

Subscriber access provided by IDAHO STATE UNIV

GaCl3 Catalyzed C-H Cyanation of Indoles with N-Cyanosuccinimide

Xue Wang, Mohamed Makha, Shu-Wei Chen, Huaiji Zheng, and Yuehui Li J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00416 • Publication Date (Web): 24 Apr 2019 Downloaded from http://pubs.acs.org on April 24, 2019

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

3 4

5 6

7

8

14

15

16

17

GaCl₃ Catalyzed C-H Cyanation of Indoles with *N*-Cyanosuccinimide

Xue Wang^[a,b], Mohamed Makha^[b], Shu-Wei Chen^{*[a]}, Huaiji Zheng^{*[a]}, and Yuehui Li^{*[b]}

[a] College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100 P.R. China
[b] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P.R. China

ABSTRACT: An efficient GaCl₃-catalyzed direct cyanation of indoles and pyrroles using bench-stable electrophilic cyanating agent *N*-cyanosuccinimide was achieved and afforded 3-cyanoindoles and 2-cyanopyrroles in good yields and excellent regioselectivities. Notably, this protocol exhibited high reactivity for unprotected indoles and was applicable to a broad range of indole and pyrrole substrates.

INTRODUCTION

Nitrile is a fundamental functional group used in organic synthesis and ubiquitous in many organic compounds.¹ Aryl and heteroaryl nitriles account for the majority of nitrile bearing compounds with cyano group features in many therapeutic agents and natural products.² Indole framework is amenable to chemical transformation and forms integral parts of numerous useful chemical products.3 Cyano indoles constitute an important class of aromatic compounds and serves as key intermediate to a variety of functional groups such as aldehydes, amines, amidines, tetrazoles, amides or other carboxy derivatives.⁴ This prevalence prompted the development of many useful cyanation methods.⁵ The synthesis and selective functionalization of indoles have been the focus of active research over the years. Classical methods of introducing cyano group into an aromatic ring rely on pre-functionalized arenes as precursors. For example, Sandmeyer reaction uses diazonium salts whereas Rosenmundvon Braun reaction and transition metal-catalyzed cross-couplings employ aryl halides.^{6,7} Schmidt reaction uses aldehydes while dehydration reaction make use of primary carboxyamides and aldoximes,8,9 amongst other methods.¹⁰ More recently, oxidative cyanation through C-H bond activation has been demonstrated using various "CN" sources such as metal cyanides, CH₃NO₂, NCTS, TMSCN, TsCN, BrCN, Me₃SiN₃, and acetone cyanohydrin.¹¹⁻¹⁸ Moreover, transition metal catalyzed selective and controllable C-H cyanation of indoles has been extensively studied in recent years.19

To date, several efficient electrophilic cyanation methods have been developed using various cyano sources. While transition metal activation in direct C-H cyanation reaction is well established, Lewis acids mediation is not extensively investigated. In essence, Lewis acids were used in the classical Friedel-Crafts-Karrer type cyanation and relied primarily on stoichiometric amounts.²⁰ More recently, improved method based on catalytic amounts for cayanobromination has been reported.¹⁶ In addition, electrophilic cyanation of fivemembered heteroaromatic compounds in the presence of Lewis acids is also reported,^{19d} mostly for *N*-protected indoles and pyroles (*i.e. N*-tosylindoles).^{16b} However, direct cyanation of '*N*-H' free unprotected indoles remains relatively unexplored.²¹ RESULTS AND DISCUSSION In continuation of our interest on the synthesis of nitrile compounds,²² herein we report the direct GaCl₃-catalyzed cyanation of indoles through C-H bond cyanation using *N*-cyanosuccinimide as the cyanating agent. We began our investigation of the cyanation of unprotected 1*H*-indole (free '*N*-H') with *N*-cyanosuccinimide²³ using Lewis acids as catalysts (Table 1).

Table 1. Screening of Lewis Acid Catalysts^a

Table 1. Screening of Lewis Actu Catalysis				
	$ \begin{array}{c} H \\ N \\ H \\ 2a \\ \end{array} + \\ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $	CN <u>cat. Lewis ac</u> CH ₃ CN, 80 °C	id , 4 h 3a	
Entry	Catalysts (mol%)	Solvent (mL)	Temperture (°C)	Yield (%) ^b
1	BF ₃ .OEt ₂ (20)	CH ₃ CN (0.5)	80	NR ^c
2	SnCl ₂ (20)	CH ₃ CN (0.5)	80	16
3	AlCl ₃ (20)	CH ₃ CN (0.5)	80	NR
4	GaCl ₃ (20)	CH ₃ CN (0.5)	80	80
5	InCl ₃ (20)	CH ₃ CN (0.5)	80	NR
6	NiCl ₂ (20)	CH ₃ CN (0.5)	80	NR
7	Cu(OTf)2 (20)	CH ₃ CN (0.5)	80	NR
8	ZnCl ₂ (20)	CH ₃ CN (0.5)	80	NR
9	CoCl ₂ (20)	CH ₃ CN (0.5)	80	NR
10	SmCl ₃ (20)	CH ₃ CN (0.5)	80	NR
11	GaCl ₃ (20)	Dioxane (0.5)	80	43
12	GaCl ₃ (20)	Toluene (0.5)	80	48
13	GaCl ₃ (20)	DMF (0.5)	80	15
14	GaCl ₃ (20)	DMSO (0.5)	80	12
15	GaCl ₃ (20)	DMA (0.5)	80	27
16	GaCl ₃ (20)	DCE (0.5)	80	25
17	GaCl ₃ (20)	CH ₃ CN (0.5)	120	98
18	GaCl ₃ (15)	CH ₃ CN (0.5)	120	97
19	GaCl ₃ (10)	CH ₃ CN (0.5)	120	60
20	-	CH ₃ CN (0.5)	120	NR
• n :		C. 11 1		

^aReaction conditions are as follows unless otherwise stated: **2a** (32.8 mg, 0.25 mmol, 1 equiv), *N*-cyanosuccinimide **1** (37.2 mg, 0.3 mmol, 1.2 equiv). ^bYield determined based on GC analysis using *n*-Hexadecane as internal standard. ^cNR denotes no desired reaction.

