degassed under N₂ for 10 min. The reaction mixture was heated at 70 °C under carbon monoxide (2.5 atmosphere) for 16 h. The reaction mixture was cooled, and poured into cold water. The aqueous layer was extracted with diethyl ether (3 x 75 ml) and the combined organic layer washed with water (4 x 50 ml) and brine (2 x 25 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give 15 (460 mg, 76%), (m.p. = 98-101 °C, crystallised from diethyl ether). ¹H-NMR (CDCl₃): 7.75 (dd, 1H) Ar; 7.74 (d, 1H) Ar; 7.12 (d, J = 7.9 Hz, 1H) Ar; 4.99 (dt, J = 6.3 Hz, 11.5 Hz, 1H) H-1; 3.89 (s, 3H) CO₂Me; 2.93-2.78 (m, 3H) H-9, H-4_a; 2.33-2.28 (m, 1H) H-10_a; 2.09 (s, 3H) OAc; 1.89-1.37 (m, 8H) H-2, H-3, H-4, H-10. ¹³C-NMR (CDCl₃): 170.3 (s) (<u>C</u>=O)Me; 167.0 (s) (<u>C</u>=O)Me; 146.0 (s) Ar; 135.9 (s) Ar; 130.2 (d) Ar; 128.9 (d) Ar; 127.5 (s) Ar; 126.5 (d) Ar; 74.5 (d) C-1; 51.8 (q) CO₂Me; 40.2 (d) C-4_a; 37.3 (d) C-10_a; 30.4 (t) CH₂; 28.9 (t) C-9; 25.6 (t) CH₂; 23.9 (t) CH₂; 21.2 (q) OAc; 16.6 (t) C-10. Anal. calcd. for C₁₈H₂₂O₄: C, 71.5; H, 7.3. Found: C, 71.5; H, 7.3.

cis-1 α -Acetoxy-1, 2, 3, 4, 4a, 10a-hexahydro-9(10*H*)-phenanthrenone-7-methylester (16): Compound 15 (906 mg, 3.0 mmol) gave white solid 16 (475 mg, 57%, the yield is based on consumed starting material), (m.p. = 98-100 °C, crystallised from a mixture of diethyl ether and hexane) and unreacted starting material (106 mg, 12%) using similar conditions described above for 5. ¹H-NMR (CDCl₃): 8.68 (d, J = 2.0 Hz, 1H) Ar; 8.16 (dd, 1H) Ar; 7.34 (d, J = 8.0 Hz, 1H) Ar; 5.01 (dt, J = 4.3 Hz, 10.9 Hz, 1H) H-1; 3.92 (s, 3H) CO₂Me; 2.83-2.72 (m, 4H) H-10, H-4_a, H-10_a; 2.06 (s, 3H) OAc; 1.91-1.42 (m, 6H) H-2, H-3, H-4. ¹³C-NMR (CDCl₃): 196.8 (s) C-9; 170.2 (s) (<u>C</u>=O)Me; 166.1 (s) (<u>C</u>=O)Me; 151.7 (s) Ar; 134.2 (s) Ar; 131.4 (d) Ar; 129.1 (s) Ar; 128.9 (d) Ar; 128.7 (d) Ar; 72.9 (d) C-1; 52.2 (q) CO₂Me; 40.3 (d) C-4_a; 36.2 (d) C-10_a; 33.4 (t) CH₂; 28.7 (t) CH₂; 24.9 (t) CH₂; 23.4 (t) CH₂; 21.1 (q) OAc. Anal. calcd. for C₁₈H₂₀O₅: C, 68.4; H, 6.3. Found: C, 68.3; H, 6.2.

1-(2'-Methoxyphenyl)-4-(phenylthio)butanol (18): Compound 17 (3.06 g, 22.5 mmol) in THF (30 ml) was added to a solution of Grignard reagent prepared from magnesium (930 mg, 38.0 mmol) and 1-bromo-3-(phenylthio)propane (8.01 g, 34.5 mmol) in THF (20 ml) under N_2 at room temperature. The reaction mixture

was stirred for 3 h at room temperature and then quenched with saturated aqueous solution of ammonium choride (50 ml). The aqueous layer was extracted with diethyl ether (3 x 75 ml) and the combined organic layer washed with water (3 x 30 ml) and brine (2 x 20 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give **18** (4.72 g, 73%). ¹H-NMR (CDCl₃): 7.42-6.93 (m, 9H) Ar; 4.96 (dd, J = 6.2 Hz, 1H) CHOH; 3.91 (s, 3H) OMe; 3.03 (t, J = 7.6 Hz, 2H) PhSCH₂; 2.76 (brs, 1H) OH; 2.05-1.77 (m, 4H) <u>CH₂CHOH</u>, SCH₂<u>CH₂</u>.¹³C-NMR (CDCl₃): 156.4, 136.7, 132.1, 128.9, 128.8, 128.7, 128.3, 126.8, 125.6, 120.7, 110.4 (11-C) Ar-C; 70.4 (d) CHOH; 55.2 (q) OMe; 36.1 (t) CH₂; 33.5 (t) PhSCH₂; 25.6 (t) CH₂. HRMS calcd. for C₁₇H₂₀O₂S: 288.1184. Found: 288.1162.

