Synthesis, Structure and Reactivity of Iridium Hydrido Fluorido Complexes

Paul Kläring,^[a] Ann-Katrin Jungton,^[a] Thomas Braun,^{*[a]} and Carsten Müller^[b]

Keywords: Fluorinated ligands / Hydride ligands / Iridium / Fluorination

The oxidative addition of HF at *trans*-[Ir(Ar^F)(η^2 -C₂H₄)-(PiPr₃)₂] (**1a**: Ar^F = 4-C₅NF₄; **1b**: Ar^F = 2-C₆H₃F₂) affords the fluorido complexes *trans*-[Ir(Ar^F)(F)(H)(PiPr₃)₂] (**2a**: Ar^F = 4-C₅NF₄; **2b**: Ar^F = 2-C₆H₃F₂). The hydrido fluorido complex **2a** is also accessible by means of the reaction of the hydroxido complex *trans*-[Ir(4-C₅NF₄)(H)(OH)(PiPr₃)₂] (**3a**) with Et₃N·3HF. Both compounds **2a** and **2b** react with CO to give

Introduction

The interest in transition-metal-mediated fluorido complexes has increased rapidly in the last two decades because of their remarkable reactivity^[1] and their role as possible intermediates in C-F bond activation reactions^[2] or transition-metal-mediated fluorination reactions.^[3] Various transition-metal-mediated fluorination reactions can be accomplished by nucleophilic or electrophilic fluorination of a transition-metal-bound substrate.^[3,4] C-F bond-forming reactions with the participation of transition-metal fluorides are also known.^[3,5] The formation of fluoroaromatics by reductive elimination as C-F bond-forming step from transition-metal aryl fluorides has been a challenge for a long time, but considerable progress has been made in the last decade.^[3,6] Recently, Watson and Buchwald et al. developed a palladium catalyst that allows the catalytic fluorination of aryl halides and triflates when using CsF or AgF as fluorinating agent.^[7] In this case, the reductive elimination of aryl fluorides is achieved by a decreased electron density at the metal centre as a consequence of a sterically demanding phosphane ligand, which blocks the fourth coordination site at the palladium aryl fluorido intermediate.

Transition-metal fluorido complexes can, for instance, be prepared by oxidative addition of a C–F bond.^[2b–2e,2g,8] Other reactions include the oxidation of a transition-metal complex with $XeF_2^{[9]}$ or with elemental fluorine^[10] as well as conversions that involve HF or its derivatives.^[11] How-

- [b] Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustraße 3, 14195 Berlin, Germany
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201100917.

the carbonyl complexes *trans*-[Ir(4-C₅NF₄)(F)(H)(CO)(PiPr₃)₂] (**4a**: Ar^F = 4-C₅NF₄; **4b**: Ar^F = 2-C₆H₃F₂). In the presence of traces of water, a slow reaction of **2a** with CO₂ yields the hydrogencarbonato complex *trans*-[Ir(4-C₅NF₄)(H)(κ^2 -(O,O)-O₂COH)(PiPr₃)₂] (**5a**). Upon using **2a** or **2b** as fluorinating agent, Ph₃SiH could be converted into Ph₃SiF and CH₃C-(O)Cl into CH₃C(O)F.

ever, the most common procedures represent halide exchange reactions when using metal fluorides such as KF, CsF, TlF, AgF or other nucleophilic fluoride sources.^[5,7,12]

Herein we report the synthesis of the Ir^{III}–fluorido–hydrido complexes *trans*-[Ir(Ar^F)(F)(H)(PiPr₃)₂] (**2a**: Ar^F = 4-C₅NF₄; **2b**: Ar^F = 2-C₆H₃F₂) by oxidative addition of HF when using Et₃N·3HF as the HF source. Studies on their reactivity towards CO, Ph₃SiH and CH₃C(O)Cl are also described.