ACS Paragon Plus Environment

After screening the activity of numerous Lewis acids, to our delight, we observed that a catalytic amount of GaCl₃ uniquely facilitated the desired cyanation of indole at the C3 position (Table 1, entry 4). Other conventionally used Lewis acids such as BF₃.OEt₂, SnCl₂, AlCl₃, InCl₃, NiCl₂, Cu(OTf)₂, ZnCl₂, CoCl₂, SmCl₃ (Table1, entry 1-3, entry 5-10) proved to be ineffective catalysts for this reaction. The desired cyanated products were formed only in 16% with SnCl₂ and only GaCl₃ provided 3-cyano-indole in 80%. Notably, cyanation does not take place when no catalyst is added to the reaction (Table 1. entry 20). GaCl₃ remarkably achieved mediation of the regioselective insertion of the cyano group into C3 position of indole substrates. Noteworthy, GaCl₃ catalyst showed excellent activity towards the desired product with 1H-indoles (free 'N-H'). In order to rationalize the activity of Lewis acids, through their corresponding cation's intrinsic properties (charge/ionic size) ratio, we performed in-situ ¹H NMR experiments using 1-H-indole with various Lewis acids (in CD₃CN). We found that the activity of the Lewis acid is in part associated with the cation's charge/size ratio of the metal. The observed downfield shift of indole N-H peak is pronounced with gallium chloride ($\delta_{N,H}$: 10.3 and 10.7 ppm) compared with other Lewis acids, suggesting strong interactions between GaCl₃ and 1H-indole possibly through coordination (free indole $\delta_{N-H} = 9.04$ ppm, see Figures S-10 in supporting information).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

60

Furthermore, we screened a range of solvents under various conditions and at different GaCl₃ molar ratios. For instance, solvents such as toluene, DMF, DMSO, N,N-dimethyl acetamide (DMA), and dioxane were examined and resulted in moderate to lower yields (Table 1, entry 11-15). Commonly used solvent DCE for this type reaction also resulted in lower vield (Table 1, entry 16). From all tested conventional solvents. we found that acetonitrile performed best for this reaction. The reaction temperature was also investigated and raising the temperature to 120 °C improved the yield significantly (98%). Lowering catalyst loading from 20 mol% to 15 mol% gave similar reaction yield (97%), while further reduction of catalyst loading to 10 mol% lowered significantly the yield to 60% (Table 1, entry 18-19). Finally, the optimized reaction conditions for this Ga-catalyzed cyanation of 2-methyl-1Hindole with N-cyanosuccinimide requires 15 mol% of GaCl₃ at 120 °C in CH₃CN to afford the desired cyanated product in 97% vield.

With the optimized reaction conditions in hands, we proceeded by examining GaCl₃-catalyzed cyanation reaction for a range of indole substrates (Scheme 1 & 2). It is noteworthy to mention that in most cases, the indole substrates were unprotected, in contrast to the commonly used method for C3 position electrophilic substitution (Scheme 1). Furthermore, reactions with C2-substituted 1*H*-indoles afforded the corresponding cyanated products in excellent yields. Methyl, phenyl and chlorophenyl substituents at the C2 position afforded the desired products in excellent yields (**3a**, **3g** and **3h**; 95%, 90% and 94%). In addition, indoles bearing electron-donating groups on the fused phenyl ring were transformed smoothly to the corresponding cyanated products with high yields (**3b**, **3c**; 91%, 97%). Indoles bearing halogen electron-withdrawing groups were also transformed easily to the

corresponding cyanated products with high yields (**3d-f**, 81%-96%). More satisfyingly, we found that in the absence of substituent at the C2 position, the cyanation was also achieved regio-selectively to afford 3-cyanoindole products (**3i-3q**, 33%-76%, Scheme 1). Specifically, functional groups such as nitrile and ester substituted indole were transformed to the corresponding cyanated products with moderate yields (**3m**, **3n**; 50%, 67%). The reaction with 1*H*-indole-4-carbonitrile substrate provided cyanation product in lower yield (**3o**; 33%). 1*H*-indole bearing bromo substitution at either C4 or C5 position showed little effect, and afforded the corresponding cyanated products in good yields (**3p**, **3q**; 64%, 63%).

Scheme 1. GaCl₃-Catalyzed Cyanation of N-H Free Indoles^a

^aReaction conditions are as follows unless otherwise noted: **2** (0.25 mmol, 1 equiv), *N*-cyanosuccinimide **1** (37.2 mg, 0.3 mmol, 1.2 equiv), GaCl₃ (6.6 mg, 0.0375 mmol, 15 mol%) in CH₃CN (0.5 mL) at 120 °C for 4 h. ^bReaction carried out at 80 °C for 4 h. ^c30 mol% GaCl₃ was used, reaction carried out at 80 °C for 12 h.

Following the results on the direct electrophilic cyanation for '*N*-H' free unprotected indoles, we then extended substrate scope to *N*-substituted indoles, pyrroles and arenes (Scheme 2). Gratifyingly, 1-methyl-1*H*-indole afforded the corresponding cyanated product in good yield (**3r**, 82%). 1,2-dimethyl-1*H*-indole and 1,2,5-trimethyl-1*H*-indole having methyl substituted C2 position also afforded **3s** and **3t** in excellent yields, 96% and 93%, respectively. Similarly, substituted indole with electron rich phenyl substituent at the C2 position gave the desired

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22 23

24 25

26 27

28

29

30

31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

60

cyanated product in good yield (**3v**, 95%). 1-ethlyl-2-methyl-1*H*-indole also provided the corresponding product in good yield (**3u**, 84%). Substituted indoles with electron-withdrawing nitrile substituent or bromide substituent at the C5 position were well tolerated (**3w**, 56% and **3x**, 82%). Furthermore we examined other substrates such as pyrroles and 1,3,5trimethoxybenzene and regio-selective cyanation was observed in moderate reactivity (**3aa**, **3ab** and **3ac**; 72%, 67% and 67%). Pyrrole substrates were further investigated and afforded consistent regioselectivity and yield for **3ad**, **3ae**, **3af** and **3ag** in 68%, 63%, 56% and 54% yield, respectively. Gram-scale reactions of **2a** and **2s** were performed giving the corresponding prouducts in good to excellent yields, respectively (for details, see the Experimental section).

Scheme 2. GaCl₃-Catalyzed Cyanation of *N*-Substituted Indoles and other Substrates^a

^aReaction conditions are as follows unless otherwise noted: **2** (0.25 mmol, 1 equiv), *N*-cyanosuccinimide **1** (37.2 mg, 0.3 mmol, 1.2 equiv), GaCl₃ (6.6 mg, 0.0375mmol, 15 mol%) in CH₃CN (0.5 mL) at 120 °C for 4 h. ^bReaction was carried out at 120 °C for 8 h. ^cReaction was carried out at 80 °C for 8 h. ^d30 mol% GaCl₃ was used, reaction was carried out at 80 °C for 12 h.