1-(2'-Methoxyphenyl)-4-(phenylthio)butane (19): To a suspension of lithium aluminium hydride (190 mg, 5.0 mmol) in diethyl ether (10 ml) was added dropwise a solution of aluminium chloride (666 mg, 5.0 mmol) in diethyl ether (5 ml) at room temperature. After 5 min, a solution of **18** (1.44 g, 5.0 mmol) in ether (5 ml) was added dropwise during 30 min. The reaction mixture was stirred 16 h at gentle reflux, was cooled, and then 5% H₂SO₄ (10 ml) was added. The aqueous layer was extracted with diethyl ether (3 x 30 ml), and the combined organic layer was washed with saturated aqueous solution of sodium bicarbonate (3 x 30 ml) and water (3 x 30 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give **19** (485 mg, 76%, the yield is based on consumed starting material) and unreacted starting material (760 mg, 53%). ¹H-NMR (CDCl₃): 7.35-7.11 (m, 7H) Ar; 6.91-6.83 (m, 2H) Ar; 3.82 (s, 3H) OMe; 2.96 (t, J = 7.1 Hz, 2H) PhSCH₂; 2.64 (t, J = 7.1 Hz, 2H) CH₂Ar; 1.76-1.68 (m, 4H) <u>CH₂CH₂Ar</u>, SCH₂<u>CH₂.¹³C-NMR (CDCl₃): 157.4, 136.9, 130.4, 129.7, 128.9, 128.7, 126.9, 125.6, 120.3, 110.2 (10-C) Ar-C; 55.2 (q) OMe; 33.5 (t) PhSCH₂; 29.6 (t) CH₂Ar; 28.9 (t) CH₂. HRMS calcd. for C₁₇H₂₀O₂S: 272.1235. Found 272.1237.</u>

4-(2'-Methoxyphenyl)butanal (20): A solution of **19** (2.72 g, 10.0 mmol) in CCl₄ (40 ml) was added to a solution of NCS (1.60 g, 12.0 mmol) in CCl₄ (10 ml). The reaction mixture was stirred for 4 h under N₂ at the room temperature and then filtered, and the filtrate was concentrated at reduced pressure. Acetone (50 ml), water (1.5 ml), cupric oxide (3.42 g, 43.0 mmol), and cupric chloride dihydrate (3.42 g, 20.0 mmol) were added to the residue, and the mixture was refluxed for 20 min. The reaction mixture was cooled, diluted with diethyl ether (200 ml), and then filtered. The filtrate was washed with water (3 x 30 ml) and brine (3 x 20 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give **20** (1.31 g, 74%). ¹H-NMR (CDCl₃): 9.68 (t, J = 1.7 Hz, 1H) CHO; 7.20-7.06 (m, 2H) Ar; 6.88-6.79 (m, 2H) Ar; 3.76 (s, 3H) OMe; 2.63 (t, J = 7.4 Hz, 2H) CH₂Ar; 2.37 (dt, J = 7.3 Hz, 2H) <u>CH₂CHO</u>; 1.89 (m, 2H) <u>CH₂CH₂Ar.¹³C-NMR (CDCl₃): 202.3 (d) CHO; 157.1, 129.6, 127.0, 120.0, 109.9 (5-C) Ar-C; 54.7 (q) OMe; 42.9 (t) <u>CH₂CHO</u>; 29.1 (t) CH₂Ar; 21.9 (t) <u>CH₂CH₂Ar. HRMS calcd. for C₁₁H₁₄O₂: 178.0994. Found 178.0998.</u></u>

1-(2'-Methoxyphenyl)-8-(phenylthio)-4-octanol (21): To the Grignard reagent prepared from magnesium (220 mg, 9.0 mmol) and 1-bromo-3-(phenylthio)butane (2.03 g, 8.3 mmol) in THF (10 ml) under N_2 at room temperature was added a solution of 20 (1.33 g, 7.5 mmol) in THF (20 ml). The reaction mixture was stirred at room temperature for 2 h and then quenched with a saturated aqueous solution of ammonium choride (20 ml). The aqueous layer was extracted with diethyl ether (3 x 30 ml) and the combined organic layer washed with water (3 x 20 ml) and brine (2 x 15 ml), dried over MgSO4, filtered, and concentrated at reduced

pressure. The residue was purified on a silica gel column to give **21** (1.85 g, 72%). ¹H-NMR (CDCl₃): 7.33-7.10 (m, 7H) Ar; 6.88-6.82 (m, 2H) Ar; 3.81 (s, 3H) OMe; 3.57 (m, 1H) CHOH; 2.91 (t, J = 7.1 Hz, 2H) PhSCH₂; 2.67-2.55 (m, 2H) CH₂; 1.72-1.43 (m, 11H) 5 x CH₂, OH.¹³C-NMR (CDCl₃): 157.2, 129.6, 128.7, 128.6, 126.8, 125.5, 120.2, 110.0 (8-C) Ar-C; 71.3 (d) CHOH; 55.1 (q) OMe; 36.9 (t) <u>CH</u>₂CHOH; 36.6 (t) CH₂; 33.3 (t) PhSCH₂; 29.8 (t) CH₂Ar; 28.9 (t) CH₂; 25.7 (t) CH₂; 24.7 (t) CH₂. HRMS calcd. for C₂₁H₂₈O₂S: 344.1810. Found 344.1789.

