A three-component reaction between trialkyl phosphites or triphenylphosphine, dimethyl acetylenedicarboxylate and *N*-aryl-3-hydroxynaphthalene–2-carboxamide

Mohammad Anary-Abbasinejad*, Alireza Hassanabadi and Manouchehr Mazraeh-Seffid

Department of Chemistry, Islamic Azad University, Yazd Branch, P.O. Box 89195-155, Yazd, Iran

A three-component reaction between dimethyl acetylenedicarboxylate (DMAD) and trialkyl phosphites in the presence of *N*-aryl-3-hydroxynaphthalene-2-carboxamide leads to dialkyl 2-(dimethoxyphosphoryl)-3-[2-hydroxy-3-(arylcarbamyl)naphthalen-1-yl] succinate in excellent yields. A similar reaction with triphenylphosphine, instead of phosphites, produces dimethyl 2-[2-hydroxy-3-(arylcarbamoyl)naphthalen-1-yl]maleates. In the absence of triphenylphosphine or phosphite, DMAD adds to *N*-aryl-3-hydroxynaphthalene-2-carboxamide to produce alkyl 2-(alkoxycarbonylmethyl)-4-oxo-3-aryl-3,4-dihydro-2*H*-naphtho[2,3-*e*][1,3]oxazine-2-carboxylates in good yields.

Keywords: dimethyl acetylenedicarboxylate, thialkyl phosphites; *N*-aryl-3-hydroxynaphthalene-2-carboxamide, stereoselective synthesis, triphenylphosphine

The nucleophilic addition of trialkyl phosphites to electrondeficient triple bonds leads to a highly reactive zwitterionic intermediate, which may be trapped by various electrophiles. There have been many studies on the reactions between trivalent phosphorus nucleophiles and unsaturated carbonyl compounds in the presence of a proton source such as an alcohol.¹ The reaction of trimethyl phosphite with dimethyl acetylenedicarboxylate (DMAD) in the presence of alcohols is reported to produce phosphite ylide derivatives which are stable at low temperatures, but converted to phosphonate derivatives by warming or by treatment with water.² The reaction of trimethyl phosphite with DMAD in the presence of 2-naphthol has been reported to afford stable dimethyl oxa-2,5-phosphaphenanthrene derivatives in good yields.³ In continuation of our previous work on three-component reactions between trivalent phosphorus nucleophiles, acetylenic esters and organic acidic compounds,⁴⁻⁸ we report herein the results of our study on the reaction between acetylenic esters and trialkyl phosphites or triphenylphosphine in the presence of N-aryl-3-hydroxynaphthalene-2-carboxamides.

Reaction of DMAD with trimethyl (or triethyl or tributyl) phosphite in the presence of N-phenyl (or 2-methylphenyl) (3-hydroxynaphthalene-2-carboxamide leads to dialkyl 2-(dimethoxyphosphoryl)-3-[2-hydroxy-3-(arylcarbamyl) naphthalen-1-yl] succinates in excellent yields (Scheme 1).

The ¹H NMR spectrum of 4a exhibits two sharp lines at $\delta = 3.61$ and 3.93 ppm for the protons of two methoxy groups. Two methoxy groups of phosphoryl moiety are diastereotopic and appear as two doublets at 3.37 and 3.45 ppm (${}^{3}J_{\rm HP} = 11 {\rm H_Z}$). The ${}^{1}{\rm H}$ NMR spectrum of 4a also exhibits signals for vicinal methine protons at $\delta = 4.23$ and 5.49 ppm as two sets of doublet of doublets, with ${}^{2}J_{\rm HP} = 21$ H_Z, ${}^{3}J_{\rm HP} = 6$ H_Z and ${}^{3}J_{\rm HH} = 11$ H_Z. The vicinal proton-proton coupling constants can be obtained from the Karplus equation.^{9,10} Typically, J_{gauche} varies between 1.5 and 5 H_Z and J_{anti} between 10 and 14 H_Z . Observation of ${}^{3}J_{HH} = 11 H_Z$ for vicinal protons in compound 4a indicates an anti arrangement for these centres. Since compound 4a possesses two stereogenic centres, two diastereomers with anti HCCH arrangements are possible (Scheme 2). The three-bond carbon-phosphorus coupling, ${}^{3}J_{CP}$, depends on configuration, as expected, transoid couplings being larger than cisoid ones.¹¹ The observation for ${}^{3}J_{CP}$ of 19 H_Z for the ester carbonyl carbon, is in agreement with the (2R, 3S)-4a and its mirror image (2S, 3R)-4a geometries. The NMR spectra of compounds 4b-f also show only (2R, 3R) isomer and its enantiomer.