In order to probe possible actions mode involved and to account for plausible reaction pathway for this reaction, we performed in-situ ¹³C NMR experiments under similar reaction conditions. We used 2-methyl-1*H*-indole as model substrate

and examined its interaction with GaCl₃ and Ncvanosuccinimide in CD₃CN. As expected, the ¹³C NMR spectra of the indole substrate with GaCl₃ showed significant consistent with indole C3 and change GaCl₃ interaction/coordination releasing HCl (13C NMR spectrum, see Figure S-3). The addition of GaCl₃ to N-cyanosuccinimide showed almost no change (13C NMR spectrum, see Figure S-6). While after the addition of indole to this mixutre, clear changes of the carbonyl and CN signals of N-cyanosuccinimide were observed (13C NMR spectrum, see Figure S-9). Hence, we propose that the presence of "free" HCl is important and it can react with the N-cyanosuccinimide reagent to produce the transient cyanogen chloride as the active CN source for indole substrates (Figure 1).24

Figure 1. Proposed Mechanism for GaCl₃ Catalyzed Cyanation.

CONCLUSIONS

In conclusion, we have developed GaCl₃-catalyzed procedure for efficient cyanation of indoles and pyrroles using a convenient and less toxic electrophilic cyanating agent *N*-cyanosuccinimide. We demonstrated that GaCl₃ is a superior catalyst compared with other Lewis acids. The procedure is broad in scope with respect to indole and pyrrole substrates. The method avoids the use of transition metal catalysts and is effective towards unexplored direct cyanation of 1*H*-indoles. It also provides a practical means for accessing 3-cyanoindoles and 2-cyanopyrroles. This methodology of GaCl₃-catalyzed aromatic C-H activation is currently pursued and applied to other heteroaromatic substrates.

EXPERIMENTAL SECTION

General Methods. ¹H NMR spectra were recorded with a BRUKER NMR (400 MHz). Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ and ($\delta = 2.5$ ppm) in DMSO-*d*₆ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ ($\delta = 77.23$ ppm) and DMSO-*d*₆ ($\delta = 39.52$ ppm). Coupling constants are given in hertz (Hz). Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (HSGF254). Visualization of the developed plates was performed under UV light (254 nm). 300-400 mesh silica gel (Qingdao, China) was used for flash column chromatography. High-resolution mass spectrometry (HRMS) was performed on an Agilent Q-TOF 6530 mass spectrometer at Suzhou Research Institute of LICP.

N-Cyanosuccinimide $(1)^{25}$, 1,2,5-Trimethyl-1*H*-indole $(2t)^{26}$, 1-(4-Methoxybenzyl)-1*H*-pyrrole $(2ad)^{27}$, 1-(2,4-Dimethoxybenzyl)-1*H*-pyrrole $(2ae)^{27}$ were prepared according to reported procedures. Other commercially obtained reagents were used without further purification.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

60

General Experimental Procedure. In a glovebox, the catalyst GaCl₃ (6.6 mg, 15 mol%), substrates **2** (0.25 mmol, 1 equiv), *N*-cyanosuccinimide **1** (37.2 mg, 0.3 mmol, 1.2 equiv) and a stirring bar were added into a 10 mL oven-dried Schlenk tube under nitrogen atmosphere. Anhydrous CH₃CN (0.5 mL) were added. The Schlenk tube was sealed and brought out of the glovebox. The reaction was allowed to stir at 120 °C (Multi-well block heating system) for 4 h. The reaction solution was concentrated under vacuo and purified by column chromatography to afford the cyanated product **3**.

Experimental Procedure for cyanated product 3a (10 mmol scale). In a glovebox, the catalyst GaCl₃ (264 mg, 1.5 mmol), **2a** (1.312 g, 10 mmol, 1 equiv), *N*-cyanosuccinimide **1** (1.488g, 12 mmol, 1.2 equiv) and a stirring bar were added into a 75 mL sealing tube under nitrogen atmosphere. Anhydrous CH₃CN (10 mL) were added. The sealing tube was sealed and brought out of the glovebox. The reaction was allowed to stir at 120 °C (oil bath) for 4 h. The reaction solution was concentrated under vacuo, the crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford product **3a** (1.418 g, 91%).

Experimental Procedure for cyanated product 3s (10 mmol scale). In a glovebox, the catalyst GaCl₃ (264 mg, 1.5 mmol), 2s (1.452 g, 10 mmol, 1 equiv), *N*-cyanosuccinimide 1 (1.488g, 12 mmol, 1.2 equiv) and a stirring bar were added into a 75 mL sealing tube under nitrogen atmosphere. Anhydrous CH₃CN (10 mL) were added. The sealing tube was sealed and brought out of the glovebox. The reaction was allowed to stir at 120 °C (oil bath) for 4 h. The reaction solution was concentrated under vacuo, the crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford product 3s (1.358 g, 80%).

2-Methyl-1H-indole-3-carbonitrile (3a).¹³ Following the general procedure, a mixture of 2-methyl-1H-indole (32.8 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3a** (37.1 mg, 95%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.08 (br, 1H), 7.51 (dd, *J* = 6.9, 1.3 Hz, 1H), 7.43 (dd, *J* = 6.9, 1.3 Hz, 1H), 7.25-7.11 (m, 2H), 2.54 (s, 3H); ¹³C{¹H}NMR (100 MHz, DMSO-*d*₆) δ 146.0, 134.9, 127.3, 122.7, 121.4, 117.8, 116.6, 112.1, 82.9, 12.6.

5-Methoxy-2-methyl-1H-indole-3-carbonitrile (3b).¹³ Following the general procedure, a mixture of 5-methoxy-2methyl-1H-indole (42.5 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3b** (42.5 mg, 91%) as a light yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.95 (br, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.02 (d, J = 2.2 Hz, 1H), 6.85 (dd, J = 8.8, 2.2 Hz, 1H), 3.83 (s, 3H), 2.55 (s, 3H).; ${}^{13}C{}^{1}H{}NMR$ (100 MHz, DMSO- d_6) δ 155.1, 145.8, 129.6, 128.0, 116.7, 112.8, 112.4, 99.7, 82.7, 55.4, 12.6.

2,5-Dimethyl-1H-indole-3-carbonitrile (3c).²⁸ Following the general procedure, a mixture of 2,5-dimethyl-1H-indole (37.5 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3c** (41.2 mg, 97%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.96 (br, 1H), 7.34 (d, *J* = 10.4 Hz, 2H), 7.04 (d, *J* = 8.2 Hz, 1H), 2.56-2.52 (m, 3H), 2.41 (d, *J* = 8.9 Hz, 3H); ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆) δ 145.6, 133.1, 130.3, 127.5, 124.1, 117.4, 116.6, 111.7, 82.4, 21.0, 12.5.

