## AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by Binghamton University | Libraries

### Article

## New Aromatic Compounds from the Fruiting Body of Sparassis crispa (Wulf.) and Their Inhibitory Activities on PCSK9 mRNA Expression

Sunghee Bang, Hee-Sung Chae, Changyeol Lee, Hyun Gyu Choi, JiYoung Ryu, Wei Li, Hanna Lee, Gil-Saeng Jeong, Young-Won Chin, and Sang Hee Shim

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.7b02657 • Publication Date (Web): 09 Jul 2017

Downloaded from http://pubs.acs.org on July 9, 2017

#### **Just Accepted**

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers



Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

# AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by Binghamton University | Libraries

and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.



Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

## New Aromatic Compounds from the Fruiting Body of *Sparassis crispa* (Wulf.) and Their Inhibitory Activities on PCSK9 mRNA Expression

Sunghee Bang,<sup>†</sup> Hee-Sung Chae,<sup>‡</sup> Changyeol Lee,<sup>†</sup> Hyun Gyu Choi,<sup>†</sup> JiYoung Ryu,<sup>†</sup> Wei Li,<sup>§</sup> Hanna Lee,<sup>#</sup> Gil-Saeng Jeong,<sup>⊥</sup> Young-Won Chin,<sup>‡</sup> and Sang Hee Shim<sup>†,\*</sup>



| 1  | New Aromatic Compounds from the Fruiting Body of Sparassis crispa (Wulf.)                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | and Their Inhibitory Activities on PCSK9 mRNA Expression                                                                                                      |
| 3  |                                                                                                                                                               |
| 4  | Sunghee Bang, <sup>†</sup> Hee-Sung Chae, <sup>‡</sup> Changyeol Lee, <sup>†</sup> Hyun Gyu Choi, <sup>†</sup> Jiyoung Ryu, <sup>†</sup> Wei Li, <sup>§</sup> |
| 5  | Hanna Lee, <sup>#</sup> Gil-Saeng Jeong, <sup><math>\perp</math></sup> Young-Won Chin, <sup>‡</sup> and Sang Hee Shim <sup>†,*</sup>                          |
| 6  | <sup>†</sup> College of Pharmacy, Duksung Women's University, Samyang-ro, Dobong-gu, Seoul 01369,                                                             |
| 7  | Republic of Korea; E-mails: scbsh4331@hanmail.net (SH. Bang), jaber29@naver.com (CY.                                                                          |
| 8  | Lee), chg@hanmail.net (H.G. Choi), ryuji@hanmail.net (J. Ryu).                                                                                                |
| 9  | <sup>‡</sup> College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk                                                              |
| 10 | University-Seoul, 32, Dongguk-lo, Goyang-si, Gyeonggi-do 10326, Republic of Korea; E-                                                                         |
| 11 | mails: chaeheesung83@gmail.com (HS. Chae), f2744@dongguk.edu (YW. Chin).                                                                                      |
| 12 | <sup>§</sup> KM Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea;                                                           |
| 13 | E-mail: liwei1986@kiom.re.kr (W. Li).                                                                                                                         |
| 14 | <sup>#</sup> National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea;                                                           |
| 15 | E-mail: iiihanna@nikom.or.kr (HN. Lee).                                                                                                                       |
| 16 | <sup>⊥</sup> College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; E-mail:                                                                |
| 17 | gsjeong@kmu.ac.kr (GS. Jeong).                                                                                                                                |
| 18 |                                                                                                                                                               |
| 19 | * Corresponding author (Tel: +82 2 901 8774; Fax: +82 2 901 8386: E-mail:                                                                                     |
| 20 | sangheeshim@duksung.ac.kr)                                                                                                                                    |

## 21 ABSTRACT

| 22 | Successive chromatography of EtOAc-soluble extracts of the fruiting body of Sparassis                                |
|----|----------------------------------------------------------------------------------------------------------------------|
| 23 | crispa (Wulf.) resulted in isolation of four new aromatic compounds, sparoside A, 1, and                             |
| 24 | sparalides A-C, 3-5, two new naturally-occurring compounds, 2 and 6, in addition to eight                            |
| 25 | known compounds, 7-14. The chemical structures were determined by interpretation of NMR                              |
| 26 | and MS spectroscopic data. Extract, solvents-soluble fractions of the extract, and all the pure                      |
| 27 | compounds isolated from the fractions were subjected to mRNA expression assay for                                    |
| 28 | proprotein convertase subtilisin/kexin type 9 (PCSK9). Among them, sparoside A, 1,                                   |
| 29 | hanabiratakelide A, 8, adenosine, 11, and 5α,6α-epoxy-(22 <i>E</i> ,24 <i>R</i> )-ergosta-8(14),22-diene-            |
| 30 | $3\beta$ , $7\beta$ -diol, 14, exhibited potent inhibitory activities on PCSK9 mRNA expression with IC <sub>50</sub> |
| 31 | values of 20.07, 7.18, 18.46 and 8.23 $\mu$ M, respectively (berberine, positive control, IC <sub>50</sub> =         |
| 32 | 8.04 $\mu$ M), suggesting that compounds 1, 8, 11, and 14 are suitable for use in supplements to                     |
| 33 | the statins for hyperlipidemia treatments.                                                                           |
| 34 |                                                                                                                      |
| 35 | KEYWORDS: Sparassis crispa, proprotein convertase subtilisin/kexin type 9 (PCSK9),                                   |

36 phthalide, sparoside A.

### 38 INTRODUCTION

| 39 | Sparassis crispa (Wulf.) is an edible/medicinal mushroom belonging to the family of                                                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------|
| 40 | Sparassidaceae and is called "cauliflower mushroom" due to its appearance. The mushroom,                                              |
| 41 | which mostly grows on the stubs of coniferous trees, is distributed throughout northern                                               |
| 42 | temperature zones of the world. <sup>1</sup> The fruiting bodies of <i>S. crispa</i> produce various bioactive                        |
| 43 | substances, including $\beta$ -glucan, <sup>2</sup> benzoate derivatives, <sup>3</sup> sesquiterpenoids, <sup>4</sup> and maleic acid |
| 44 | derivatives. <sup>5</sup> In particular, $\beta$ -glucan is a major constituent, present in more than 40% of <i>S</i> .               |
| 45 | crispa. They have been demonstrated to show a variety of pharmacological activities,                                                  |
| 46 | including antitumor, <sup>6-8</sup> hematopoietic response-enhancing, <sup>9</sup> wound healing, <sup>10</sup> antimetastatic,       |
| 47 | antihypertensive, and antidiabetic effects. <sup>11</sup>                                                                             |
| 48 | Proprotein convertase subtilisi/kexin type 9 (PCSK9) is noted to interfere with the                                                   |
| 49 | function of low-density lipoprotein receptor (LDLR) on the liver cell surface that transport                                          |
| 50 | LDL-cholesterol (LDL-C) into the liver for metabolism, leading to high levels of LDL-C.                                               |
| 51 | Thus, PCSK9 inhibitor was proposed to be a new LDL-C lowering agent. When PCSK9                                                       |
| 52 | inhibitor was used in combination with a statin, known as a HMG-CoA reductase inhibitor, it                                           |
| 53 | has been shown to dramatically lower LDL-C levels by up to 60%. Therefore, PCSK9                                                      |
| 54 | inhibitor has recently emerged as a new strategy to treat hyperlipidemia. To date two PCSK9                                           |
| 55 | inhibitors (evolocumab and alirocumab) have been approved by FDA to treat familial                                                    |
| 56 | hypercholesterolemia and several PCSK9 inhibitors are currently under clinical trial. <sup>12</sup> In                                |
| 57 | addition, several natural compounds such as berberine and curcumin have been reported to                                              |
| 58 | inhibit PCSK9 mRNA expression. <sup>13</sup> For these reasons, more investigation is required to                                     |
| 59 | discover new PCSK9 inhibitors, which could be good supplements to statin treatment due to                                             |
| 60 | their effects on PCSK9 mRNA.                                                                                                          |