It is reasonable to assume that compounds 4 result from the initial addition of trimethyl phosphite to DMAD and subsequent protonation of the 1:1 adduct by *N*-aryl-3hydroxynaphthalene-2-carboxamide 3 (Scheme 3). Then,

Scheme 1

^{*} Correspondent. E-mail: mohammadanary@yahoo.com

Sch	eme	2
-----	-----	---

the positively charged ion 5 is attacked by the anion 6 to form ylide 7 that then tautomerises and is hydrolysed to phosphonate 4.

The reaction of acetylenic ester **9** with triphenylphosphine (**8**) in the presence of *N*-aryl 3-hydroxynaphthalene-2-carboxamide **3** leads to dialkyl 2-[2-hydroxy-3-(arylcarbamoyl)naphthalen-1-yl]but-2-enedioate **10** in excellent yields (Scheme 4).

The ¹H NMR spectrum of **10a** exhibits three sharp lines at $\delta = 3.74$, 3.83 and 6.44 ppm for the protons of two methoxy groups and olefinic proton, respectively. Two single signals are observed at 10.17 and 12.33 ppm that disappeared after addition of a few drops of D₂O to d₆-DMSO solution of compound **10a**. These signals are related to OH and NH protons. Aromatic protons resonate between 7.21 and 8.75 ppm as multiplets. The chemical shift of 6.44 ppm of the olefinic proton in the ¹H NMR spectrum of compound **10a** is consistent with the *E*-geometry of the carbon–carbon double bond.¹³ ¹³C NMR spectra of compound **10a** shows 21 distinct signals, which is consistent with the proposed structure.

It is reasonable to assume that compound **10** results from the initial addition of triphenylphosphine **2** to acetylenic ester **9** and subsequent protonation of the 1:1 adduct by *N*-aryl-3hydroxynaphthalene–2-carboxamide **3** (Scheme 5). Then, the positively charged ion **11** is attacked by the anion **6** to form ylide **12** that loses triphenylphosphine to produce compound **10**.

When acetylenic ester 9 was treated with *N*-aryl 3hydroxynaphthalene-2-carboxamide 3 in the absence of triphenylphospline the addition product alkyl 2-(alkoxy-

Scheme 5

Scheme 6

Scheme 7

carbonylmethyl)-4-oxo-3-aryl-3,4-dihydro-2*H*-naphtho[2,3*e*][1,3]oxazine-2-carboxylate **14** was obtained in good yield (Scheme 6).

The ¹H NMR spectrum of **14a** exhibits two sharp lines at $\delta = 3.74$ and 3.83 ppm for the protons of two methoxy groups. The methylene protons resonate at 3.28 ppm as an AB-quartet ($\delta_1 = 3.24$, $\delta_2 = 3.32$, ² $J_{HH} = 16$ Hz). Aromatic protons resonate between 7.21 and 8.75 ppm as multiplets. The IR spectrum of compound **14a** does not show the stretching absorption bonds related to OH or NH bonds.

Compound 14 is probably produced by the addition of N-aryl 3-hydroxynaphthalene-2-carboxamide 3 to ecetylenic ester 9 as shown in Scheme 7.

In summary functionalised phosphonates may be prepared by a simple, one-pot, three-component reaction between DMAD, aryl 3-hydroxynaphthalene–2-carboxamides, and trialkyl phosphites. The addition reaction between acetylenic esters and *N*-aryl-3-hydroxynaphthalene-2-carboxamides catalysed by triphenylphosphine produces dialkyl 2-[2hydroxy-3-(arylcarbamoyl)naphthalen-1-yl]-but-2-enedioates in good yields. In the absence of triphenylphosphine *N*-aryl-3hydroxynaphthalene-2-carboxamides add to acetylenic esters to produce alkyl 2-(alkoxycarbonylmethyl)-4-oxo-3-aryl-3,4-dihydro-2*H*-naphtho[2,3-*e*][1,3]oxazine-2-carboxylates in excellent yields. The present method carries the advantage that the reaction is performed under neutral conditions and starting materials can be mixed without any activation or modification.