5-Fluoro-2-methyl-1H-indole-3-carbonitrile (3d).²⁸ Following the general procedure, a mixture of 5-fluoro-2methyl-1H-indole (39.3 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3d** (39.8 mg, 91%) as a light yellow solid. ¹H NMR (400 MHz, DMSO- d_6) & 12.19 (br, 1H), 7.50-7.41 (m, 1H), 7.29 (d, J = 8.6 Hz, 1H), 7.06 (t, J = 8.6 Hz, 1H), 2.55 (s, 3H); ¹³C{¹H}NMR (100 MHz, DMSO- d_6) & 158.2 (d, J = 234 Hz), 147.6, 131.4, 127.8, 116.0, 113.3 (d, J = 9.8 Hz), 110.7 (d, J =26 Hz), 103.1 (d, J = 25 Hz), 83.3, 12.6.

5-Chloro-2-methyl-1H-indole-3-carbonitrile (3e).²⁸ Following the general procedure, a mixture of 5-chloro-2methyl-1H-indole (42.3 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3e** (45.7 mg, 96%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.27 (br, 1H), 7.51 (s, 1H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.20 (d, *J* = 8.5 Hz, 1H), 2.55 (s, 3H); ¹³C {¹H}NMR (100 MHz, DMSO-*d*₆) δ 147.5, 133.3, 128.3, 126.1, 122.7, 117.0, 115.7, 113.5, 82.8, 12.6.

5-Bromo-2-methyl-1H-indole-3-carbonitrile (**3f**). Following the general procedure, a mixture of 5-bromo-2-methyl-1Hindole (53.6 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3f** (47 mg, 81%) as a light yellow solid. ¹H NMR (400 MHz, DMSO d_6) δ 12.26 (br, 1H), 7.63 (s, 1H), 7.38 (d, J = 8.6 Hz, 1H), 7.31 (dd, J = 8.6, 1.6 Hz, 1H), 2.53 (s, 3H).; ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 147.4, 133.6, 128.9, 125.3, 119.9, 115.7, 114.0, 82.7, 12.6. HRMS-ESI (m/z) [M+H⁺] calcd for C₁₀H₈BrN₂⁺ 234.9865, found 234.9875.

2-Phenyl-1H-indole-3-carbonitrile (3g).²⁹ Following the general procedure, a mixture of 2-phenyl-1H-indole (49 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

60

°C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3g** (49 mg, 90%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 12.60 (br, 1H), 7.99 (d, J = 7.2 Hz, 2H), 7.66-7.60 (m, 3H), 7.58-7.51 (m, 2H), 7.33-7.24 (m, 2H); ¹³C{¹H}NMR (100 MHz, DMSO- d_6) δ 144.7, 135.6, 129.9, 129.4, 129.3, 128.3, 127.0, 123.9, 122.0, 118.4, 117.0, 112.7, 81.4.

2-(4-Chlorophenyl)-1H-indole-3-carbonitrile $(3h).^{29}$ Following the general procedure, a mixture of 2-(4chlorophenyl)-1H-indole (58 0.25 mmol), mg, N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3h** (59.3 mg, 94%) as a light yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 12.62 (br, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.63 (dd, J = 11.1, 8.2 Hz, 3H), 7.54 (d, J = 8.4 Hz, 1H), 7.32-7.20 (m, 2H); ¹³C{¹H}NMR (100 MHz, DMSO-d₆) δ 143.2, 135.6, 134.6, 129.3, 128.5, 128.3, 128.2, 124.0, 122.1, 118.4, 116.8, 112.7, 81.8.

5-Iodo-1H-indole-3-carbonitrile (**3i**). Following the general procedure, a mixture of 5-iodo-1H-indole (62 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3i** (40.2 mg, 60%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₀) & 12.35 (br, 1H), 8.25 (s, 1H), 7.95 (s, 1H), 7.55 (d, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 7.2 Hz, 1H); ¹³C{¹H}NMR (100 MHz, DMSO-*d*₆) & 135.4, 134.4, 131.6, 129.1, 126.7, 115.7, 115.3, 85.9, 83.6. HRMS-ESI (m/z) [M+H⁺] calcd for C₉H₆IN₂⁺ 268.9570, found 268.9568.

7-Methyl-1H-indole-3-carbonitrile (**3***j*). Following the general procedure, a mixture of 7-methyl-1H-indole (33.5 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3***j* (29.7 mg, 76%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.23 (br, 1H), 8.28 (d, J = 2.6 Hz, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.10 (d, J = 7.0 Hz, 1H), 2.54 (s, 3H); $^{13}C{^{1}H}$ NMR (100 MHz, DMSO-*d*₆) δ 134.8, 134.1, 126.6, 123.8, 122.4, 121.8, 116.5, 115.9, 84.6, 16.6. HRMS-ESI (m/z) [M+H⁺] calcd for C₁₀H₉N₂⁺ 157.0760, found 157.0761.

5-Methoxy-1H-indole-3-carbonitrile (3k).¹⁹ⁱ Following the general procedure, a mixture of 5-methoxy-1H-indole (36.8 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (3:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3k** (25.8 mg, 60%) as a light yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 12.06 (br, 1H), 8.16 (s, 1H), 7.44 (d, J = 8.9 Hz, 1H), 7.08 (s, 1H), 6.90 (d, J = 8.9 Hz, 1H), 3.81 (s, 3H); ¹³C{¹H}NMR (100 MHz, DMSO- d_6) δ 155.3, 134.3, 130.0, 127.6, 116.6, 113.8, 99.7, 84.0, 55.4.

IH-indole-3-carbonitrile (*31*).^{19f} Following the general procedure, a mixture of 1*H*-indole (29.6 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **31** (18.4 mg, 52%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.20 (br, 1H), 8.24 (s, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.59-7.54 (m, 1H), 7.31-7.20 (m, 2H); ¹³C{¹H}NMR (100 MHz, DMSO-*d*₆) δ 135.2, 134.5, 126.7, 123.3, 121.7, 118.4, 116.4, 112.9, 84.2.

Methyl 3-cyano-1H-indole-5-carboxylate (3m). Following the general procedure, a mixture of methyl 1*H*-indole-5carboxylate (43.8 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (13.2 mg, 0.075 mmol) and 0.50 mL CH₃CN was heated to 80 °C for 12 h. The crude product was purified by flash column chromatography (3:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3m** (25.2 mg, 50%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.56 (br, 1H), 8.40 (s, 1H), 8.23 (s, 1H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 1H), 3.87 (s, 3H). ¹³C{¹H}NMR (100 MHz, DMSO-*d*₆) δ 166.5, 137.8, 136.6, 126.4, 124.2, 123.2, 120.4, 115.7, 113.2, 85.7, 52.1. HRMS-ESI (m/z) [M+H⁺] calcd for C₁₁H₉N₂O₂⁺ 201.0659, found 201.0669.