Results and Discussion

Treatment of the Ir^I ethylene complexes *trans*-[Ir(Ar^F)- $(\eta^2-C_2H_4)(PiPr_3)_2$] (1a: Ar^F = 4-C₅NF₄; 1b: Ar^F = 2-C₆H₃F₂)^[13] with Et₃N·3HF in THF at room temperature led to the formation of fluorido hydrido complexes *trans*-[Ir(Ar^F)(F)(H)(PiPr₃)_2] (2a: Ar^F = 4-C₅NF₄; Ar^F = 2b: 2-C₆H₃F₂) (Scheme 1). Compound 2a can also be synthesized by a reaction of the hydrido hydroxido complex *trans*-[Ir(4-C₅NF₄)(H)(OH)(PiPr₃)_2] (3a) with Et₃N·3HF (Scheme 1).^[14] Mechanistically, this conversion might proceed by an oxidative addition of HF at a reactive 14-electron species, which can be formed by reductive elimination of water from 3a. It was shown before that 3a is susceptible to the reductive elimination of water.^[14,15] However, a protonation of the hydroxido ligand to give water and 2a is also conceivable.

The ³¹P{¹H} NMR spectrum of **2a** displays a doublet of doublets at δ = 39.5 ppm (²*J*_{F,P} = 16.3 Hz, ⁴*J*_{F,P} = 9.4 Hz) for the phosphane ligands in a *trans* configuration. Four multiplets in a 1:1:1:1 ratio can be found in the ¹⁹F{¹H} NMR spectrum for the fluorine atoms of the tetrafluoropyridyl ligand. This indicates a hindered rotation about the Ir–C bond.^[13,16] A broad singlet at δ = –267.4 ppm verifies the presence of the fluorido ligand.^[9h,12a,17] The signal remains broad at low temperature (223 K). The hydrido li-

 [[]a] Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany Fax: +49-30-2093-3913 E-mail: thomas.braun@chemie.hu-berlin.de

Scheme 1. Synthesis of the $\mathrm{Ir}^{\mathrm{III}}$ fluorido hydrido complexes 2a and 2b.

gand gives rise to a multiplet at $\delta = -40.28$ ppm in the ¹H NMR spectrum, which simplifies to a triplet (²*J*_{H,P} = 12.0 Hz) upon ¹⁹F decoupling and to a doublet of doublets upon ³¹P decoupling (²*J*_{H,F} = 12.1 Hz, ⁴*J*_{H,F} = 2.8 Hz). The IR spectrum of **2a** shows an absorption band at $\tilde{v} = 455 \text{ cm}^{-1}$, which could possibly be assigned to the Ir–F stretching vibration.^[18] A DFT frequency-mode analysis shows frequencies at 445 cm⁻¹ for a coupled H–Ir–F vibration and at 2482 cm⁻¹ (very weak) for the Ir–H stretching vibration. An absorption band for the Ir–H vibration was not found in the IR spectrum of **2a**. Comparable spectroscopic data were found for the difluorophenyl fluorido complex *trans*-[Ir(2-C₆H₃F₂)(F)(H)(P*i*Pr₃)₂] (**2b**).

The molecular structures of 2a and 2b were determined by X-ray diffraction analyses at 100 K (Figures 1 and 2). Suitable crystals of 2a were grown from an *n*-pentane solution at 243 K; crystals of 2b were obtained by slow evaporation of the solvent from an *n*-hexane solution. Selected bond lengths and angles are summarized in Table 1. Both

Figure 1. An ORTEP diagram of **2a**. Ellipsoids are drawn at the 50% level; hydrogen atoms at the *i*Pr groups are omitted for clarity.