Experimental

Melting points were determined with an electrothermal 9100 apparatus. Elemental analyses were performed using a Heraeus CHN-O-Rapid analyser. Mass spectra were recorded on a FINNIGAN-MAT 8430 mass spectrometer operating at an ionisation potential of 70 eV. IR spectra were recorded on a Shimadzu IR-470 spectrometer. ¹H, ¹³C, and ³¹P NMR spectra were recorded on Bruker DRX-500

Avance spectrometer at solutions in d_6 -DMSO using TMS as internal standard or 85% H_3PO_4 as external standard. The chemicals used in this work purchased from fluka (Buchs, Switzerland) and were used without further purification.

Dimethyl 2-(dimethoxyphosphoryl)-3-[2-hydroxy-3-(phenylcarbamoyl) naphthalen-1-yl]succinate (4a)

General procedure for preparation of compounds **4a–f**

To a magnetically stirred solution of 0.53 g *N*-phenyl-3hydroxynaphthalene–2-carboxamide **3** (2 mmol) and 0.28 g DMAD (2 mmol) in 10,ml acetone was added a mixture of 0.25 g trimethyl phosphite **1** (2 mmol) in 2 ml acetone at room temperature. The reaction mixture was then allowed to stir for 24 h. The solvent was evaporated at reduced pressure. The residue was precipitated in a solution of diethyl ether–hexane. The solid was filtered and washed with diethyl ether to give the pure product.

White powder, yield 0.96 g (93%), m.p. 177–180°C, IR (KBr) (v_{max} cm⁻¹): 3245 OH and NH), 1727 (C=O, ester), 1642 (C=O, amide). Analyses: Calcd. for C₂₅H₂₆NO₉P: C, 58.25; H, 5.08; N, 2.72%. Found: C, 58.34; H, 4.93; N,2.80. MS (m/2,%): 515 (5). ¹H NMR (500 MHz, d₆-DMSO): δ 3.37 and 3.45 (6 H, 2d, ³J_{HP} = 11 Hz, 2 POCH₃), 3.61 and 3.93 (6 H, 2 s, 2 OCH₃), 4.70 (1 H, dd, ²J_{HP} = 21 Hz, ³J_{HH} = 11 Hz, CH), 5.33 (1 H, dd, ³J_{HP} = 6 Hz, ³J_{HH} = 11 Hz, CH), 7.16–8.15 (10 H, m, aromatic),). 9.09 and 12.66 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, d₆-DMSO–Me₄Si): δ 41.95 (d, ²J_{cP} = 2 Hz, P–C–C), 43.95 (d, ¹J_{cP} = 7 Hz, 2 POCH₃), 116.21, 116.77, 123.04, 123.83, 125.86, 127.40, 129.16, 130.26, 135.76 and 156.55 (naphthol moiety), 121.89, 122.81, 129.30, 137.34 (phenyl moiety), 169.00 (C=O), 170.43 (d, ²J_{CP} = 6 Hz, C=O), 173.49 (d, ³J_{CP} = 21 Hz, C=O). ³¹P NMR (202.5 MHz, d₆-DMSO): δ 19.94.

Dimethyl 2-(diethoxyphosphoryl)-3-[2-hydroxy-3-(phenylcarbamoyl) naphthalen-1-yl]succinate (4b): White powder, yield 0.97 g (89%), m.p. 185–188°C, IR (KBr) (v_{max} cm⁻¹): 3255(OH),1729 (C=O, ester),1643 (C=O, amide). Analyses: Calcd. for C₂₇H₃₀NO₉P: C, 59.67; H, 5.56; N, 2.58%. Found: C, 59.72; H, 5.48; N, 2.60. MS (*m*/z,%): 543 (11). ¹H NMR (500 MHz, d₆-DMSO): δ 0.87 and 0.93 (6 H, t, 2 CH₃), 3.71–3.76(4 H, m, 2 POCH₂), 3.50 and 3.82 (6 H, 2 s, 2 OCH₃), 4.54 (1 H, dd, ²_{HP} = 21 Hz, ³_{JHH} = 11 Hz, CH), 5.21 (1 H, dd, ³_{JHP} = 6 Hz, ³_{JHH} = 11 Hz, CH), 7.13–8.57 (10 H, m, aromatic), 9.91 and 12.43 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, d₆-DMSO-Me₄Si): δ 16.08 and 16.22 (2 CH₃), 41.93 (d, ²_{Jcp})

Dimethyl 2-[2-hydroxy-3-(phenylcarbamoyl)naphthalen-1-yl]-but-2-enedioate (10a): To a magnetically stirred solution of 0.53 g of phenyl (3-hydroxynaphthalene)–2-carboxamide (2 mmol) and 0.28 g of DMAD (2 mmol) in 10 ml acetone was added a mixture of 0.53 g triphenylphosphine (2 mmol) in 2 ml acetone at room temperature. The reaction mixture was then allowed to stir for 24 h. The solvent was evaporated at reduced pressure. The residue was precipitated in a solution of diethyl ether-hexane. The solid was filtered and washed with diethyl ether to give the pure product.