1H-indole-3,5-dicarbonitrile (*3n*).^{19f} Following the general procedure, a mixture of 1*H*-indole-5-carbonitrile (35.6 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (13.2 mg, 0.075 mmol) and 0.50 mL CH₃CN was heated to 80 °C for 12 h. The crude product was purified by flash column chromatography (1:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3n** (28 mg, 67%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.72 (br, 1H), 8.49 (s, 1H), 8.21 (s, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 7.9 Hz, 1H). ¹³C {¹H}NMR (100 MHz, DMSO-*d*₆) δ 137.5, 137.1, 126.4, 126.3, 124.2, 119.7, 115.3, 114.4, 104.2, 85.5. HRMS-ESI (m/z) [M+Na⁺] calcd for C₁₀H₅N₃Na⁺ 190.0376, found 190.0368.

1H-indole-3,4-dicarbonitrile (*3o*). Following the general procedure, a mixture of 1*H*-indole-4-carbonitrile (35.6 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (13.2 mg, 0.075 mmol) and 0.50 mL CH₃CN was heated to 80 °C for 12 h. The crude product was purified by flash column chromatography (1:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3o** (13.6 mg, 33%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.81 (br, 1H), 8.55 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 1H), 7.75 (d, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H). ¹³C {¹H}NMR (100 MHz, DMSO-*d*₆) δ 138.1, 135.4, 128.1, 125.2, 123.5, 118.6, 116.5, 114.7, 101.1, 83.9. HRMS-ESI (m/z) [M+Na⁺] calcd for C₁₀H₅N₃Na⁺ 190.0376, found 190.0370.

4-Bromo-1H-indole-3-carbonitrile (*3p*). Following the general procedure, a mixture of 4-bromo-1*H*-indole (49 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (13.2 mg, 0.075 mmol) and 0.50 mL CH₃CN was heated to 80 °C for 12 h. The crude product was purified by flash column chromatography (3:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3p** (35.2 mg, 64%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.53 (br, 1H), 8.40 (d, *J* = 3.0 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.40 (d,

J = 7.6 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H); ¹³C{¹H}NMR (100 MHz, DMSO- d_6) δ 137.0, 136.2, 125.3, 124.9, 124.6, 116.2, 112.7, 112.6, 85.0. HRMS-ESI (m/z) [M+H⁺] calcd for C₉H₆BrN₂⁺ 220.9709, found 220.9707.

7-Bromo-1H-indole-3-carbonitrile (3q). Following the general procedure, a mixture of 7-bromo-1H-indole (49 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (13.2 mg, 0.075 mmol) and 0.50 mL CH₃CN was heated to 80 °C for 12 h. The crude product was purified by flash column chromatography (3:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3q** (35 mg, 63%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.52 (br, 1H), 8.35 (s, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H); ¹³C {¹H}NMR (100 MHz, DMSO-*d*₆) δ 135.8, 133.8, 128.3, 126.1, 123.2, 118.1, 115.8, 105.4, 85.9. HRMS-ESI (m/z) [M+H⁺] calcd for C₉H₆BrN₂⁺ 220.9709, found 220.9708.

1-Methyl-1H-indole-3-carbonitrile (*3r*).¹³ Following the general procedure, a mixture of 1-methyl-1*H*-indole (33 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 8 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3r** (32 mg, 82%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 1H), 7.54 (s, 1H), 7.35 (dd, *J* = 21.1, 14.1 Hz, 3H), 3.84 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 136.2, 135.7, 127.9, 124.0, 122.3, 120.0, 116.1, 110.5, 85.6, 33.8.

*1,2-Dimethyl-1H-indole-3-carbonitrile (3s).*¹³ Following the general procedure, a mixture of 1,2-dimethyl-1*H*-indole (36.3 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3s** (41 mg, 96%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.0 Hz, 1H), 7.24 (dd, *J* = 13.8, 5.6 Hz, 3H), 3.64 (s, 3H), 2.51 (s, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 145.9, 136.4, 127.1, 123.1, 122.0, 119.0, 116.8, 109.9, 84.7, 30.3, 12.1.

1,2,5-Trimethyl-1H-indole-3-carbonitrile (3t). Following the general procedure, a mixture of 1,2,5-trimethyl-1*H*-indole (40 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3t** (43 mg, 93%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.14 (d, *J* = 8.3 Hz, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 3.61 (s, 3H), 2.48 (s, 3H), 2.44 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 145.6, 134.8, 131.6, 127.3, 124.6, 118.7, 116.9, 109.6, 84.1, 30.3, 21.5, 12.0; HRMS-ESI (m/z) [M+H⁺] calcd for C₁₂H₁₃N₂⁺ 185.1073, found 185.1075.

l-Ethyl-2-methyl-1H-indole-3-carbonitrile(3u).11bFollowing the general procedure, a mixture of 1-ethyl-2-
methyl-1H-indole (40 mg, 0.25 mmol), N-cyanosuccinimide
(37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL
CH₃CN was heated to 120 °C for 4 h. The crude product was
purified by flash column chromatography (20:1 petroleum)

ether:ethyl acetate, visualized with UV) to afford cyanated product **3u** (38.7 mg, 84%) as a white liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.3 Hz, 1H), 7.37-7.31 (m, 1H), 7.30-7.20 (m, 2H), 4.15 (q, J = 7.3 Hz, 2H), 2.58 (s, 3H), 1.38 (t, J = 7.3 Hz, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 145.1, 135.4, 127.4, 123.1, 122.0, 119.3, 116.9, 110.0, 85.1, 38.9, 15.1, 11.9.

1-Methyl-2-phenyl-1H-indole-3-carbonitrile (3v).¹³ Following the general procedure, a mixture of 1-methyl-2phenyl-1*H*-indole (52.9 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (20:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3v** (55 mg, 95%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 1H), 7.58-7.46 (m, 5H), 7.43-7.26 (m, 3H), 3.72 (s, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 148.2, 136.9, 123.0, 129.9, 129.1, 128.8, 127.6, 124.0, 122.5, 119.5, 116.8, 110.7, 85.5, 31.8.

1-Methyl-1H-indole-3,5-dicarbonitrile (*3w*).^{19h} Following the general procedure, a mixture of 1-methyl-1*H*-indole-5-carbonitrile (39.1 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (13.2 mg, 0.075 mmol) and 0.50 mL CH₃CN was heated to 80 °C for 12 h. The crude product was purified by flash column chromatography (3:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3w** (25.2 mg, 56%) as a yellow solid. ¹H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.74 (s, 1H), 7.55 (dd, *J* = 27.1, 8.6 Hz, 2H), 3.95 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 138.0, 137.6, 127.5, 126.9, 125.2, 119.5, 114.5, 111.8, 105.8, 87.0, 34.2. HRMS-ESI (m/z) [M+Na⁺] calcd for C₁₁H₇N₃Na⁺ 204.0532, found 204.0524.