3

**ACS Paragon Plus Environment** 

| 61                                                       | The extracts of the cauliflower mushroom were reported to exhibit antihypertensive and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 62                                                       | antidiabetic activities related to hyperlipidemia. To our knowledge there are no reports on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 63                                                       | effects of cauliflower mushroom and its constituents on PCSK9 mRNA expression. We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 64                                                       | therefore examined the effects of the extracts and its pure compounds on PCSK9 mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 65                                                       | expression to see if their hypocholesterolemic effects could be partly explained by additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 66                                                       | effects on the PCSK9 mRNA expression. We found that some compounds from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 67                                                       | cauliflower mushroom extracts inhibit the PCSK9 mRNA expression. Therefore, we herein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 68                                                       | report the isolation of compounds, their structural determination, and their PCSK9 inhibitory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 69                                                       | activities from the extract of S. crispa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 70                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 71                                                       | MATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 72                                                       | General experimental procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 72<br>73                                                 | General experimental procedures.<br>The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 72<br>73<br>74                                           | General experimental procedures.<br>The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,<br>Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 72<br>73<br>74<br>75                                     | General experimental procedures.<br>The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,<br>Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:<br>300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 72<br>73<br>74<br>75<br>76                               | General experimental procedures.<br>The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,<br>Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:<br>300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)<br>(Varian, Palo Alto, CA), and a DD2 700 spectrometer ( <sup>1</sup> H: 700 MHz/ <sup>13</sup> C: 175 MHz) (Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 72<br>73<br>74<br>75<br>76<br>77                         | General experimental procedures.The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)(Varian, Palo Alto, CA), and a DD2 700 spectrometer ( <sup>1</sup> H: 700 MHz/ <sup>13</sup> C: 175 MHz) (AgilentTechnologies, Santa Clara, CA) using the solvent signals (δ <sub>H</sub> 2.50/δ <sub>C</sub> 39.51 for DMSO-d <sub>6</sub> ; δ <sub>H</sub>                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 72<br>73<br>74<br>75<br>76<br>77<br>78                   | General experimental procedures.The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)(Varian, Palo Alto, CA), and a DD2 700 spectrometer ( <sup>1</sup> H: 700 MHz/ <sup>13</sup> C: 175 MHz) (AgilentTechnologies, Santa Clara, CA) using the solvent signals (δ <sub>H</sub> 2.50/δ <sub>C</sub> 39.51 for DMSO-d <sub>6</sub> ; δ <sub>H</sub> 3.31/δ <sub>C</sub> 49.15 for CD <sub>3</sub> OD) (Cambridge Isotope Laboratories, Inc., Tewksbury, MA) as                                                                                                                                                                                                                                                                       |  |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79             | General experimental procedures.The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)(Varian, Palo Alto, CA), and a DD2 700 spectrometer ( <sup>1</sup> H: 700 MHz/ <sup>13</sup> C: 175 MHz) (AgilentTechnologies, Santa Clara, CA) using the solvent signals (δ <sub>H</sub> 2.50/δ <sub>C</sub> 39.51 for DMSO-d <sub>6</sub> ; δ <sub>H</sub> 3.31/δ <sub>C</sub> 49.15 for CD <sub>3</sub> OD) (Cambridge Isotope Laboratories, Inc., Tewksbury, MA) asinternal standards; chemical shifts are indicated as δ values. The analytical high performance                                                                                                                                                                         |  |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80       | General experimental procedures.The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)(Varian, Palo Alto, CA), and a DD2 700 spectrometer ( <sup>1</sup> H: 700 MHz/ <sup>13</sup> C: 175 MHz) (AgilentTechnologies, Santa Clara, CA) using the solvent signals (δ <sub>H</sub> 2.50/δ <sub>C</sub> 39.51 for DMSO-d <sub>6</sub> ; δ <sub>H</sub> 3.31/δ <sub>C</sub> 49.15 for CD <sub>3</sub> OD) (Cambridge Isotope Laboratories, Inc., Tewksbury, MA) asinternal standards; chemical shifts are indicated as δ values. The analytical high performanceliquid chromatography (HPLC) was carried out on a 1260 infinity HPLC system (Agilent                                                                                     |  |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81 | General experimental procedures.The HRESIMS data were obtained on a UHR ESI Q-TOF mass spectrometer (Bruker,Billerica, MA). The NMR spectra were acquired with a 300 Ultra shield spectrometer ( <sup>1</sup> H:300 MHz/ <sup>13</sup> C: 75 MHz) (Bruker), a NMR systems 500 MHz ( <sup>1</sup> H: 500 MHz/ <sup>13</sup> C: 125 MHz)(Varian, Palo Alto, CA), and a DD2 700 spectrometer ( <sup>1</sup> H: 700 MHz/ <sup>13</sup> C: 175 MHz) (AgilentTechnologies, Santa Clara, CA) using the solvent signals (δ <sub>H</sub> 2.50/δ <sub>C</sub> 39.51 for DMSO-d <sub>6</sub> ; δ <sub>H</sub> 3.31/δ <sub>C</sub> 49.15 for CD <sub>3</sub> OD) (Cambridge Isotope Laboratories, Inc., Tewksbury, MA) asinternal standards; chemical shifts are indicated as δ values. The analytical high performanceliquid chromatography (HPLC) was carried out on a 1260 infinity HPLC system (AgilentTechnologies) supplied with a G1311C quaternary pump, a G1329B autosampler, a G1315D |  |