Yellow powder, yield 92%, m.p. 179–181°C, IR (KBr) (v_{max} cm⁻¹): 3305 OH), 1722 (C=O, ester), 1692 (C=O, amide). MS (m/z,%): 405 (7). ¹H NMR (500 MHz, δ , CDCl₃): 3.74 and 3.83 (6 H, 2 s, 2 OCH₃), 6.44 (1 H, s, CH), 7.21–8.75 (10 H, m, aromatic),). 10.17 and 12.33 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, δ , CDCl₃): 51.78 and 52.06 (2 OCH₃), 130.17 (C), 139.20 (C), 117.21, 118.01, 124.46, 125.44, 127.24, 129.87, 129.95, 130.46, 135.40 and 155.09 (naphthol moiety), 122.00, 123.91, 129.21, 138.09 (phenyl moiety), 165.77 (C=O), 167.12 (C=O), 169.08 (C=O). Anal. Calcd. for C₂₃H₁₉NO₆: C, 68.14; H, 4.72; N, 3.46%. Found: C, 68.5; H, 4.45; N, 3.65%.

Diethyl 2-[2-hydroxy-3-(phenylcarbamoyl)naphthalen-1-yl]-but-2-enedioate (10b): Yellow powder, yield 90%, m.p. 168–170°C, IR (KBr) (v_{max} cm⁻¹): 3390(OH), 1704 (C=O, ester), 1683 (C=O, amide). MS (m/z,%): 433 (10). ¹H NMR (500 MHz,, δ , CDCl₃): 1.24 and 1.35 (6 H, 2t, 2 CH₃), 4.18 and 4.31(4 H, 2q, 2 OCH₂), 6.42 (1 H, s, CH), 7.21–8.57 (10 H, m, aromatic), 10.17 and 12.31 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, δ , CDCl₃): 13.71 and 13.94 (2 CH₃), 61.02 and 61.26 (2 OCH₂), 130.20 (C), 139.28 (C), 117.24, 118.26, 124.42, 125.42, 127.24, 129.78, 129.93, 130.39, 135.46 and 155.09 (naphthol moiety), 121.98, 124.00, 129.20, 138.12 (phenyl moiety), 165.34(C=O), 166.64(C=O), 169.24 (C=O). Anal. Calcd. for C₂₅H₂₃NO₆: C, 69.27; H, 5.35; N, 3.23%. Found: C, 69.40; H, 5.25; N, 3.3%.

Dimethyl 2-[2-hydroxy-3-(2-methylphenylcarbamoyl)naphthalen-1yl]-but-2-enedioate (10c): Yellow powder, yield 90%, m.p. 163–165°C, IR (KBr) (v_{max} cm⁻¹): 3375 (OH), 1713 (C=O, ester), 1642 (C=O, amide). MS (m/z,%): 419 (9). ¹H NMR (500 MHz, δ , CDCl₃): 2.94 (3 H, s, CH₃), 3.51 and 3.73 (6 H, 2 s, 2 OCH₃), 6.45 (1 H, s, CH), 7.26–8.87 (9 H, m, aromatic), 10.11 and 12.41 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, δ , CDCl₃): 17.81(CH₃), 51.45 and 52.59 (2 OCH₃), 129.90 (C), 138.85 (C), 116.69, 117.26, 123.61, 123.99, 126.66, 127.26, 128.90, 130.94, 135.39 and 154.52 (naphthol moiety), 127.05, 127.17, 129.04, 131.40, 133.03 and 135.40 (phenyl moiety), 164.66 (C=O), 166.73(C=O), 169.52 (C=O). Anal. Calcd. for C₂₄H₂₁NO₆: C, 68.73; H, 5.05; N, 3.34%. Found: C, 68.9; H, 4.95; N, 3.4%.