5-Bromo-1-methyl-1H-indole-3-carbonitrile (3x).^{19a} Following the general procedure, a mixture of 5-bromo-1methyl-1H-indole (53.6 mg, 0.25 mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3x** (48 mg, 82%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.51 (s, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 7.23 (d, *J* = 8.7 Hz, 1H), 3.83 (s, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 136.5, 134.8, 129.3, 127.1, 122.4, 115.8, 115.3, 112.0, 85.2, 34.0.

1-Benzyl-1H-pyrrole-2-carbonitrile (*3aa*).¹³ Following the general procedure, a mixture of 1-benzyl-1*H*-pyrrole (40 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (20:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3aa** (32.7 mg, 72%) as a light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 3H), 7.18 (d, *J* = 7.5 Hz, 2H), 6.82 (m, 2H), 6.21-6.17 (m, 1H), 5.19 (s, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 136.1, 129.2, 128.5, 127.6, 126.8, 120.5, 114.0, 110.1, 104.3, 52.6.

1-Phenyl-1H-pyrrole-2-carbonitrile (*3ab*).¹³ Following the general procedure, a mixture of 1-phenyl-1*H*-pyrrole (36.5 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57 58 (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (20:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3ab** (28.1 mg, 67%) as a light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.39 (m, 5H), 7.08 (dd, J = 2.9, 1.6 Hz, 1H), 6.99 (dd, J = 3.9, 1.6 Hz, 1H), 6.35 (dd, J = 3.9, 2.9 Hz, 1H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 138.4, 129.9, 128.5, 127.1, 124.3, 122.4, 114.0, 110.8, 104.2.

2,4,6-Trimethoxybenzonitrile (**3ac**).¹³ Following the general procedure, a mixture of 1,3,5-trimethoxybenene (42.5 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3ac** (32.4 mg, 67%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.07 (s, 2H), 3.87 (d, J = 7.9 Hz, 9H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 165.5, 163.9, 114.8, 90.5, 84.1, 56.3, 55.9.

1-(4-Methoxybenzyl)-1H-pyrrole-2-carbonitrile (3ad). Following the general procedure, a mixture of 1-(4methoxybenzyl)-1*H*-pyrrole (46.8 0.25 mg, mmol), N-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product 3ad (36.2 mg, 68%) as a light vellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.7 Hz, 2H), 6.90-6.85 (m, 2H), 6.82 (dd, J = 2.6, 1.7 Hz, 1H), 6.80 (dd, J = 4.0, 1.7 Hz, 1H), 6.17 (dd, J = 4.0, 2.6 Hz, 1H), 5.11 (s, 2H), 3.78 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 159.6, 129.1, 128.0, 126.5, 120.3, 114.4, 114.0, 109.8, 103.9, 55.3, 52.0. HRMS-ESI (m/z) [M+Na⁺] calcd for C₁₃H₁₂N₂NaO⁺ 235.0842, found 235.0843.

I-(2,4-Dimethoxybenzyl)-1*H*-pyrrole-2-carbonitrile (3ae). Following the general procedure, a mixture of 1-(2,4dimethoxybenzyl)-1*H*-pyrrole (54.3 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3ae** (38.4 mg, 63%) as a light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.9 Hz, 1H), 6.86 (m, 1H), 6.76 (m, 1H), 6.47-6.42 (m, 2H), 6.11 (m, 1H), 5.12 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.4, 158.5, 130.7, 127.0, 119.9, 117.2, 114.4, 109.3, 104.4, 104.0, 98.8, 55.6, 55.5, 47.4. HRMS-ESI (m/z) [M+Na⁺] calcd for C₁₄H₁₄N₂NaO₂⁺ 265.0947, found 265.0949.

1-(4-Iodophenyl)-1H-pyrrole-2-carbonitrile (3af). Following the general procedure, a mixture of 1-(4-iodophenyl)-1*H*-pyrrole (67.3 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3af** (41.2 mg, 56%) as a light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 1.83 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.09-6.96 (m, 2H), 6.40-6.33 (m, 1H); $^{13}C\{^{1}H\}NMR$ (100 MHz, CDCl₃) δ 139.0, 138.0, 126.9, 126.0, 122.8, 113.8, 111.3, 104.2, 93.6. HRMS-ESI (m/z) [M+Na⁺] calcd for $C_{11}H_7IN_2Na^+$ 316.9546, found 316.9548.

1-[4-(Trifluoromethyl)Phenyl]-1H-pyrrole-2-carbonitrile (**3ag**). Following the general procedure, a mixture of 1-[4-(trifluoromethyl)phenyl]-1*H*-pyrrole (52.8 mg, 0.25 mmol), *N*-cyanosuccinimide (37 mg, 0.30 mmol), GaCl₃ (6.6 mg, 0.0375 mmol) and 0.50 mL CH₃CN was heated to 120 °C for 4 h. The crude product was purified by flash column chromatography (5:1 petroleum ether:ethyl acetate, visualized with UV) to afford cyanated product **3ag** (30.5 mg, 54%) as a light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.4 Hz, 2H), 7.61 (d, *J* = 7.4 Hz, 2H), 7.13 (s, 1H), 7.06 (s, 1H), 6.41 (s, 1H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 141.1, 130.7, 130.4, 127.3 (d, *J* = 3.4 Hz), 127.0, 125.1, 124.5, 123.4, 113.7, 111.7, 104.2. HRMS-ESI (m/z) [M+Na⁺] calcd for C₁₂H₇F₃N₂Na⁺ 259.0454, found 259.0456.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge via ACS Publications website at http://pubs.acs.org. Included in-situ NMR studies and recorded ¹H, ¹³C NMR spectra for all compounds.

AUTHOR INFORMATION

Corresponding Author

- * Email: <u>hjzheng@nwsuaf.edu.cn</u>
- * Email: chenshuwei2001@hotmail.com

* Email: <u>yhli@licp.cas.cn</u>

Notes The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors acknowledge financial support of this work by the NSFC (21633013, 21101109, 21602228) and NSF of Jiangsu Province (BK20160394).