| 83  | $5\mu\text{m},$ ZORBAX SB-C18 (Agilent Technologies). Semi-preparative HPLC was operated on a                           |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 84  | 600 controller (Waters, Milford, MA) with a 996 PDA detector using the column ZORBAX                                    |
| 85  | SB-C18 (250 mm x 21.2 mm i.d., 5 µm, Agilent Technologies). Column chromatography was                                   |
| 86  | operated over silica gel 60 (70-230 mesh) (Merck, Darmstadt, Germany). Silica gel 60 F <sub>254</sub>                   |
| 87  | and RP-18 $F_{254S}$ plates (Merck) were used for analysis by thin layer chromatography (TLC)                           |
| 88  | under detection of UV and 10% H <sub>2</sub> SO <sub>4</sub> reagent to visualize the compounds. Analytical grade       |
| 89  | of solvents were used for the whole experiments.                                                                        |
| 90  |                                                                                                                         |
| 01  |                                                                                                                         |
| 91  | Plant Material.                                                                                                         |
| 92  | Dried fruiting bodies of S.crispa were provided by Gyeongshin Bio Co. (Euiwang,                                         |
| 93  | South Korea) in August 2016. This sample was botanically identified by the corresponding                                |
| 94  | author (S.H. Shim). A voucher was deposited at the pharmacognosy laboratory of College of                               |
| 95  | Pharmacy, Duksung Women's University (specimen No.: NPC-16-08).                                                         |
| 96  |                                                                                                                         |
| 97  | Extraction and Isolation.                                                                                               |
|     |                                                                                                                         |
| 98  | Dried fruiting bodies of S. crispa (1 kg) were extracted with 100% MeOH (3.0 L) under                                   |
| 99  | reflux three times to afford 153.0 g of the extracts. The extracts were suspended in distilled                          |
| 100 | water (1.0 L) and partitioned using <i>n</i> -hexane (3 x 1.0 L), $CH_2Cl_2$ (3 x 1.0 L), EtOAc (3 x 1.0                |
| 101 | L), and <i>n</i> -BuOH (3 x 1.0 L) consecutively, yielding <i>n</i> -hexane (17.6 g), $CH_2Cl_2(2.7 \text{ g})$ , EtOAc |
| 102 | (9.8 g), <i>n</i> -BuOH (15.0 g), and $H_2O$ (107.9 g) layers, respectively. The EtOAc-soluble layer                    |
| 103 | (9.8 g) was set apart by vacuum liquid chromatography (VLC) (40 x 9 cm) over silica gel                                 |

5

**ACS Paragon Plus Environment** 

| 104 | using gradient solvents of <i>n</i> -hexane/EtOAc/MeOH (10:1:0, 2.5:1:0, 1.5:1:0, 1:1:0.2; each 5                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 105 | L), CHCl <sub>3</sub> /MeOH/H <sub>2</sub> O (10:1:0, 5:1:0.1; each 5 L), and 100% MeOH (3 L) to obtain seven                        |
| 106 | fractions (Fr. E1 $\sim$ Fr. E7). Silica gel column chromatography was employed to fraction E2                                       |
| 107 | with the elution of <i>n</i> -hexane/acetone gradient solvents (20:1, 15:1; each 0.2 L) to afford                                    |
| 108 | compound 2 (8.6 mg). Fraction E4 (1.4 g) was fractionated on silica gel column                                                       |
| 109 | chromatography (15 x 8 cm) with gradient solvents of CHCl <sub>3</sub> /acetone (65:1, 20:1, 10:1, 7:1;                              |
| 110 | each 1 L) and 100% MeOH (1 L) to afford six fractions (Fr. E4-1 ~ Fr. E4-6). Fraction E4-1                                           |
| 111 | was further purified with reversed-phase HPLC using a H <sub>2</sub> O/acetonirile (60:40 $\rightarrow$ 45:55, v/v)                  |
| 112 | gradient to yield compounds 12 (15 mg), 13 (18.5 mg), and 14 (1.5 mg). Compounds 1 (2.4                                              |
| 113 | mg), 5 (2.9 mg), 6 (1.7 mg), 7 (1.8 mg), 8 (5.6 mg), 9 (7.3 mg), and 10 (4.1 mg) were                                                |
| 114 | obtained from fraction E5 using reversed-phase HPLC with a gradient of $H_2O/MeOH$ (80:20                                            |
| 115 | $\rightarrow$ 0:100, v/v). Fraction E6 was subjected to reversed-phase HPLC with gradient solvents of                                |
| 116 | H <sub>2</sub> O/MeOH (95:5 $\rightarrow$ 50:50, v/v) to furnish compounds <b>3</b> (13.0 mg), <b>4</b> (6.5 mg), and <b>11</b> (2.9 |
| 117 | mg).                                                                                                                                 |

119 Sparoside A (2-hydroxy-3-methoxy-6-methyl benzoic acid methyl ester 4-O- $\alpha$ -D-riboside, 1).

120 Yellowish amorphous solid; (+) HRESIMS m/z 367.1003 [M + Na]<sup>+</sup> (calcd for

- 121  $C_{15}H_{20}NaO_{9}$ , 367.1000); <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); HMBC correlations (CD<sub>3</sub>OD, H  $\rightarrow$  C)
- 122  $H-5 \rightarrow C-1, C-3, C-4, and CH_3; H-1' \rightarrow C-4, C-2', C-3', and C-4'; H-2' \rightarrow C-1'; H-3' \rightarrow C-1', H-3' \rightarrow C-1'$
- 123 C-2', C-4', and C-5'; H<sub>2</sub>-5'  $\rightarrow$  C-3' and C-4'; CH<sub>3</sub>  $\rightarrow$  C-5 and C-6; OCH<sub>3</sub>  $\rightarrow$  C-3; COOC<u>H<sub>3</sub></u>  $\rightarrow$
- 124 <u>C</u>OOCH<sub>3</sub>.

125

126 Sparalide A (5-methoxy-phthalide 7-O- $\alpha$ -D-riboside, 3).

- 127 White amorphous powder; (+) HRESIMS m/z 335.0738 [M + Na]<sup>+</sup> (calcd for
- 128  $C_{14}H_{16}NaO_8$ , 335.0737); <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); HMBC correlations (DMSO- $d_6$ , H  $\rightarrow$  C)
- 129 H-3  $\rightarrow$  C-1, C-3a, C-4, C-5, and C-7a; H-4  $\rightarrow$  C-3, C-5, C-6, C-7, and C-7a; H-6  $\rightarrow$  C-1, C-4,
- 130 C-5, C-7, and C-7a; H-1'  $\rightarrow$  C-3', C-4', and C-7'; H-3'  $\rightarrow$  C-1'; H-4'  $\rightarrow$  C-3'; H<sub>2</sub>-5'  $\rightarrow$  C-3' and
- 131 C-4'; OCH<sub>3</sub>  $\rightarrow$  C-5.
- 132
- 133 Sparalide B (6-methoxy-4, 5, 7-trihydroxy phthalide, 4).
- 134 Yellow amorphous solid; (+) HRESIMS m/z 235.0212 [M + Na]<sup>+</sup> (calcd for C<sub>9</sub>H<sub>8</sub>NaO<sub>6</sub>,
- 135 235.0213); <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); HMBC correlations (DMSO- $d_6$ , H  $\rightarrow$  C) H<sub>2</sub>-3  $\rightarrow$  C-1,
- 136 C-3a, C-4, C-5, C-7, and C-7a;  $OCH_3 \rightarrow C-6$ .
- 137
- 138 Sparalide C (5,6-dihydroxy-7-methoxy phthalide, 5).
- 139 Colorless amorphous solid; (+) HRESIMS m/z 219.0268 [M + Na]<sup>+</sup> (calcd for
- 140 C<sub>9</sub>H<sub>8</sub>NaO<sub>5</sub>, 219.0264); <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); HMBC correlations (CD<sub>3</sub>OD, H  $\rightarrow$  C)
- 141  $H_2-3 \rightarrow C-1, C-3a, C-4, C-5, and C-7a; H-4 \rightarrow C-3, C-5, C-6, and C-7a; OCH_3 \rightarrow C-7.$
- 142