1-(2'-Methoxyphenyl)-8-(phenylthio)-octan-4-one (**22**): To a suspension of celite (5 g) in dichloromethane (15 ml) was added PCC (pyridinium chlorochromate) (1.62 g, 7.5 mmol), and this was stirred under N₂ at room temperature for 30 min. A solution of **21** (1.72 g, 5.0 mmol) in dichloromethane (5 ml) was added to the PCC-Celite suspension. The reaction mixture was stirred at room temperature for 5 h and then filtered, and the filtrate was washed with diethyl ether (100 ml). The combined filtrates were concentrated at reduced pressure. The residue was passed through a short pad of silica gel column to give **22** (1.33 g, 78%). ¹H-NMR (CDCl₃): 7.36-7.07 (m, 7H) Ar; 6.89-6.81 (m, 2H) Ar; 3.78 (s, 3H) OMe; 2.89 (t, J = 7.0 Hz, 2H) PhSCH₂; 2.59 (t, J = 7.4 Hz, 2H) CH₂Ar; 2.41-2.36 (m, 4H) 2 x (C=O)CH₂; 1.90-1.82 (m, 2H) CH₂; 1.72-1.58 (m, 4H) 2 x CH₂. ¹³C-NMR (CDCl₃): 210.6 (s) C=O; 157.4, 136.5, 129.9, 129.8, 128.9, 128.8, 127.1, 125.7, 120.2, 110.2 (10-C) Ar-C; 55.1 (q) OMe; 42.2 (t) (C=O) CH₂; 41.9 (t) (C=O) CH₂; 33.3 (t) PhSCH₂; 2.94 (t) CH₂Ar; 2.86 (t) CH₂; 23.8 (t) CH₂; 22.8 (t) CH₂. HRMS calcd. for C₂₁H₂₆O₂S: 342.1654. Found 342.1645.

2-[2-(2'-Methoxyphenyl)-ethyl]-2-cyclohexen-1-one (24): Method A: A solution of 22 (1.38 g, 4.0 mmol) in CCl₄ (5 ml) was added to a solution of NCS (700 mg, 5.2 mmol) in CCl₄ (15 ml). The reaction mixture was stirred for 4 h under N₂ at room temperature and then filtered, and the filtrate was concentrated at reduced pressure. Acetone (20 ml), water (0.6 ml), cupric oxide (1.27 g, 16.0 mmol), and cupric chloride dihydrate (1.36 g, 8.0 mmol) were added to the residue, and the mixture was refluxed for 30 min. The reaction mixture was cooled, diluted with ether (25 ml), and then filtered. The filtrate was washed with water (3 x 10 ml) and brine (2 x 10 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure to give 23 (744 mg, crude weight). To a solution of the crude 23 (744 mg) in THF (15 ml) was added perchloric acid (1.0 g) and water (15 ml), and the solution was heated at reflux overnight: The reaction mixture was cooled and the phases were separated. The aqueous layer was extracted with diethyl ether (3 x 20 ml) and the combined organic layer washed with saturated aqueous solution of sodium bicarbonate (3 x 25 ml) and water (2 x 20 ml), dried over MgSO4, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give 24 (233 mg, 25%, from 22 to 24). ¹H-NMR (400 MHz, CDCl₃): 7.16 (ddd, J = 1.8 Hz, 7.4 Hz, 8.0 Hz, 1H) H-4'; 7.08 (dd, J = 1.8 Hz, 7.4 Hz, 1H) H-6'; 6.86 (ddd, J = 1.2 Hz, 7.4 Hz, 7.4 Hz, 1H) H-5'; 6.83 (dd, J = 1.2 Hz, 7.4 Hz, 7.4 Hz, 1H) H-5'; 6.83 (dd, J = 1.2 Hz, 7.4 Hz, 7.4 Hz, 1H) H-5'; 6.84 (dd, J = 1.2 Hz, 7.4 Hz, 7.4 Hz, 1H) H-5'; 6.85 (dd, J = 1.2 Hz, 7.4 Hz, 7.4 Hz, 1H) H-5'; 6.85 (dd, J = 1.2 Hz, 7.4 Hz, 7.4 Hz, 1H) H-5'; 6.86 (dd, J = 1.2 Hz, 7.4 Hz, 1H) H-5'; 6.86 (dd, J = 1.2 Hz, 7.4 Hz, 1H) H-5'; 6.86 (dd, J = 1.2 Hz, 7.4 Hz, 1H) H-5'; 6.86 (dd, J = 1.2 Hz, 7.4 Hz, 1H) H-5'; 6.86 (dd, J = 1.2 Hz, 7.4 Hz, 1H) H-5'; 6.86 (dd, J = 1.2 Hz, 7.4 Hz, 1H) H-5'; 1.2 Hz, 8.0 Hz, 1H) H-3'; 6.58 (tm, J = 4.2 Hz, 1H) H-2; 3.81 (s, 3H) OMe; 2.71 (dd, J = 7.2 Hz, 9.5 Hz, 2H) CH₂Ar; 2.46 (m, 2H), 2.42 (m, 2H), 2.28 (m, 2H), 1.95 (m, 2H). ¹³C-NMR (CDCl₃): 200.2 (s) C=O; 157.2 (s) Ar; 145.2 (d) C-2; 138.9 (s) Ar; 129.9 (s) Ar; 129.7 (d) Ar; 126.8 (d) Ar; 120.0 (d) Ar; 109.8 (d) Ar; 54.9 (q) OMe; 38.3 (t)CH₂; 29.5 (t) CH₂; 28.8 (t) CH₂Ar; 25.8 (t) CH₂; 22.9 (t) CH₂. HRMS calcd. for C15H18O2: 230.1307. Found 230.1305.