Diethyl 2-[2-hydroxy-3-(2-methylphenylcarbamoyl)naphthalenl-yl]-but-2-enedioate (10d): Yellow powder, yield 89%, m.p. 154– 156°C, IR (KBr) (v_{max} cm⁻¹): 3320(OH), 1719(C=O, ester), 1648(C=O, amide). MS (m/z,%): 447 (6). ¹H NMR (500 MHz, δ , CDCl₃): 0.99 and 1.28 (6 H, 2t, 2 CH₃), 2.50 (3 H, s, CH₃), 4.38 and 4.50 (4 H, 2q, 2 OCH₂), 6.30 (1 H, s, CH), 7.17–8.52 (9 H, m, aromatic), 9.03 and 11.80 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, δ , CDCl₃): 14.09 and 14.46 (2 CH₃), 18.43 (CH₃), 61.13 and 62.80 (2 OCH₂), 131.04 (C), 140.42 (C), 117.02, 117.83, 122.86, 124.28, 125.25, 127.30, 129.54, 131.63, 135.60 and 154.00 (naphthol moiety), 126.37, 127.09, 129.69, 132.17, 134.84 and 138.11 (phenyl moiety), 165.13 (C=O), 166.68 (C=O), 168.66 (C=O). Anal. Calcd. for C₂₆H₂₅NO₆: C, 69.79; H, 5.63; N, 3.13%. Found: C, 69.9; H, 5.5; N,3.2%.

General procedure for preparation of compounds 14a-d

Dimethyl 2-(*methoxycarbonylmethyl*)-4-oxo-3-phenyl-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-2-carboxylate (14a): A mixture of 0.53 g of N-phenyl-3-hydroxynaphthalene)–2-carboxamide (2 mmol) and 0.28 g of DMAD (2 mmol) in 10 ml acetone was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was purified by silica gel (Merck silica gel 60, 230–400 mesh) column chromatography using hexane-ethyl acetate as eluent. The solvent was removed under reduced pressure to afford the product.

Yellow powder, yield 92%, m.p. 161–163°C, IR (KBr) (v_{max} cm⁻¹): 3458 (OH), 1744 (C=O, ester), 1673 (C=O, amide). MS (*m/z*,%): 405 (8). ¹H NMR (500 MHz,, δ , CDCl₃): 3.28 (2 H, AB quartet, ²J_{HH} = 16 H_Z, CH₂), 3.42 and 3.72 (6 H, 2 s, 2 OCH₃), 7.46–8.59 (11 H, m, aromatic). ¹³C NMR (125.8 MHz, δ , CDCl₃): 42.84 (CH₂), 52.37 and 53.92 (2 OCH₃), 91.57 (C), 112.70, 118.48, 129.24, 129.47, 129.70, 129.98, 130.02, 131.24, 136.84 and 151.31 (naphthol moiety), 125.69, 127.40, 130.85, 137.14 (phenyl moiety), 162.44 (C=O), 167.87 (C=O), 168.83 (C=O). Anal. Calcd. for C₂₃H₁₉NO₆: C, 68.14; H, 4.72; N, 3.46%. Found: C, 68.3; H, 4.70; N, 3.5%.

= 2 H_Z, P–C–C), 43.78 (d, ${}^{1}J_{cp}$ = 131 H_Z, P-C), 53.28 and 53.60 (2 OCH₃), 61.73 and 62.38 (2 d, ${}^{2}J_{cp}$ = 7 H_Z, 2 POCH₂), 116.27, 117.77, 123.33, 123.80, 125.52, 127.46, 129.43, 130.76, 136.06 and 156.09 (naphthol moiety), 121.80, 122.77, 129.54, 137.31 (phenyl moiety), 169.27(C=O), 170.16(d, ${}^{2}J_{CP}$ = 6 H_Z, C=O), 173.03 (d, ${}^{3}J_{CP}$ = 21 H_Z, C=O). ³¹P NMR (202.5 MHz, d₆-DMSO): δ 19.80.