#### 143 Acid hydrolysis of compounds 1 and 3.

- 144 Each 1 mg of compounds 1 and 3 was hydrolyzed with 1N HCl (1 mL) at 80 °C for 2 h
- to afford aglycone and sugar moieties. The reaction mixtures were extracted with EtOAc to

| 146 | separate a sugar moiety-containing aqueous fraction from the aglycone-containing fraction.  |
|-----|---------------------------------------------------------------------------------------------|
| 147 | The aqueous fraction was evaporated and then analyzed on silica gel TLC plates with a       |
| 148 | gradient of acetone/ $H_2O$ for the comparison with authentic D-ribose and L-ribose (Sigma- |
| 149 | Aldrich, St. Louis, MO).                                                                    |

#### 151 **Determination of absolute configuration of ribose.**

152 To determine absolute configuration of the ribose in compounds 1 and 3, derivatives of the sugar moieties were analyzed.<sup>14</sup> Acid hydrolysis of each compound afforded aglycone and 153 154 sugar moieties. The sugar moieties (each 0.5 mg) were dissolved in pyridine (100  $\mu$ L), supplemented with L-cysteine methyl ester hydrochloride (0.5 mg), and placed at 60  $^{\circ}$ C for 1 155 156 h for reaction. Ten microliters of o-tolyl isothiocyanate was then added to the mixture to 157 allow for a reaction at 60 °C for 1 h. Each of the mixture was evaporated and subjected to 158 reverse-phase HPLC for analysis; ZORBAX SB-C18 column (Agilent Technologies, 250 x 4.6 mm i.d., 5  $\mu$ m); column temperature 35 °C; mobile phase H<sub>2</sub>O/acetonitrile (75:25, v/v) 159 160 for 30 min; flow rate 0.8 mL/min; detection wavelength at 250 nm. Both authentic D-ribose 161 and L-ribose were reacted in the same manner as described above. The absolute configuration 162 of ribose in compounds 1 and 3 was assigned by comparing their retention times with those of the authentic derivatives (*t*<sub>R</sub>: D-ribose derivative 12.68 min, L-ribose derivative 8.20 min). 163

164

#### 165 PCSK9 mRNA Expression Assay.

166 RNA extraction procedure provided by the TRIzol (Life Technologies, Carlsbad, CA)

Page 10 of 26

| 167 | was employed for total RNA extraction. In brief, cDNA was prepared by adding reverse                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 168 | transcriptase (200 U) and oligo-dT primer (500 ng) to total RNA (1 µg) in 50 mM Tris-HCl                                                      |
| 169 | (pH 8.3), 75 mM KCl, 3 mM MgCl <sub>2</sub> , 10 mM DTT, and 1 mM dNTPs at 42 $^{\circ}$ C for 1 h.                                           |
| 170 | Incubation of the solution at 70 °C for 15 min terminated the reaction and an aliquot of the                                                  |
| 171 | cDNA mixture (1 $\mu$ L) was adopted for enzyme amplification. Polymerase chain reactions                                                     |
| 172 | were conducted by cDNA (1 $\mu$ L), master mix (9 $\mu$ L) containing iQ SYBR Green Supermix                                                  |
| 173 | (Bio-Rad, Hercules, CA), 5 pmol of forward primer, and 5 pmol of reverse primer using a                                                       |
| 174 | CFX384 Real-Time PCR System (Bio-Rad) with the following conditions: 3 min at 95 °C,                                                          |
| 175 | subsequently 40 cycles for 10 s at 95 °C, then 30 s at 55 °C, and finally plate reading. The                                                  |
| 176 | fluorescence which was generated using SYBR Green I DNA dye was quantified in the                                                             |
| 177 | course of the annealing. Specificity of the amplification was ascertained through a melting                                                   |
| 178 | curve analysis. CFX Manager Software (Bio-Rad) was used for acquisition of data, which                                                        |
| 179 | were presented as the cycle threshold ( $C_T$ ). Then, relative abundance of an interesting gene                                              |
| 180 | was standardized to that of glyceraldehyde 3-phosphate dehydrogenase ( $\Delta\Delta C_T$ ). The 2 <sup>-(<math>\Delta\Delta CT</math>)</sup> |
| 181 | method <sup>15</sup> was employed for calculation of mRNA abundance of the sample. Specific primer                                            |
| 182 | sets used in this study were as follows $(5'-3')$ : GAPDH: GAAGGTGAAGGTCGGAGTCA                                                               |
| 183 | (forward), AATGAAGGGGTCATTGATGG (reverse), PCSK9:                                                                                             |
| 184 | GGGCATTTCACCATTCAAAC (forward), TCCAGAAAGCTAAGCCTCCA (reverse).                                                                               |
| 185 | Custom-synthesized gene-specific primers were provided by Bioneer (Daejeon, Korea).                                                           |
|     |                                                                                                                                               |

186

## 187 Statistical Analyses.

188 Data were expressed as the mean  $\pm$  SEM. Analysis of variance (ANOVA) determined

| 189 | the level of statistical significance and Dunnett's t-test was used for multiple comparison   |
|-----|-----------------------------------------------------------------------------------------------|
| 190 | procedures. P values (calculated probability) less than 0.05 were regarded to be significant. |
|     |                                                                                               |

#### 192 **RESULTS AND DISCUSSION**

#### 193 Structural Elucidation.

A series of chromatographic methods carried out on the extract of *S. crispa* led to the isolation of fourteen compounds, which include four new aromatic compounds, **1** and **3-5**, two new naturally-occurring compounds, **2** and **6**, and eight known compounds, **7-14** (Figure 1).

198 The known compounds were identified to be methyl 2,4-dihydroxy-3-methoxy-6-

199 methylbenzoate,  $2^{16}$  5-hydroxy-7-methoxyphthalide,  $6^{17}$  5-methoxy-7-hydroxyphthalide,

200 **7**,<sup>17</sup> hanabiratakelide A, **8**,<sup>18</sup> nicotinamide, **9**,<sup>19</sup> 5'-deoxy-5'-methylthioadenosine, **10**,<sup>20</sup>

adenosine, **11**,<sup>21</sup> ergosterol, **12**,<sup>22</sup> ergosterol peroxide, **13**,<sup>23</sup> and  $5\alpha$ , $6\alpha$ -epoxy-(22*E*,24*R*)-

ergosta-8(14),22-diene- $3\beta$ , $7\beta$ -diol,  $14^{24}$  by comparing their NMR and MS data with those in

the reference. Of these, although compounds **2** and **6** have been reported as synthetic

intermediates, they have been reported for the first time in nature in this study.