Method B: To a solution of *o*-anisic acid **25** (1.93 g, 12.7 mmol) in THF (20 ml) was added ammonia (50 ml) at -78 $^{\circ}$ C. Sodium (approximately 1g), washed sequentially with xylene and diethyl ether, was added in small

pieces. This gave a pale yellow solution, which, upon introduction of more sodium, changed to a blue color. The reaction mixture was stirred at -60 °C for 20 min. A solution of **26** (3.0 g, 14.0 mmol) in THF (5 ml) was added in reaction mixture dropwise during 15 min and the reaction mixture was stirred at -60 °C for further 1 h. The ammonia was removed by a water aspirator. The residue was diluted with water (15 ml), and concentrated HCl (10 ml), hydroquinone (40 mg) and 1, 2-dichloroethane (20 ml) were added in aqueous layer. The reaction mixture was refluxed for 30 min, cooled, extracted with 1, 2-dichloroethane (2 x 20 ml), and then the organic layer was washed with saturated aqueous solution of sodium bicarbonate (3 x 30 ml) and water (2 x 20 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give **24** (840 mg, 29%).

2,3-Oxirano-[2-(2'-methoxyphenyl)-ethyl]-2-cyclohexan-1-one (27): A solution of sodium hydroxide (360 mg, 9.0 mmol) in water (1.5 ml) was added during 10 min to a solution of **24** (1.38 g, 6.0 mmol) and hydrogen peroxide (0.84 ml, 30% solution in water) in methanol (20 ml) at 0 °C. The reaction mixture was stirred at 10 °C-15 °C for 30 min and then diluted with water (25 ml) and extracted with diethyl ether (3 x 25 ml). The combined organic layers were washed with water (3 x 20 ml) and brine (2 x 20 ml), dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give a viscous liquid **27** (1.24 g, 84%). ¹H-NMR (CDCl₃): 7.18 (dt, J = 2.0 Hz, 8.3 Hz, 1H) Ar; 7.06 (dd, J = 7.3 Hz, 1H) Ar; 6.89-6.81 (m, 2H) Ar; 3.80 (s, 3H) OMe; 3.09 (t, J = 1.8 Hz, 1H) epoxide-H; 2.75-2.69 (m, 2H) CH₂Ar; 2.58-2.47 (m, 2H); 2.14-1.74 (m, 3H); 1.68-1.54 (m, 3H). ¹³C-NMR (CDCl₃): 205.8 (s) C=O; 157.2 (s) Ar; 129.9 (d) Ar; 127.3 (d) Ar; 120.3 (d) Ar; 110.1 (d) Ar; 61.5 (s); 60.9 (d) epoxide-C; 55.1 (q) OMe; 36.9 (t) CH₂; 29.6 (t) CH₂; 25.6 (t) CH₂Ar; 23.2 (t) CH₂; 17.5 (t) CH₂. HRMS calcd. for C₁₅H₁₈O₃: 246.1256. Found 246.1268.