Dimethyl 2-(dibutoxyphosphoryl)-3-[2-hydroxy-3-(phenylcarbamoyl) naphthalen-1-yl]succinate **(4c):** White powder, yield 1.12 g (91%), m.p. 190–193°C, IR (KBr) (v_{max} cm⁻¹): 3250 (OH),1724 (C=O, ester), 1641 (C=O, amide). Analyses: Calcd. for $C_{31}H_{38}NO_{9}P$: C, 62.10; H, 6.39; N, 2.34%. Found: C, 62.18; H, 6.30; N, 2.42. MS (*mt*,9%): 599 (7). ¹H NMR (500 MHz, d₆-DMSO): δ 0.83 (6 H, t, 2 CH₃), 0.93 (4 H, sextet, 2 CH₂), 1.32(4 H, quintet, 2 CH₂), 3.71–3.86 (4 H, m, 2 POCH₂), 3.60 and 3.92 (6 H, 2 s, 2 OCH₃), 4.72 (1 H, dd, ²_{JHP} = 21 Hz, ³_{JHH} = 11 H_Z, CH), 5.34 (1 H, dd, ³_{JHP} = 6 Hz, ³_{JHH} = 11 H_Z, CH), 7.12–8.56 (10 H, m, aromatic), 9.06 and 12.64 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, d₆-DMSO-Me₄Si): δ 13.94 and 14.02 (2 CH₃), 18.87 and 18.96 (2CH₂), 3.23 and 32.64 (2 d, ³_{JCP} = 7 Hz, 2 CH₂), 42.12 (d, ²_{Jcp} = 2 H_Z, P–C–C), 44.82 (d, ¹_{Jcp} = 131 H_Z, P-C), 53.11 and 53.38 (2 OCH₃), 66.53 and 66.91 (2 d, ²_{Jcp} = 7 Hz, 2 POCH₂), 16.22, 117.01, 123.27, 123.71, 125.78, 127.47, 129.04, 130.17, 135.86 and 156.61 (naphthol moiety), 121.50, 122.82, 129.29 and 137.39 (phenyl moiety), 169.01 (C=O), 170.16(d, ²_{JCP} = 6 H_Z, C=O), 172.92 (d, ³_{JCP} = 21 H_Z, C=O). ³¹P NMR (202.5 MHz, d₆-DMSO): δ 21.65.

Dimethyl 2-(dimethoxyphosphoryl)-3-[2-hydroxy-3-(2-methylphenylcarbamoyl)naphthalen-1-yl]succinate (4d): White powder, yield 1.03 g (95%), m.p. 194–197°C, IR (KBr) (v_{max} cm⁻¹): 3200(OH), 1729(C=O, ester), 1641(C=O, amide). Analyses: Calcd. for C₂₆H₂₈NO₉P: C, 58.98; H, 5.33; N, 2.65%. Found: C, 59.45; H, 5.22; N, 2.73. MS (*m*/*z*,%): 529 (6). ¹H NMR (500 MHz, d₆-DMSO): δ 2.34 (3 H, s, CH₃), 3.13 and 3.43 (6 H, 2d, ³J_{HP} = 11 Hz, 2 POCH₃), 3.60 and 3.90 (6 H, 2 s, 2 OCH₃), 4.62 (1 H, dd, ²J_{HP} = 21 Hz, ³J_{HH} = 11 Hz, CH), 5.32 (1 H, dd, ³J_{HP} = 6 Hz, ³J_{HH} = 11 Hz, CH), 7.17–8.21 (9 H, m, aromatic), 8.90 and 12.61 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, d₆-DMSO–Me₄Si): δ 18.46 (CH₃), 41.95 (d, ²J_{cp} = 2 Hz, P–C–C), 43.95 (d, ¹J_{cp} = 7 Hz, 2 POCH₃), 116.13, 117.14, 123.20, 124.08, 126.49, 127.47, 129.00, 130.36, 135.06 and 156.49 (naphthol moiety), 127.34, 127.43, 129.21, 131.10, 133.31 and 135.89 (phenyl moiety), 169.23 (C=O), 170.30 (d, ²J_{CP} = 6 Hz, C=O), 173.31 (d, ³J_{CP} = 21 H_Z, C=O). ³¹P NMR (202.5 MHz, d₆-DMSO): δ 20.71.

Dimethyl2-(diethoxyphosphoryl)-3-[2-hydroxy-3-(2-methylphenyl-carbamoyl)naphthalen-1-yl]succinate (4e): White powder, yield 1.05 g (93%), m.p. 175–178°C, IR (KBr) (v_{max} cm⁻¹): 3195 (OH), 1725 (C=O, ester),1642 (C=O, amide). Analyses: Calcd. for C₂₈H₃₂NO₉P: C, 60.32; H, 5.79; N, 2.51%. Found: C, 60.48; H, 5.70; N, 2.55. MS (*m/z*,%): 557 (9). ¹H NMR (500 MHz, d₆-DMSO): δ 0.96 and 1.11 (6 H, t, 2 CH₃), 2.36 (3 H, s, CH₃), 3.72–3.82 (4 H, m, 2POCH₂), 3.61 and 3.91 (6 H, 2 s, 2 OCH₃), 4.62 (1 H, dd, ²_{JHP}=21 Hz, ³_{JHH} = 11 H_Z, CH), 5.34 (1 H, dd, ³_{JHP} = 6 Hz, ³_{JHH} = 11 H_Z, CH), 7.15–8.72 (9 H, m, aromatic), 8.95 and 12.50 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, d₆-DMSO-Me₄Si): δ 16.34 and 16.48 (2CH₃),18.43(CH₃),42.09(d, ²_{JcP}=2H_Z,P-C-C),44.23(d, ¹_{JcP}=131H_Z, P-C), 53.14 and 53.43 (2 OCH₃), 62.66 and 62.88 (2 d, ²_{JcP} = 7 H_Z, 2 POCH₂), 116.29, 117.53, 123.69, 124.12, 126.10, 127.45, 129.70, 130.87, 135.01 and 156.40 (naphthol moiety), 127.17, 127.37, 130.13, (³_{JCP} = 6 H_Z, C=O), 173.17 (d, ³_{JCP} = 21 H_Z, C=O). ³¹P NMR (202.5 MHz, d₆-DMSO): δ 20.31.