205 Compound 1 was obtained as a yellowish amorphous solid. Positive HRESIMS

suggested its molecular formula to be  $C_{15}H_{20}O_9$ . The <sup>1</sup>H NMR spectrum of **1** displayed an

aromatic proton at  $\delta_{\rm H}$  6.66 (1H, s, H-5), one sugar unit at  $\delta_{\rm H}$  5.73-3.65, two methoxyl groups

at  $\delta_H 3.93$  (3H, s, COO<u>C</u>H<sub>3</sub>) and 3.85 (3H, s, 3-OCH<sub>3</sub>), and methyl group at  $\delta_H 2.43$  (3H, s, 6-

209 CH<sub>3</sub>). The <sup>13</sup>C NMR spectrum of **1** suggested existence of a carbonyl group ( $\delta_{C}$  172.81), six

| 210 | aromatic carbons ( $\delta_C$ 156.45, 154.57, 137.40, 137.22, 112.34, and 111.09), one sugar unit ( $\delta_C$              |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 211 | 102.64, 88.46, 73.82, 71.23, and 63.30), two methoxyl groups ( $\delta_C$ 61.63 and 52.68), and a                           |
| 212 | methyl group ( $\delta_C$ 23.28). One sugar unit was confirmed to consist of a ribose by <sup>1</sup> H and <sup>13</sup> C |
| 213 | NMR data, which was further supported by chemical reaction. Acid hydrolysis of 1 followed                                   |
| 214 | by TLC with authentic ribose supported that the sugar was ribose. Moreover, the 4.4 Hz of                                   |
| 215 | coupling constant for the anomeric proton at $\delta_{\rm H}$ 5.73 suggested an $\alpha\text{-configuration}.$ HMBC         |
| 216 | correlation of the methoxyl protons at $\delta_{\rm H}3.93$ with the carbonyl carbon at $\delta_{C}$ 172.81 indicated       |
| 217 | that the methyl carboxylate was attached to the aromatic ring. The positions of the methoxyl,                               |
| 218 | methyl group and ribose at the aromatic ring were assigned by analysis of the HMBC                                          |
| 219 | spectrum. HMBC correlations of the methoxyl protons at $\delta_{\rm H}3.85$ with the aromatic carbon at                     |
| 220 | $\delta_C$ 137.22 and the anomeric proton at $\delta_H$ 5.73 with the aromatic carbon at $\delta_C$ 154.57 allowed          |
| 221 | for the assignment of the carbons bearing the methoxyl group and the ribose. HMBC                                           |
| 222 | correlation of the methyl protons at $\delta_{\rm H}2.43$ with the aromatic methine carbon at $\delta_{C}112.34$            |
| 223 | and the non-protonated aromatic carbon at $\delta_C$ 137.40 and the aromatic methine proton at $\delta_H$                   |
| 224 | 6.66 with the carbons at $\delta_C$ 111.09, 137.22, and 154.57 indicated the methyl, the methyl                             |
| 225 | carboxylate, the methoxyl, and the ribose were attached to the C-6, C-1, C-3, and C-4                                       |
| 226 | positions, respectively. Determination of the absolute configuration of the ribose was                                      |
| 227 | conducted by comparing retention time of L-cysteine methyl ester and o-tolyl isothiocyanate                                 |
| 228 | derivative of acid-hydrolysate with those for authentic D-/L- ribose derivatives in HPLC-UV.                                |
| 229 | The derivatives of the authentic D-ribose and L-ribose eluted at $t_{\rm R}$ 12.68 (D-ribose) and 8.20                      |
| 230 | (L-ribose) min, respectively on the isocratic HPLC. Since the derivative of compound 1                                      |
| 231 | eluted at $t_{\rm R}$ 11.93 min, the ribose in 1 was confirmed to have D configuration. Thus, the                           |
| 232 | structure of 1 was determined to be 2-hydroxy-3-methoxy-6-methyl benzoic acid methyl ester                                  |

233 4-O- $\alpha$ -D-riboside and was named as sparoside A.

| 234 | Compound 3 was obtained as a white amorphous powder. Its positive HRESIMS data                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 235 | suggested the molecular formula to be $C_{14}H_{16}O_8$ . The <sup>1</sup> H NMR spectrum displayed two                             |
| 236 | aromatic methine protons at $\delta_{\rm H}6.82$ (1H, s, H-4) and 6.81 (1H, s, H-6), an oxymethylene at                             |
| 237 | $\delta_{H}$ 5.28 (2H, s, H-3), one sugar unit at $\delta_{H}$ 5.95-3.45 and a methoxyl group at $\delta_{H}$ 3.85 (3H, s, 5-       |
| 238 | OCH <sub>3</sub> ). The <sup>13</sup> C NMR spectrum of <b>3</b> suggested the presence of a carbonyl group ( $\delta_{C}$ 168.89), |
| 239 | six aromatic carbons ( $\delta_C$ 166.11, 156.23, 151.68, 107.05, 102.59, and 100.49), one pentose                                  |
| 240 | moiety ( $\delta_C$ 101.47, 87.99, 71.74, 69.77, and 61.48), an oxymethylene ( $\delta_C$ 68.98), and a                             |
| 241 | methoxyl carbon ( $\delta_C$ 56.19). It was presumed to be bicyclic compound to meet seven                                          |
| 242 | unsaturations obtained from its molecular formula. The presence of an aromatic ring, an                                             |
| 243 | oxymethylene group, together with carboxyl carbon indicated that compound <b>3</b> has a                                            |
| 244 | phthalide skeleton, which has previously been reported in S. crispa. The pentose was                                                |
| 245 | presumed to be ribose, based on the carbon chemical shifts and proton resonances. The                                               |
| 246 | coupling constant (3.9 Hz) of the anomer proton suggested that the ribose was attached to the                                       |
| 247 | aglycone with an $\alpha$ -configuration. The presence of ribose was verified by the direct                                         |
| 248 | comparison of acid hydrolysate of <b>3</b> with commercially available authentic ribose. The                                        |
| 249 | HMBC correlations of the oxymethylene at $\delta_{\rm H}$ 5.28 with the carboxyl carbon ( $\delta_C$ 168.89) and                    |
| 250 | the aromatic carbon ( $\delta_C$ 151.68 and 107.05) supported the idea that <b>3</b> had a $\gamma$ -lactonylated                   |
| 251 | aromatic compound, known as a phthalide. The singlet aromatic methine protons suggested                                             |
| 252 | the methoxyl group and the ribose moiety were not attached to the adjacent carbon atoms of                                          |
| 253 | the aromatic ring. Their positions were confirmed by HMBC data. HMBC correlations of the                                            |
| 254 | anomeric proton ( $\delta_H$ 5.95) with the carbon ( $\delta_C$ 156.23) and methoxyl protons ( $\delta_H$ 3.85) with                |
| 255 | the carbon ( $\delta_{C}$ 166.11) indicated that the ribose and the methoxyl groups were attached to                                |