(4a β , 10a β)-5-Methoxy-10a-hydroxy-3, 4, 4a, 9, 10-hexahydro-1(2*H*)-phenanthrenone (29): To a solution of 27 (1.23 g, 5.0 mmol) in dichloromethane (20 ml) was added dropwise SnCl₄ (2.60 g, 10.0 mmol) at -10 °C. The reaction mixture was stirred at room temperature for 16 h and then poured onto ice (30 g) and extracted with diethyl ether (3 x 25 ml). The combined organic layer was washed with 2 % HCl (15 ml), water (3 x 15ml) and brine (2 x 15 ml) and dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give colourless crystalline 29 (1.02 g, 83%), (mp 142-145 °C, crystallised from diethyl ether). ¹H-NMR (400 MHz, CDCl₃): 7.12 (dd, J = 7.7 Hz, 8.0 Hz, 1H) H-7; 6.76 (d, J = 7.7 Hz, 1H) H-8; 6.68 (d, J = 8.0 Hz, 1H) H-6; 4.05 (s, 1H) OH; 3.79 (s, 3H) OMe; 3.15 (m, 1H); 3.15 (ddd, J = 6.6 Hz, 12.8 Hz, 17.2 Hz, 1H) H-9; 2.86 (dd, J = 6.5 Hz, 17.2 Hz, 1H) H-9; 2.63 (ddd, J = 6.2 Hz, 13.9 Hz, 20.0 Hz, 1H); 2.58 (m, 1H); 2.34 (m, 1H); 2.28 (ddd, J = 6.5 Hz, 12.8 Hz, 12.8 Hz, 1H) H-10; 2.10 (m, 1H); 1.81 (m, 1H); 1.60 (m, 1H)H-10. The position of the methoxy group at C-5 is indicated by an NOE between an aromatic proton, H-8 and proton H-9. The methoxy protons show an NOE exclusively to the aromatic proton H-6. ¹³C-NMR (CDCl₃): 213.9 (s) C=O; 157.1 (s) Ar; 135.4 (s) Ar; 126.6 (d) Ar; 126.1 (s) Ar; 121.1 (d) Ar; 107.5 (d) Ar; 55.0 (q) OMe; 44.3 (d) C-4a; 37.6 (t) CH₂; 30.9 (t) CH₂; 27.6 (t) CH₂; 25.7 (t) CH₂; 24.9 (t) CH₂. Anal. calcd. for C₁₅H₁₈O₃: C, 73.1; H, 7.3. Found: C, 73.1; H, 7.3.

5-Methoxy-1, 2, 3, 4, 9, 10-hexahydro-1-oxo-phenanthrene (30): A viscous solution of 29 (984 mg, 4.0 mmol) and PPA (polyphosphoric acid) (4 g) was heated at 90 $^{\circ}$ C for 6 h and then poured onto ice (30 g) and extracted with diethyl ether (3 x 20 ml). The combined organic phases were washed with saturated aqueous

15221

solution of sodium bicarbonate (3 x 15 ml), water (3 x 15 ml) and brine (2 x 15 ml) and dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was purified on a silica gel column to give **30** (474 mg, 52%).¹H-NMR (CDCl₃): 7.22 (t, J = 7.9 Hz, 1H) Ar; 6.82-6.79 (dd, J = 1.0 Hz, 7.9 Hz, 1H) Ar; 6.81 (d, J = 8.3 Hz, 1H) Ar; 3.84 (s, 3H) OMe; 2.97-2.92 (m, 2H); 2.63 (t, J = 7.4 Hz, 1H) CH₂; 2.50 (t, J = 6.8 Hz, 1H) CH₂; 2.45-2.38 (m, 2H) CH₂; 2.03-1.95 (m, 2H) CH₂. ¹³C-NMR (CDCl₃): 198.9 (s) C=O; 157.8 (s) Ar; 151.9 (s) Ar; 141.4 (s) Ar; 133.5 (s) Ar; 130.2 (d) Ar; 120.3 (d) Ar; 110.0 (d) Ar; 55.3 (q) OMe; 37.8 (t) CH₂; 30.4 (t) CH₂; 29.0 (t) CH₂; 23.6 (t) CH₂; 19.7 (t) CH₂. HRMS calcd. for C₁₅H₁₆O₂: 228.1150. Found 228.1152.

cis-1 α -Hydroxy-5-methoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (31) and *cis*-1 β -hydroxy-5-methoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (32): To the solution of 30 (69 mg, 0.3 mmol) in ethanol (5 ml) was added 2N NaOH (2 ml). Raney Ni (50 mg) was added and the mixture was stirred under hydrogen (1 atmosphere) at room temperature for 12 h, and thereafter filtered through a short pad of celite. The solids were washed with dichloromethane (20 ml). The combined organic layer was washed with dilute HCl (2 x 5 ml), water (3 x 5 ml) and brine (2 x 5 ml) and dried over MgSO₄, filtered, and concentrated at reduced pressure. The residue was passed through a short pad of silica gel column to give a mixture of 31 and 32 (65 mg, 93%). Compound 31 + 32 ¹H-NMR (CDCl₃): 7.08 (dt, J = 1.3 Hz, 7.9 Hz, 1H) Ar; 6.79-6.65 (m, 2H) Ar; 3.96-3.89 (m, 1H) H-1; 3.81 (s, 3H) OMe (major); 3.79 (s, 3H) OMe (minor); 3.39-2.54 (m, 3H); 2.13-1.26 (m, 9H). ¹³C-NMR (CDCl₃): 157.3, 137.5, 137.1, 130.2, 126.0, 125.9, 119.9, 107.1, 107.0, 72.7 (d) C-1 (minor); 71.9 (d) C-1 (major); 55.0 (q) OMe; 40.9, 40.6, 34.6, 29.8, 29.7, 29.6, 29.5, 28.1, 27.5, 26.7, 24.1, 21.8, 19.8, 15.7. HRMS calcd. for C₁₅H₂₀O₂: 232.1463. Found 232.1475.