Dimethyl2-(dibutoxyphosphoryl)-3-[2-hydroxy-3-(2-methylphenylcarbamoyl)naphthalen-1-yl]succinate (4f): White powder, yield 1.10 g (90%), m.p. 181–184°C, IR (KBr) (v_{max} cm⁻¹): 3150 (OH), 1727 (C=O, ester), 1640 (C=O, amide). Analyses: Calcd. for C₃₂H₄₀NO₉P: C, 62.63; H, 6.57; N, 2.28%. Found: C, 62.70; H, 6.47; N, 2.30. MS (*m*/*z*,%): 613 (8). ¹H NMR (500 MHz, d₆-DMSO): δ 0.82 (6 H, t, 2 CH₃), 0.91 (4 H, sextet, 2 CH₂), 1.29 (4 H, quintet, 2 CH₂), 2.35 (3 H, s, CH₃), 3.70–3.78 (4 H, m, 2 POCH₂), 3.60 and 3.89 (6 H, z, s, 2 OCH₃), 4.63 (1 H, dd, ²J_{HP} = 21 Hz, ³J_{HH} = 11 H_Z, CH), 5.34 (1 H, dd, ³J_{HP} = 6 Hz, ³J_{HH} = 11 Hz, CH), 7.13–8.76 (9 H, m, aromatic), 8.80 and 12.47 (2 H, 2 s, NH and OH). ¹³C NMR (125.8 MHz, d₆-DMSO-Me₄Si): δ 13.96 and 14.00 (2 CH₃), 18.46 (CH₃), 18.85 and 18.93 (2CH₂), 32.66 and 32.58 (2 d, ³J_{CP} = 7 Hz, 2 CH₂), 42.11 (d, ²J_{cp} = 2 H_Z, P–C–C), 44.63 (d, ¹J_{cp} = 131 H_Z, P–C), 53.09 and 53.42 (2 OCH₃), 66.32 and 66.57 (2 d, ²J_{cp} = 7 Hz, 2 POCH₂), 116.24, 117.50, 123.61, 124.08, 126.14, 127.47, 129.66, 130.83, 135.06 and 156.43 (naphthol moiety), 169.10 (C=O), 170.45(d, ²J_{CP} = 6 Hz, C=O), 173.46 (d, ³J_{CP} = 21 Hz, C=O). ³¹P NMR (202.5 MHz, d₆-DMSO): δ 21.37

712 JOURNAL OF CHEMICAL RESEARCH 2007

Diethyl 2-(methoxycarbonylmethyl)-4-oxo-3-phenyl-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-2-carboxylate (14b): Yellow powder, yield 87%, m.p. 126–128°C, IR (KBr) (v_{max} cm⁻¹): 3465 (OH), 1727 (C=O, ester),1673 (C=O, amide). MS (m/z,%): 433 (9). ¹H NMR (500 MHz, δ , CDCl₃): 1.05 and 1.11 (6 H, 2t, 2 CH₃), 3.27 (2 H, AB quartet, ${}^{2}J_{HH}$ = 16 H_z, CH₂), 3.78–4.18 (4 H, m, 2 OCH₂), 7.47–8.53 (11 H, m, aromatic). ¹³C NMR (125.8 MHz, δ , CDCl₃): 1.62 and 13.67 (2CH₃), 42.38 (CH₂), 60.93 and 62.75 (2 OCH₂), 91.78 (C), 112.56, 119.21, 129.05, 129.23, 129.78, 129.92, 130.12, 131.43, 137.13 and 151.65(naphthol moiety), 125.71, 127.36, 131.64, 137.42 (phenyl moiety), 161.86 (C=O), 166.97 (C=O), 168.05 (C=O). Anal. Calcd. for C₂₅H₂₃NO₆: C, 69.27; H, 5.35; N, 3.23%. Found: C, 69.4; H, 5.24; N, 3.3%.