| 256 | carbons at $\delta_C$ 156.23 and 166.11, respectively. HMBC correlations of the H-4 methine proton                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 257 | at $\delta_{\rm H}$ 6.82 of the phthalide with the methoxylated carbon ( $\delta_{C}$ 166.11), another aromatic                                 |
| 258 | methine carbon ( $\delta_C$ 102.59), and the non-protonated aromatic carbon ( $\delta_C$ 107.05) indicated                                      |
| 259 | that the methoxyl group and the ribose were attached to C-5 and C-7, respectively. Thus a                                                       |
| 260 | planar structure could be established. Assignment of the absolute configuration of ribose was                                                   |
| 261 | conducted as described above. Since the retention time of the ribose derivative of acid                                                         |
| 262 | hydrolysate for <b>3</b> was same as that for the D-ribose derivative, structure of compound <b>3</b> was                                       |
| 263 | determined as 5-methoxy-phthalide 7- $O$ - $\alpha$ -D-riboside, named sparalide A.                                                             |
| 264 | Compound 4 was obtained as a vellow amorphous solid in which its molecular formula                                                              |
| 204 | Compound 4 was obtained as a yenow amorphous sond, in which its molecular formula                                                               |
| 265 | was established as $C_9H_8O_6$ on the basis of positive HRESIMS. In its <sup>1</sup> H NMR spectrum, one                                        |
| 266 | oxymethylene and one methoxyl signal appeared at $\delta_{\rm H}$ 5.09 (2H, s, H-3) and 3.79 (3H, s, 6-                                         |
| 267 | OCH <sub>3</sub> ), respectively. Six aromatic carbons ( $\delta_{C}$ 141.94, 139.30, 139.19, 135.44, 124.99, and                               |
| 268 | 106.25), an oxymethylene carbon ( $\delta_C$ 66.79), and a carbonyl group ( $\delta_C$ 168.90) shown in the                                     |
| 269 | $^{13}$ C NMR spectrum suggested that <b>4</b> had a phthalide skeleton, similar to compound <b>3</b> . The                                     |
| 270 | position of the methoxyl group was assigned to be attached to C-6 on the ground that the                                                        |
| 271 | methoxyl protons ( $\delta_H$ 3.79) showed HMBC correlations with C-6 ( $\delta_C$ 139.31) while the                                            |
| 272 | oxymethylene protons ( $\delta_H$ 5.09) showed HMBC correlations with C-7 ( $\delta_C$ 141.94), C-5 ( $\delta_C$                                |
| 273 | 139.19), C-4 ( $\delta_{C}$ 135.44), C-3a ( $\delta_{C}$ 124.99), and C-7a ( $\delta_{C}$ 106.25) (Figure 2). <sup>4</sup> J <sub>CH</sub> HMBC |
| 274 | correlations between H <sub>2</sub> -3 and C-5 and C-7 in addition to ${}^{3}J_{CH}$ HMBC correlations between                                  |
| 275 | the H <sub>2</sub> -3 and C-4 ascertained that the methoxyl group was attached to C-6 rather than C-4, C-                                       |
| 276 | 5 or C-7. From these evidences, the structure of <b>4</b> was determined to be 6-methoxy-4,5,7-                                                 |
| 277 | trihydroxy phthalide, named sparalide B.                                                                                                        |
|     |                                                                                                                                                 |

Compound 5 was a colorless amorphous solid and the molecular formula was confirmed

| 279 | to be $C_9H_8O_5$ by positive HRESIMS. The <sup>1</sup> H NMR spectrum of <b>5</b> showed an aromatic proton                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 280 | at $\delta_{\rm H}$ 6.68 (1H, s, H-4), an oxymethylene at $\delta_{\rm H}$ 5.15 (2H, s, H-3), and a methoxyl group at $\delta_{\rm H}$ |
| 281 | 4.01 (3H, s, 7-OCH <sub>3</sub> ). Its $^{13}$ C NMR spectrum exhibited six aromatic carbons ( $\delta_{C}$ 155.49,                    |
| 282 | 147.44, 142.32, 139.62, 109.50, and 104.67), an oxymethylene carbon ( $\delta_C$ 70.46), a carboxyl                                    |
| 283 | carbon ( $\delta_C$ 172.14), and a methoxyl carbon ( $\delta_C$ 62.65). The <sup>1</sup> H and <sup>13</sup> C NMR data presented      |
| 284 | similarities to those for 4, except for an additional aromatic proton at $\delta_{\rm H}$ 6.68. Thus, it was                           |
| 285 | assumed that two hydroxyl groups and a methoxyl group were attached to the aromatic ring                                               |
| 286 | of the phthalide skeleton, which was also supported by the observation of HR-ESI-MS. The                                               |
| 287 | positions of the aromatic methine carbon and the methoxylated carbon were assigned to be C-                                            |
| 288 | 4 and C-7, respectively, supported by HMBC correlations of H-4 ( $\delta_{\rm H}$ 6.68) with C-3 ( $\delta_{C}$                        |
| 289 | 70.46), C-5 ( $\delta_C$ 155.49), C-6 ( $\delta_C$ 139.62), C-3a ( $\delta_C$ 142.32), and C-7a ( $\delta_C$ 109.50) and the           |
| 290 | methoxyl proton ( $\delta_H$ 4.01) with C-7 ( $\delta_C$ 147.44) (Figure 2). Using these data, the structure of                        |
| 291 | 5 was established to be 5,6-dihydroxy-7-methoxy phthalide, named sparalide C.                                                          |
|     |                                                                                                                                        |

#### 293 Evaluation of PCSK9 mRNA expression.

The MeOH extract and polarity-based solvent-soluble layers of *S. crispa* were tested on inhibitory activity of PCSK9 mRNA expression using a HepG2 cells. The EtOAc-soluble layer showed the most potent inhibitory activities at 10  $\mu$ g/mL, which prompted us to elucidate the active compounds from the EtOAc-soluble layer (Figure 3). Bioactivity-guided fractionation led to isolation of fourteen compounds, **1-14**, from this layer. All the isolated compounds were assessed for their PCSK9 mRNA expression. The results demonstrated that compounds **1**, **8**, **11**, and **14** were found to potentially inhibit PCSK9 mRNA expression with