cis-1 α -Acetoxy-5-methoxy-1,2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (33) and *cis*-1 β -acetoxy-5-methoxy-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrene (34): A mixture of 31 and 32 (58 mg, 0.25 mmol) gave a mixture of 33 and 34 (52 mg, 76%) using similar conditions described above for 10. Compound 33 + 34 ¹H-NMR (CDCl₃): 7.08 (t, J = 7.9 Hz, 1H) Ar; 6.71-6.64 (m, 2H) Ar; 5.05-4.96 (m, 1H) H-1; 3.92 (s, 3H) OMe (major); 3.83 (s, 3H) OMe (minor); 3.29-2.95 (m, 3H); 2.09 (s) OAc; 2.08 (s) OAc; 2.23-1.45 (m, 9H). ¹³C-NMR (CDCl₃): 171.3 (s) (<u>C</u>=O)Me; 171.2 (s) (<u>C</u>=O)Me; 157.9, 157.6, 137.9, 137.6, 130.5, 130.2, 127.0, 126.9, 122.1, 122.0, 107.8, 106.9, 75.9 (d) C-1 (minor); 75.3 (d) C-1 (major); 55.8 (q) OMe; 38.6, 38.4, 35.1, 31.2, 30.6, 28.7, 27.9, 27.5, 26.8, 26.3, 24.7, 22.2, 22.1, 21.4, 17.4.

cis-1 β -Acetoxy-5-methoxy-1, 2, 3, 4, 4a, 10a-hexahydro-9(10H)-phenanthrenone (6) and cis-1 α -acetoxy-5-methoxy-1, 2, 3, 4, 4a, 10a-hexahydro-9(10H)-phenanthrenone (35): A mixture of 33 and 34 (49 mg, 0.18 mmol) after oxidation using similar conditions described above for 5, subsequent column chromatographic purification gave 6 (21 mg, 41%) and 35 (14 mg, 27%). Compound 6 ¹H-NMR (400 MHz, CDCl₃): 7.66 (dd, J = 1.1 Hz, 7.9 Hz, 1H) H-8; 7.28 (dd, J = 7.9 Hz, 8.1 Hz, 1H) H-7; 7.05 (dd, J = 1.1 Hz, 8.1 Hz, 1H) H-6; 4.94 (≈q, J = 2.0 Hz, 1H) H-1; 3.89 (s, 3H) OMe; 3.49 (ddd, J = 4.4 Hz, 4.4 Hz, 12.5 Hz, 1H) H-4_a; 2.74 (m, 1H) H-10; 2.55 (m, 1H) H-10; 2.50 (m, 1H) H-10_a; 2.11 (s, 3H) OAc; 1.99 (m, 1H) H-4_{eq}; 1.84 (m, 1H) H-2; 1.79 (m, 1H) H-3; 1.70 (m, 1H) H-3; 1.65 (m, 1H) H-2; 1.39 (m, 1H) H-4_{ax}. The position of methoxy group was determined as for 35. The sterochemistry is indicated by the small coupling constant between H-1 and both H-2, and by a NOE between H-1 and one H-10. ¹³C-NMR (CDCl₃): 197.2 (s) C=O; 170.3 (s) (<u>C</u>=O)Me; 156.8 (s) Ar; 137.0 (s) Ar; 132.5 (s) Ar; 127.1 (d) Ar; 118.9 (d) Ar; 114.9 (d) Ar; 72.5 (d) C-1; 55.7 (q) OMe; 36.9 (t) C-10; 36.9 (d) C-10_a; 30.1 (d) C-4_a; 25.8 (t) C-4; 24.6 (t) C-2; 21.4 (q) OAc; 20.2 (t) C-3. Anal. calcd. for $C_{17}H_{20}O_4$: C, 70.8; H, 6.9. Found: C, 71.0; H, 6.7.

Compound **35** ¹H-NMR (400 MHz, CDCl₃): 7.65 (dd, J = 0.7 Hz, 8.0 Hz, 1H) H-8; 7.28 (dd, J = 8.0 Hz, 8.1 Hz, 1H) H-7; 7.05 (dd, J = 0.7 Hz, 8.1 Hz, 1H) H-6; 5.01 (ddd, J = 4.5 Hz, 4.5 Hz, 11.3 Hz, 1H) H-1; 3.87 (s, 3H) OMe; 3.29 (ddd, J = 3.7 Hz, 3.7 Hz, 12.3 Hz, 1H) H-4_a; 2.77 (m, 1H) H-10; 2.72 (m, 1H) H-10a; 2.64 (m, 1H) H-10; 2.06 (s, 3H) OAc; 1.91 (m, 1H) H-4_{eq}; 1.86 (m, 2H) H-2_{eq}, H-3_{eq}; 1.60 (m, 1H) H-2_{ax}; 1.54 (m, 1H) H-3_{ax}; 1.33 (m, 1H) H-4_{ax}. The position of methoxy group is indicated by an NOE exclusively to the aromatic proton H-6, as was observed for **29**. The sterochemistry is derived from NOEs between H-1 and both H-4a and H-10a, which all must be located on the same face of the ring system. ¹³C-NMR (CDCl₃): 198.3 (s) C=O; 170.3 (s) (<u>C</u>=O)Me; 156.4 (s) Ar; 136.3 (s) Ar; 132.5 (s) Ar; 127.2 (d) Ar; 118.9 (d) Ar; 114.9 (d) Ar; 73.6 (d) C-1; 55.7 (q) OMe; 36.6 (d) C-10a; 33.8 (d) C-4a; 33.3 (t) C-10; 25.4 (t) CH₂; 25.3 (t) CH₂; 23.7 (t) CH₂; 21.2 (q) OAc. HRMS calcd. for C₁₇H₂₀O₄: 288.1362. Found 288.1359.