REFERENCES

- 1. (a) The Chemisty of the Cyano Group; Rappoport, Z., Ed.; Interscience: London, **1970**. (b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations; VCH: New York, **1989**.
- (a) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed.; Georg Thieme: Stuttgart, 2001. (b) Murdoch, D.; Keam, S. J. Escitalopram A Review of its Use in the Management of Major Depressive Disorder. *Drugs.* 2005, 65, 2379-2404.
- (a) Miller, J. S.; Manson, J. L. Designer Magnets Containing Cyanides and Nitriles. *Acc. Chem. Res.* 2001, *34*, 563-570. (b) Smith, M. B; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, John Wiley & Sons, Inc., Hodoken, New Jersey, 2007; (c) Ellis, G. P.; Romney-Alexander, T. M. Cyanation of aromatic halides. *Chem. Rev.* 1987, *87*, 779-794.
- (a) Crich, D.; Banerjee, A. Chemistry of the Hexahydropyrrolo[2,3-b]indoles: Configuration, Conformation, Reactivity, and Applications in Synthesis. Acc.

Chem. Res. **2007**, *40*, 151-161. (b) Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles. *Chem. Rev.* **2006**, *106*, 2875-2911. (c) Cacchi, S.; Fabrizi, G. Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions. *Chem. Rev.* **2005**, *105*, 2873-2920. (d) A. J. Fatiadi, in Preparation and synthetic applications of cyano compounds, ed. S. Patai and Z. Rappaport, Wiley, New York, **1983**.

- For reviews, see: (a) Ellis, G. P.; Romney-Alexander, T. M. Cyanation of aromatic halides. *Chem. Rev.* 1987, *87*, 779-794.
 (b) Anbarasan, P.; Schareina, T.; Beller, M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. *Chem. Soc. Rev.* 2011, *40*, 5049-5067.
- (a) Sandmeyer, T. Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. *Ber. Dtsch. Chem. Ges.* 1884, 17, 1633-1635. (b) Hodgson, H. H. The Sandmeyer Reaction. *Chem. Rev.* 1947, 40, 251-277.
- (a) Rosenmund, K. W.; Struck, E. Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe. *Ber. Dtsch. Chem. Ges.* 1919, *52*, 1749-1756.
 (b) Vekicky, J.; Soicke, A.; Steiner, R.; Schmalz, H. G. Palladium-Catalyzed Cyanomethylation of Aryl Halides through Domino Suzuki Coupling–Isoxazole Fragmentation. *J. Am. Chem. Soc.* 2011, *133*, 6948-6951. (c) Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Copper-Mediated Cyanation of Aryl Halide with the Combined Cyanide Source. *Org. Lett.* 2011, *13*, 5004-5007.
- (a) Schmidt, K. F. Z. Angew. Chem. 1923, 36, 511. (b) Rokade, B. V.; Prabhu, K. R. Chemoselective Schmidt Reaction Mediated by Triflic Acid: Selective Synthesis of Nitriles from Aldehydes. J. Org. Chem. 2012, 77, 5364-5370.
- (a) Ishihara, K.; Furuya, Y.; Yamamoto, H. Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. *Angew. Chem. Int. Ed.* 2002, *41*, 2983-2986. (b) Yang, S. H.; Chang, S. Highly Efficient and Catalytic Conversion of Aldoximes to Nitriles. *Org. Lett.* 2001, *3*, 4209-4211.
- (a) Zhou, W.; Zhang, L.; Jiao, N. Direct Transformation of Methyl Arenes to Aryl Nitriles at Room Temperature. Angew. Chem. Int. Ed. 2009, 48, 7094-7097. (b) Qin, C.; Jiao, N. Iron-Facilitated Direct Oxidative C-H Transformation of Allylarenes or Alkenes to Alkenyl Nitriles. J. Am. Chem. Soc. 2010, 132, 15893-15895. (c) Chen, J.; Sun, Y.; Liu, B.; Liu, D.; Cheng, J. The palladium-catalyzed desulfitative cyanation of arenesulfonyl chlorides and sodium sulfonates. Chem. Commun. 2012, 48, 449-451. (d) Yan, G.; Zhang, Y.; Wang, J. Recent Advances in the Synthesis of Aryl Nitrile Compounds. Adv. Synth. Cat. 2017, 359, 4068-4105.
- (a) Do, H. Q.; Daugulis, O. Copper-Catalyzed Cyanation of Heterocycle Carbon–Hydrogen Bonds. Org. Lett. 2010, 12, 2517-2519. (b) Yan, G.; Kuang, C.; Zhang, Y.; Wang, J. Palladium-Catalyzed Direct Cyanation of Indoles with K₄[Fe(CN)₆]. Org. Lett. 2010, 12, 1052-1055.
- 12. Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. Cu(II)-Catalyzed Functionalizations of Aryl C–H Bonds Using O₂ as an Oxidant. *J. Am. Chem. Soc.* **2006**, *128*, 6790-6791.
- 13. Yang, Y.; Zhang, Y.; Wang, J. Lewis Acid Catalyzed Direct Cyanation of Indoles and Pyrroles with *N*-Cyano-*N*-phenylptoluenesulfonamide (NCTS). *Org. Lett.* **2011**, *13*, 5608-5611.

- Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Goldcomplexes catalyzed oxidative α-cyanation of tertiary amines. *Chem. Commun.* 2011, 47, 2354-2356.
- Kamijo, S.; Hoshikawa, T.; Inoue, M. Photochemically Induced Radical Transformation of C(sp3)–H Bonds to C(sp3)–CN Bonds. Org. Lett. 2011, 13, 5928-5931.
- 16. (a) Okamoto, K.; Watanabe, M.; Murai, M.; Hatano, R.; Ohe, K. Practical synthesis of aromatic nitriles via gallium-catalysed electrophilic cyanation of aromatic C–H bonds. *Chem. Commun.* 2012, 48, 3127-3129. (b) Murai, M.; Hatano, R.; Kitabata, S; Ohe, K. Gallium (III)-catalysed bromocyanation of alkynes: regio- and stereoselective synthesis of β-bromo-α,β-unsaturated nitriles. *Chem. Commun.* 2011, 47, 2375-2377.
- 17. Qin, C.; Jiao, N. Iron-Facilitated Direct Oxidative C–H Transformation of Allylarenes or Alkenes to Alkenyl Nitriles. *J. Am. Chem. Soc.* **2010**, *132*, 15893-15895.
- Verma, S.; Jain, S. L.; Sain, B. Acetone Cyanohydrin: A Convenient Alternative of Toxic Sodium Cyanide/Acetic Acid for Oxidative Cyanation of Tertiary Amines. *Catal. Lett.* 2011, 141, 882-885.
- 19. For reviews, see: (a) Ren, X.; Chen, J.; Chen, F.; Cheng, J. The palladium-catalyzed cyanation of indole C-H bonds with the combination of NH₄HCO₃ and DMSO as a safe cyanide source. Chem. Commun. 2011, 47, 6725-6727. (b) Ding, S.; Jiao, N. Direct Transformation of N,N-Dimethylformamide to -CN: Pd-Catalyzed Cyanation of Heteroarenes via C-H Functionalization. J. Am. Chem. Soc. 2011, 133, 12374-12377. (c) Kim, J.; Kim, H.; Chang, S. Copper-Mediated Selective Cyanation of Indoles and 2-Phenylpyridines with Ammonium Iodide and DMF. Org. Lett. 2012, 14, 3924-3927. (d) Xu, S.; Huang, X.; Hong, X.; Xu, B. Palladium-Assisted Regioselective C-H Cyanation of Heteroarenes Using Isonitrile as Cyanide Source. Org. Lett. 2012, 14, 4614-4617. (e) Yuen, O. Y.; Choy, P. Y.; Chow, W. K.; Wong, W. K.; Kwong, F. Y. Synthesis of 3-Cyanoindole Derivatives Mediated by Copper(I) Iodide Using Benzyl Cyanide. J. Org. Chem. 2013, 78, 3374-3378. (f) Liu, B.; Wang, J.; Zhang, B.; Sun, Y.; Wang, L.; Chen, J.; Cheng, J. Copper-mediated C3cyanation of indoles by the combination of amine and ammonium. Chem. Commun. 2014, 50, 2315-2317. (g) Nagase, Y.; Sugiyama, T.; Nomiyama, S.; Yonekura, K.; Tsuchimoto, T. Zinc-Catalyzed Direct Cyanation of Indoles and Pyrroles: Nitromethane as a Source of a Cyano Group. Adv. Synth. Catal. 2014, 356, 347-352. (h) Zhao, M.; Zhang, W.; Shen, Z. Cu-Catalyzed Cyanation of Indoles with Acetonitrile as a Cyano Source. J. Org. Chem. 2015, 80, 8868-8873. (i) Zhang, L.; Lu, P.; Wang, Y. Copper-mediated cyanation of indoles and electron-rich arenes using DMF as a single surrogate. Org. Biomol. Chem. 2015, 13, 8322-8329. (j) Mishra, N. K.; Jeong, T.; Sharma, S.; Shin, Y.; Han, S.; Park, J.; Oh, J. S.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Rhodium(III)-Catalyzed Selective C-H Cyanation of Indolines and Indoles with an Easily Accessible Cyano Source. Adv. Synth. Catal. 2015, 357, 1293-1298. (k) Chaitanya, M.; Anbarasan, P. Rhodium Catalyzed C2-Selective Cyanation of Indoles and Pyrroles. J. Org. Chem. 2015, 80, 3695-3700. (1) Li, J.; Ackermann, L. Cobalt-Catalyzed C-H Cyanation of Arenes and Heteroarenes. Angew. Chem. Int. Ed. 2015, 54, 3635-3638.
- 20. (a) Friedel, C.; Crafts, J. M. *Bull. Soc. Chim.* **1878**, 29, 2; (b) Karrer, P.; Zeller, E. Einwirkung von Bromcyan auf

aromatische Kohlenwasserstoffe unter der Wirkung von Aluminiumchlorid. *Chim. Acta.* **1919**, *2*, 482-486. (c) Gore, P. H.; Kamounah, F. S.; Miri, A. Y. Friedel-crafts cyanation of some reactive aromatic hydrocarbons. *Tetrahedron*. **1979**, *35*, 2927-2929.

- 21. (a) Tamura, Y.; Kawasaki, T.; Adachi, M.; Tanio, M.; Kita, Y. Thiocyanation and Cyanation Using a New Combined Reagent of Triphenylphosphine and Thiocyanogen. *Tetrahedron Lett.* 1977, *18*, 4417-4420. (b) Subba Reddy, B. V.; Begum, Z.; Jayasudhan Reddy, Y.; Yadav, J. S. Pd(OAc)₂-catalyzed C-H activation of indoles: a facile synthesis of 3-cyanoindoles. *Tetrahedron Lett.* 2010, *51*, 3334-3336. (c) Peng, J.; Zhao, J.; Hu, Z.; Liang, D.; Huang, J.; Zhu, Q. Palladium-Catalyzed C(sp²)-H Cyanation Using Tertiary Amine Derived Isocyanide as a Cyano Source. *Org. Lett.* 2012, *14*, 4966-4969. (d) Zhang, L.; Wen, Q.; Jin, J.; Wang, C.; Lu, P.; Wang, Y. Cyanation of indoles with benzyl cyanide as the cyanide anion surrogate. *Tetrahedron.* 2013, *69*, 4236-4240.
- (a) Wang, H.; Dong, Y.; Zheng, C.; Sandoval, C. A.; Wang, X.; Makha, M.; Li, Y. Catalytic Cyanation Using CO₂ and NH₃. *Chem.* 2018, *4*, 2883-2893. (b) Wang, Y.; Fu, L.; Qi, H; Chen, S.-W.; Li, Y. Bioinspired Synthesis of Nitriles from Primary Amides via Zinc/Anhydride Catalysis. *Asian J. Org. Chem.* 2018, *7*, 367-370.
 - Pawar, A. B.; Chang, S. Cobalt-Catalyzed C-H Cyanation of (Hetero)arenes and 6-Arylpurines with *N*-Cyanosuccinimide as a New Cyanating Agent. *Org. Lett.* 2015, *17*, 660-663.
 - 24. Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Development of a Novel, Highly Efficient Halide-Catalyzed Sulfenylation of Indoles. *Org. Lett.* **2006**, 8, 565-568
 - 25. Stephens, R. W.; Domeier, L. A. N-Cyanoimides via the Cyanation of Imides. *Synth. Commun.* **1991**, *21*, 2025-2032.
 - Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X.-S. Visible Light-Mediated C-H Difluoromethylation of Electron-Rich Heteroarenes. *Org. Lett.* 2014, 16, 2958-2961.
 - 27. Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. Friedel-Crafts Acylation of Pyrroles and Indoles using 1,5-Diazabicyclo[4.3.0]non-5-ene (DBN) as a Nucleophilic Catalyst. *Org. Lett.* **2010**, *12*, 5740-5743.
 - 28. Thanetchaiyakup, A.; Rattanarat, H.; Chuanopparat, N.; Ngernmeesric, P. One-pot synthesis of substituted indolo[1,2a]quinolines under transition-metal-free conditions. *Tetrahedron Lett.* **2018**, *59*, 1014-1018.
 - Li, B.; Zhang, B.; Zhang, X.; Fan, X. Synthesis of 3-Cyano-1*H*-indoles and Their 2 '-Deoxyribonucleoside Derivatives through One-Pot Cascade Reactions. *J. Org. Chem.* 2016, *81*, 9530-9538.