301  $IC_{50}$  values of 20.07, 7.18, 18.46, and 8.23  $\mu$ M, respectively, at the concentration of 20  $\mu$ M, 302 whereas the IC<sub>50</sub> of berberine, positive control, was 8.04  $\mu$ M at the same concentration as the 303 isolated compounds. When compared with the positive control, compound 8 304 (hanabiratakelide A) was found to be a stronger PCKS9 inhibitor than berberine, which is 305 known to be one of the most potent PCSK9 inhibitors in nature far. 306 Concerning the structure-activity relationship, the results showed that 4,5,6-trioxygenated 307 pattern in phthalide moiety seemed to be important for the PCSK9 inhibitory activity rather 308 than di-oxygenation or tetra-oxygenation pattern as shown in compound 8. In the case of 309 simple benzoic acid derivatives (compounds 1 and 2), ribose moiety seemed to be important 310 in the activity as shown for compound 1. The ribose moiety seemed also to play an important 311 role in adenosine derivatives (compounds 10 and 11), where the OH group at C-5 of ribose 312 moiety seemed to be effective rather than  $SCH_3$ . In the case of ergosterol derivatives, the OH 313 group and epoxide substituents on the B ring seemed to be more effective than when they had 314 endoperoxide or diene system. 315 The results suggest that hanabiratakelide A, 8, and  $5\alpha$ ,  $6\alpha$ -epoxy-(22E, 24R)-ergosta-316 8(14),22-diene- $3\beta$ ,7 $\beta$ -diol, 14, as well as the extract of *S. crispa* could be good supplements 317 to statins for the treatment of hyperlipidemia. Moreover, further studies regarding the 318 mechanistic and *in vivo* efficacies for compounds 8 and 14 might be required.

319

#### Supporting Information

320 The Supporting Information is available free of charge on the ACS Publications 321 website at DOI:

322 NMR and HRMS spectra of compounds 1 and 3-5 (PDF)

#### 323 ACKNOWLEDGMENT

- 324 This study was supported by Korea Institute of Planning and Evaluation for Technology
- in Food, Agriculture, Forestry and Fisheries(IPET) through High Value-added Food
- 326 Technology Development Program, funded by Ministry of Agriculture, Food and Rural
- 327 Affairs (MAFRA, 116001-3) and also supported by the National Research Foundation (NRF)
- 328 of Korea (Grant No. NRF-2015R1D1A1A01057914 and NRF-2016R1A6A1A03007648).

#### 330 **REFERENCES**

- (1) Imazeki, R.; Hongo, T. *Colored Illustrations of Mushrooms of Japan*, 2th ed.; Hoikusha
  Publishers: Osaka, Japan, **1989**; pp 109.
- 333 (2) Tada, R.; Harada, T.; Nagi-Miura, N.; Adachi, Y.; Nakajima, M.; Yadomae, T.; Ohno, N.
- NMR characterization of the structure of a β-(1 $\rightarrow$ 3)-D-glucan isolate from cultured fruit bodies of *Sparassis crispa*. *Carbohydr. Res.* **2007**, *342*, 2611-2618.
- (3) Woodward, S.; Sultan, H. Y.; Barrett, D. K.; Pearce, R. B. Two new antifungal metabolites
- produced by *Sparassis crispa* in culture and in decayed trees. *J. Gen. Microbiol.* 1993, *139*, 153-159.
- (4) Kodani, S.; Hayashi, K.; Hashimoto, M.; Kimura, T.; Dombo, M.; Kawagishi, H. New
  sesquiterpenoid from the mushroom *Sparassis crispa. Biosci., Biotechnol., Biochem.*2009, *73*, 228-229.
- (5) Kawagishi, H.; Hayashi, K.; Tokuyama, S.; Hashimoto, N.; Kimura, T.; Dombo, M. Novel
  bioactive compound from the *Sparassis crispa* mushroom. *Biosci., Biotechnol., Biochem.*2007, *71*, 1804-1806.
- (6) Ohno, N.; Miura, N. N.; Nakajima, M.; Yadomae, T. Antitumor 1,3-β-glucan from
  cultured fruit body of *Sparassis crispa*. *Biol. Pharm. Bull.* 2000, *23*, 866-872.
- 347 (7) Ohno, N.; Nameda, S.; Harada, T.; Miura, N. N.; Adachi, Y.; Nakajima, M.; Yoshida, K.;
- 348 Yoshida, H.; Yadomae, T. Immunomodulating activity of a  $\beta$ -glucan preparation, SCG,
- extracted from a culinary-medicinal mushroom, *Sparassis crispa* Wulf.:Fr.
- 350 (aphyllophoromycetideae), and application to cancer patients. *Int. J. Med. Mushrooms*

| 351 | <b>2003</b> , <i>5</i> , 359-368.                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 352 | (8) Yamamoto, K.; Kimura, T.; Sugitachi, A.; Matsuura, N. Anti-angiogenic and anti-                             |
| 353 | metastatic effects of $\beta$ -1,3-D-glucan purified from hanabiratake, <i>Sparassis crispa</i> . <i>Biol</i> . |
| 354 | Pharm. Bull. 2009, 32, 259-263.                                                                                 |
| 355 | (9) Harada, T.; Miura, N.; Adachi, Y.; Nakajima, M.; Yadomae, T.; Ohno, N. Effect of SCG, 1,                    |
| 356 | 3-β-D-glucan from <i>Sparassis crispa</i> on the hematopoietic response in cyclophosphamide                     |
| 357 | induced leukopenia mice. Biol. Pharm. Bull. 2002, 25, 931-939.                                                  |
| 358 | (10) Kwon, A. H.; Qiu, Z.; Hashimoto, M.; Yamamoto, K.; Kimura, T. Effects of medicinal                         |
| 359 | mushroom (Sparassis crispa) on would healing in streptozotocin-induced diabetic rats.                           |
| 360 | Am. J. Surg. 2009, 197, 503-509.                                                                                |
| 361 | (11) Kimura, T. Natural products and biological activity of the pharmacologically active                        |
| 362 | cauliflower mushroom Sparassis crispa. BioMed Res. Int. 2013, 2013, 982317.                                     |
| 363 | (12) Zimmerman, M. P. How do PCSK9 inhibitors stack up to statins for low-density                               |
| 364 | lipoprotein cholesterol control? Am. Health Drug Benefits 2015, 8, 436-442.                                     |
| 365 | (13) Pagliaro, B.; Santolamazza, C.; Simonelli, F.; Rubattu, S. Phytochemical compounds and                     |
| 366 | protection from cardiovascular diseases: a state of the art. BioMed Res. Int. 2015, 2015,                       |
| 367 | 1-17.                                                                                                           |
| 368 | (14) Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose                  |
| 369 | enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 2007, 55, 899-901.                                       |
| 370 | (15) Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time                  |
| 371 | quantitative PCR and the $2^{-\Delta\Delta CT}$ method. <i>Methods</i> <b>2001</b> , <i>25</i> , 402-408.       |

- (16) Elix, J. A.; Naidu, R.; Laundon, J. R. The structure and synthesis of 4-oxypannaric acid
  2-methyl ester, a dibenzofuran from the lichen *Leproloma diffusum*. *Aust. J. Chem.* 1994,
  47, 703-714.
- (17) El-Feraly, F. S.; Cheatham, S. F.; Mcchesney, J. D. Total synthesis of notholaenic acid. *J. Nat. Prod.* 1985, *48*, 293-298.
- 377 (18) Yoshikawa, K.; Kokudo, N.; Hashimoto, T.; Yamamoto, K.; Inose, T.; Kimura, T. Novel
- 378 phthalide compounds from *Sparassis crispa* (Hanabiratake), hanabiratakelide A-C,

exhibiting anti-cancer related activity. *Biol. Pharm. Bull.* **2010**, *33*, 1355-1359.