X-ray crystallography of $(4a\beta, 10a\beta)$ -5-Methoxy-10a-hydroxy-3, 4, 4a, 9, 10-hexahydro-1(2H)-phenanthrenone (29): X-ray crystallography was carried out on a colourless crystal of 29, which was obtained from a diethyl ether solution and a crystal with the dimensions 0.24x0.12x0.10 mm and was used for data collection on an Enraf-Nonius CAD-4 diffractometer. The angular settings of 25 reflections, with θ in the range of 27 - 45°, were measured to calculate the cell parameters. Intensity data for reflections with $\theta < 60^{\circ}$ were collected by the $\theta/2\theta$ scan mode using graphite-monochromated Cu K α radiation. Six intensity control reflections which were measured every 2 h showed no significant intensity variations. A total of 1838 unique reflections were measured out of which 1597 reflections with I > 2.5(σ I) were considered observed. The intensities were corrected for Lorentz and polarization effects. No correction for absorption or extinction was made. *Crystal data*: C₁₅H₁₈O₃, M_r = 246.31, monoclinic, $P2_1/a$, a = 12.201(2), b = 7.261(1), c = 15.137(2) Å, $\beta = 110.39(1)^{\circ}$, V = 1257.0 Å³, Z = 4, $D_x = 1.302$ g cm⁻³, $\mu = 0.69$ mm⁻¹. The structure was solved by direct methods which provided the location of the non-hydrogen atoms. The hydrogen atoms on the methyl group and the hydrogen on the hydroxyl group were located in a difference Fourier map, and all remaining hydrogens were placed in idealized positions with d(C-H) = 1.00 Å and B(H) = $1.2B_{eq}$ (parent atom). Refinement was carried

out by the full-matrix least-squares refinement method using anisotropic temperature factors for the non-hydrogen atoms. The hydrogen atom parameters were not refined. After refinement, shift/e.s.d. < 0.001, using unit weights the *R* and R_w values were 0.062 and 0.060, respectively. The goodness of fit was 1.24 and the largest positive and negative peaks on a difference Fourier map were 0.28 and -0.29 $e^{\text{Å}-3}$. The NRCVAX¹ program system was used for all calculations.

ACKNOWLEDGEMENT

The authors thank the Swedish Board for Technical Development (NUTEK) and the Swedish Research Council for Engineering Sciences for generous financial support.