Dimethyl2-(methoxycarbonylmethyl)-4-oxo-3-o-tolyl-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-2-carboxylate (14c): Yellow powder, yield 93%, m.p. 158–160°C, IR (KBr) (v_{max} cm⁻¹): 3470 (OH), 1730 (C=O, ester), 1675(C=O, amide). MS (m/z,%): 419 (9). ¹H NMR (500 MHz, δ , CDCl₃): 2.84 (3 H, s, CH₃), 3.30 (2 H, AB quartet, ²J_{HH} = 16 H_Z, CH₂), 3.36 and 3.71 (6 H, 2 s, 2 OCH₃), 7.46–8.55 (10 H, m, aromatic). ¹³C NMR (125.8 MHz, δ , CDCl₃): 17.90 (CH₃), 42.40 (CH₂), 60.95 and 62.77 (2 OCH₃), 91.80 (C), 112.74, 119.21, 125.72, 126.81, 129.06, 129.95, 131.12, 131.66, 136.41 and 138.21 (phenyl moiety), 161.61 (C=O), 168.06 (C=O), 169.04 (C=O). Anal. Calcd. for C₂₄H₂₁NO₆: C, 68.73; H, 5.05; N, 3.34%. Found: C, 68.8; H, 4.9; N, 3.4%.

Diethyl 2-(methoxycarbonylmethyl)-4-oxo-3-o-tolyl-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-2-carboxylate (14d): Yellow powder, yield 90%, m.p. 125–127°C, IR (KBr) (v_{max} cm⁻¹): 3430 (OH), 1745 (C=O, ester), 1681 (C=O, amide). MS (m/z,%): 447 (6). ¹H NMR (500 MHz,, δ , CDCl₃): 1.14 and 1.16 (6 H, 2t, 2 CH₃), 2.34 (3 H, s, CH₃), 3.10 (2 H, AB quartet, ²J_{HH} = 16 H_z, CH₂), 3.76–4.25 (4 H, m, 2 OCH₂), 7.29–8.62 (10 H, m, aromatic). ¹³C NMR (125.8 MHz, δ , CDCl₃): 14.26 and 14.30 (2CH₃), 18.69 (CH₃), 42.30 (CH₂), 61.60 and 63.21 (2 OCH₂), 91.81 (C), 112.76, 118.90, 125.65, 127.41, 129.58, 129.94, 130.02, 131.29, 137.16 and 151.88(naphthol moiety), 127.21, 129.22, 130.83, 131.41, 136.16 and 138.04 (phenyl moiety), 161.92 (C=O), 167.35 (C=O), 168.50 (C=O). *Anal.* Calcd. for C₂₆H₂₅NO₆: C, 69.79; H, 5.63; N, 3.13%. Found: C, 69.9; H, 5.6; N, 3.2%.

Received 7 November 2007; accepted 17 December 2007 Paper 07/4899 doi: 10.3184/030823407X272138

References

- 1 D.E.C. Corbridge, *Phosphorus an Outline of the Chemistry Biochemistry and Uses*, 5th edn, Elsevier, Amsterdam, 1995.
- 2 A.W. Johnson, W.C. Kaska, A.O. Starzewski and D.A. Dixon, *Ylides and Imines of Phosphorus*, John Wiley & Sons, 1993, pp.386-387.
- I. Yavari and M. Anary-Abbasinejad, *Org. Biomo.l Chem.*, 2003, **3**, 560.
- 4 M. Anary-Abbasinejad and N. Ascarrian, J Chem Res., 2007, 11.
- 5 M. Anary-Abbasinejad, N. Rostami, A. Parhami and A. Hassanabadi, J. Chem. Res., 2007, 257.
- 6 M. Anary-Abbasinejad, A. Hassanabadi and H. Anaraki-Ardakani, J. Chem. Res., 2007, 455.
- 7 M. Anary-Abbasinejad and A. Hassanabadi, J. Chem. Res., 2007, 475.
- 8 M. Anary-Abbasinejad, H. Anaraki-Ardakani, A. Dehghan, A. Hassanabadi and M.R. Seyedmir, J. Chem. Res., 2007, in press.
- 9 M. Karplus, J. Am. Chem. Soc., 1963, 88, 2870.
- 10 C.A.G. Haasnot, F.A.A.M. De Leeuww and C. Altona, *Tetrahedron*, 1980, 36, 2783.
- E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, 3rd edn, VCH New York, 1990, p. 250.