- 380 (19) Shchepin, R. V.; Barskiy, D. A.; Mikhaylov, D. M.; Chekmenev, E. Y. Efficient synthesis
- of nicotinamide-1-<sup>15</sup>N for ultrafast NMR hyperpolarization using parahydrogen.
- 382 *Bioconjugate Chem.* **2016**, *27*, 878-882.
- 383 (20) Kehraus, S.; Gorzalka, S.; Hallmen, C.; Iqbal, J.; Muller, C. E.; Wright, A. D.; Wiese, M.;
- 384 Konig, G. M. Novel amino acid derived natural products from the ascidian *Atriolum*
- *robustum*: Identification and pharmacological characterization of a unique adenosine
- derivative. J. Med. Chem. 2004, 47, 2243-2255.
- (21) Chenon, M. T.; Pugmire, R. J.; Grant, D. M.; Panzica, R. P.; Townsend, L. B. A basic set
  of parameters for the investigation of tautomerism in purines established from carbon-13
  magnetic resonance. *J. Am. Chem. Soc.* 1975, *97*, 4627-4636.
- 390 (22) Nowak, R.; Drozd, M.; Mendyk, E.; Lemieszek, M.; Krakowiak, O.; Kisiel, W.; Rzeski,
- 391 W.; Szewczyk, K. A new method for the isolation of ergosterol and peroxyergosterol as
- 392 active compounds of *Hygrophoropsis aurantiaca* and in vitro antiproliferative activity of

| 393 | isolated ergosterol | peroxide. Mole | ecules <b>2016</b> , 2 | 1,946-955. |
|-----|---------------------|----------------|------------------------|------------|
|-----|---------------------|----------------|------------------------|------------|

- 394 (23) Krzyczkowski, W.; Malinowska, E.; Suchocki, P.; Kleps, J.; Olejnik, M.; Herold, F.
- 395 Isolation and quantitative determination of ergosterol peroxide in various edible
- 396 mushroom species. *Food Chem.* **2009**, *113*, 351-355.
- 397 (24) Ishizuka, T.; Yaoita, Y.; Kikuchi, M. Sterol constituents from the fruit bodies of *Grifola*
- 398 *frondosa* (Fr.) S. F. Gray. *Chem. Pharm. Bull.* **1997**, *45*, 1756-1760.

| Legends:                                                                                        |
|-------------------------------------------------------------------------------------------------|
| Figure 1. Structures of compounds 1–14 from <i>S. crispa</i> .                                  |
| Figure 2. Key HMBC correlations of compounds 1, 3, 4, and 5.                                    |
| Figure 3. Effect of (A) MeOH extracts and solvent-soluble fractions of <i>S. crispa</i> and (B) |
| isolated compounds from EtOAc-soluble fractions. Expression of PCSK9 mRNA was                   |
| assayed by qRT-PCR in cells treated with 10 $\mu$ g/mL of solvent-soluble fractions and 20      |
| μM of isolated compounds.                                                                       |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |

## 415 **Figure 1.**





9











## **Figure 2.**









430 **Figure 3**.



| No.                                         | <b>1</b> <sup>a</sup> |                                        | <b>3</b> <sup>b</sup> |                                  | <b>4</b> <sup>b</sup> |                                  | <b>5</b> <sup>a</sup> |                                   |
|---------------------------------------------|-----------------------|----------------------------------------|-----------------------|----------------------------------|-----------------------|----------------------------------|-----------------------|-----------------------------------|
| -                                           | $\delta_{C}$          | $\delta_{\rm H}$ multi (J in Hz)       | $\delta_{\mathrm{C}}$ | $\delta_{\rm H}$ multi (J in Hz) | $\delta_{\mathrm{C}}$ | $\delta_{\rm H}$ multi (J in Hz) | $\delta_{\mathrm{C}}$ | δ <sub>H</sub> multi<br>(J in Hz) |
| 1                                           | 111.09                |                                        | 168.89                |                                  | 168.90                |                                  | 172.14                |                                   |
| 2                                           | 156.45                |                                        |                       |                                  |                       |                                  |                       |                                   |
| 3                                           | 137.22                |                                        | 68.98                 | 5.28 s                           | 66.79                 | 5.09 s                           | 70.46                 | 5.15 s                            |
| 3a                                          |                       |                                        | 151.68                |                                  | 124.99                |                                  | 142.32                |                                   |
| 4                                           | 154.57                |                                        | 100.49                | 6.82 s                           | 135.44                |                                  | 104.67                | 6.68 s                            |
| 5                                           | 112.34                | 6.66 s                                 | 166.11                |                                  | 139.19                |                                  | 155.49                |                                   |
| 6                                           | 137.40                |                                        | 102.59                | 6.81 s                           | 139.30                |                                  | 139.62                |                                   |
| 7                                           |                       |                                        | 156.23                |                                  | 141.94                |                                  | 147.44                |                                   |
| 7a                                          |                       |                                        | 107.05                |                                  | 106.25                |                                  | 109.50                |                                   |
| 1'                                          | 102.64                | 5.73 d (4.4)                           | 101.17                | 5.95 d (3.8)                     |                       |                                  |                       |                                   |
| 2'                                          | 73.82                 | 4.32 dd (4.5, 6.4)                     | 71.74                 | 4.10 dd (4.0, 5.8)               |                       |                                  |                       |                                   |
| 3'                                          | 71.23                 | 4.10 dd (2.8, 6.5)                     | 69.77                 | 3.89 d (5.6)                     |                       |                                  |                       |                                   |
| 4'                                          | 88.46                 | 4.16 m                                 | 87.99                 | 4.00 dd (3.6, 5.8)               |                       |                                  |                       |                                   |
| 5'                                          | 63.30                 | 3.70 dd (3.4, 12)<br>3.65 dd (3.9, 12) | 61.48                 | 3.45 m                           |                       |                                  |                       |                                   |
| OCH <sub>3</sub>                            | 61.63                 | 3.85 s                                 | 56.19                 | 3.85 s                           | 61.60                 | 3.79 s                           | 62.65                 | 4.01 s                            |
| $CH_3$                                      | 23.28                 | 2.43 s                                 |                       |                                  |                       |                                  |                       |                                   |
| <u>C</u> OOCH <sub>3</sub>                  | 172.81                |                                        |                       |                                  |                       |                                  |                       |                                   |
| COO <u>C</u> H <sub>3</sub>                 | 52.68                 | 3.93 s                                 |                       |                                  |                       |                                  |                       |                                   |
| <sup>a</sup> Measured in CD <sub>3</sub> OD |                       |                                        |                       |                                  |                       |                                  |                       |                                   |

443 **Table 1.** The  ${}^{1}$ H and  ${}^{13}$ C NMR Data of Compounds 1 and 3-5.

445 <sup>b</sup> Measured in DMSO- $d_6$