REFERENCES AND NOTES

- Kataoka, T.; Beusen, D. D.; John D. Clark; Yodo, M.; Marshall, G. R. *Biopolymers* 1992, 32, 1519-1533. The Utility of Side-Chain Cyclization in Determining the Receptor-Bound Conformation of Peptides: Cyclic Tripeptides and Angiotensin II
- Plucinska, K.; Kataoka, T.; Yodo, M.; Cody, W. L.; He, J. X.; Humblet, C.; Lu, G. H.; Lunney, E.; Major, T. C.; Panek, R. L.; Schelkun, P.; Skeean, R.; Marshall, G. R. J. Med. Chem. 1993, 36, 1902-1913. Multiple Binding Modes for the Receptor-Bound Conformations of Cyclic AII Agonists.
- 3. Pramanik, B.; Tsarbopoulos, A.; Labdon, J. E.; Czarniecki, M.; Nagabhushan, T. L.; Trotta, P. P. Biochem. Biophys. Res. Commun. 1988, 157, 836-843.
- Schmidt, B.; Lindman, S.; Tong, W.; Lindeberg, G.; Gogoll, A.; Lai, Z.; Thörnwall, M.; Synnergren, B.; Nilsson, A.; Welch, C. J.; Sohtell, M.; Westerlund, C.; Nyberg, F.; Karlén, A.; Hallberg, A. (Submitted).
- Spear, K. L.; Brown, M. S.; Reinhard, E. J.; McMahon, E. G.; Olins, G. M.; Palomo, M. A.; Patton, D. R. J. Med. Chem. 1990, 33, 1935-1940.
- 6. Conformational analysis of 1 (using the Amber* all atom force field) and 3 and 4 (using the MM2* force field) was performed using the Systematic Unbound Multiple Minimum search (SUMM) option in the batchmin program (command SPMC). 5000-step runs were performed, and those conformations within 50 kJ/mol of the global minimum was kept. Truncated Newton Conjugated Gradient (TNCG) minimisation with a maximum of 5000 iterations was used in the Monte Carlo search with the default derivate convergence criteria used (0.05 kJ/Å-mol). All torsion angles except the amide bonds, which were set in the trans configuration, were defined as rotatable.
- Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440-467. MacroModel - An Integrated Software System for Modeling Organic and Bioorganic Molecules using Molecular Mechanics.
- (a) Bachmann, W. E., Kushner, S., Stevenson A. C. J. Am. Chem. Soc. 1942, 64, 974-981. (b) Stork, G. J. Am. Chem. Soc. 1947, 69, 2936-2939. (c) Birch, A. J., Smith, H. J. Chem. Soc. 1951, 1882-1888. (d) Nagata, W., Sugasawa, T., Narisada, M., Wakabayashi, T., Hayase, Y. J. Am. Chem. Soc. 1967, 89, 1483-1499. (e) Huffman, J. W., Harris, P. G. J. Org. Chem. 1977, 42, 2357-2362. (f) Narasimhan, N. S., Bapat, C. P. J. Chem. Soc. Perkin. Trans 1. 1984, 1435-1439. (g) Fort, Y., Pete, J-P. Tetrahedron Lett. 1984, 25, 215-218.(h) Feigenbaum, A., Fort, Y., Pete, J-P., Scholler, D. J. Org. Chem. 1986, 51, 4424-4432.
- (a) Haves, N. F. Synthesis 1975, 702-702. (b) Bennett, F., Fenton, G., Knight, D. W. Tetrahedron. 1994, 50, 5147-5158.
- (a) Robinson, R., Walker, J. J. Chem. Soc. 1936, 747-752. (b) Johnson, W. S., Jones, A. R., Schneider, W. P. J. Am. Chem. Soc. 1950, 72, 2395-2401. (c) Ansell, M. F., Brown, S. S. Chem. Ind. 1956, 984-984. (d) Birch, A. J., Smith, H., Thornton, R. E. Chem. Ind. 1956, 1310-1310. (e) Birch, A. J., Smith, H., Thornton, R. E. J. Chem. Soc. 1957, 1339-1342. (f) Ansell, M. F., Brown, S. S. J. Chem. Soc. 1958, 3956-3962. (h) Ansell, M. F., Ducker, J. W. J. Chem. Soc. 1961, 206-212. (k) Balasubramanian, S. K. Tetrahedron. 1961, 12, 196-204. (l) Julia, M., Chottard, J-C., Basselier, J-J. Bull. Soc. Chim. Fr. 1966, 3037-3039. (m) Chottard, J-C., Julia, M. Bull. Soc. Chim. Fr. 1968, 3700-

3712. (n) Subba Rao, G. S. R., Sundar, N. S. J. Chem. Res.(S). 1979, 282-283. (o) Sundar, N. S.,
Subba Rao, G. S. R. J. Chem. Soc. Perkin. Trans 1. 1982, 1381-1384. (p) Thompson, H. W., Long,
D. J. J. Org. Chem. 1988, 53, 4201-4209.

- 11. Salmond, W. G., Barta, M. A., Havens, J. J. Org. Chem. 1978, 43, 2057-2059.
- (a) Cohen, A., Cook, J. W. J. Chem. Soc. 1935, 1570-1572. (b) Ansell, M. F., Kafka, T. M. Tetrahedron. 1969, 25, 6025-6026. (c) Taber, D. F., Gunn, B. P., Chiu, I-Ching. Organic Synthesis. 1983, 61, 59-61. (d) Suzuki, M., Kawagishi, T., Noyori, R. Tetrahedron Lett. 1981, 22, 1809-1812. (e) Hauser, F. M., Caringal, Y. J. Org. Chem. 1990, 55, 555-559. (f) Marson, C. M., Benzies, D. W. M., Hobson, A. D., Adams, H., Bailey, N. A. J. Chem. Soc. Chem. Comm. 1990, 1516-1518. (g) Armitage, M. A., Lathbury, D. C., Mitchell, M. B. J. Chem. Soc. Perkin. Trans 1. 1994, 1551-1552. (h) Majetich, G., Liu, S., Siesel, D. Tetrahedron Lett. 1995, 36, 4749-4752.
- Gabe, E.J.; Lee, F.L., LePage, Y. *The NRCVAX Crystal Structure System*. In *Crystallographic Computing 3, Data Collection, Structure Determination, Proteins and Databases*, edited by G.M. Sheldrick, C. Kruger and R. Goddard, Clarendon Press, Oxford, **1985**, 167-174.
- (a) Taylor, S. K.; Hockerman, G. H.; Karrick, G. L.; Lyle, S. B.; Schramm, S. B. J. Org. Chem. 1983, 48, 2449-2452. (b) Taylor, S. K.; Davisson, M. E.; Hissom, B. R.; Brown, S. L.; Pristach, H. A.; Schramm, S. B.; Harvey, S. M. J. Org. Chem. 1987, 52, 425-429.

(Received in UK 12 August 1996; revised 9 October 1996; accepted 10 October 1996)