molecules 2a and 2b show an approximately square-planar arrangement of the metal-bound fluorine atom, the metalbound carbon atom of the aryl unit and the phosphane ligands, which are in a mutually trans configuration. The hydrido ligand was located for neither 2a nor 2b but is expected to occupy an apical coordination site, which results in an overall square-pyramidal structure. DFT calculations for 2a and 2b verify the suggested square-pyramidal structures and the apical position of the metal-bound hydrogen atoms (see the Supporting Information; Figures 3 and 4). The Ir-F bond lengths [2a 2.039(2) Å, 2b 2.0508(17) Å] are comparable to those in other Ir^{III} fluorido complexes, as, for example, in $[Ir{\eta^5-C_5(CH_3)_4(CH_2CH_3)}(F)(Ph)(PMe_3)]$ $[2.069(4) \text{ Å}], [Ir(Cp^*)(F)(R^F)(PMe_3)] [2.070(2) \text{ Å} for$ $R^{F} = CF_{2}CF_{3}$; 2.055(3) Å for $R^{F} = CF_{2}CF_{2}CF_{3}$; 2.074(3) Å for $R^F = CF(CF_3)_2$ and $[Ir(F)(H)_2(PtBu_2Ph)_2]$

Figure 2. An ORTEP diagram of **2b**. Ellipsoids are drawn at the 50% level; hydrogen atoms at the aromatic ring and at the *i*Pr groups are omitted for clarity.

Table 1. Selected bond lengths [Å] and angles [°] in *trans*-[Ir($4-C_5NF_4$)(F)(H)(PiPr_3)_2] (**2a**) and *trans*-[Ir($2-C_6H_3F_4$)(F)(H)(PiPr_3)_2] (**2b**) with estimated standard deviations in parentheses.

Compound 2a		Compound 2b	
Ir1–P1	2.3425(9)	Ir1–P1	2.3292(7)
Ir1–P2	2.3518(10)	Ir1–P2	2.3255(7)
Ir1–F1	2.039(2)	Ir1–F1	2.0508(17)
Ir1–C19	1.998(3)	Ir1–C1	2.018(3)
C19-C20	1.388(5)	C1–C2	1.392(4)
C20-C21	1.397(7)	C2–C3	1.387(4)
C21-N1	1.324(10)	C3–C4	1.381(5)
C22-N1	1.293(10)	C4–C5	1.389(5)
C22–C23	1.364(6)	C5–C6	1.387(4)
C19–C23	1.401(5)	C1-C6	1.395(4)
C20-F2	1.347(6)	C20-F2	1.371(3)
C21–F3	1.334(7)	C21-F3	1.377(3)
C22–F4	1.341(7)		
C23–F5	1.359(6)		
P1–Ir1–P2	169.85(3)	P1–Ir1–P2	170.24(3)
P1-Ir1-C19	93.30(11)	P1–Ir1–C1	95.85(8)
P2-Ir1-C19	96.81(11)	P2–Ir1–C1	92.90(8)
P1–Ir1–F1	85.99(8)	P1–Ir1–F1	86.52(5)
P2–Ir1–F1	83.87(8)	P2–Ir1–F1	86.44(5)
C19–Ir1–F1	172.39(13)	C1–Ir1–F1	162.44(10)

FULL PAPER

[2.045(9) Å].^[5a,12a,12c] The calculation of the structural index parameter τ , introduced by Addison and Reedijk et al., furnishes a value of $\tau = 0.04$ for **2a** and $\tau = 0.13$ for **2b**.^[19] Whereas τ is close to zero for square-pyramidal structures, τ is equal to unity for trigonal-bipyramidal systems.

Figure 3. DFT-optimized structure for 2a. The hydrogen atoms at the *i*Pr groups are omitted for clarity.

Figure 4. DFT-optimized structure for **2b**. The hydrogen atoms at the aromatic ring and at the *i*Pr groups are omitted for clarity.

Treatment of **2a** or **2b** with CO afforded the formation of the carbonyl complexes *trans*-[Ir(Ar^F)(F)(H)(CO)-(P*i*Pr₃)₂] (**4a**: Ar^F = 4-C₅NF₄; **4b**: Ar^F = 2-C₆H₃F₂) (Scheme 2). In solution, **4a** decomposes slowly at room temperature to form the Ir^I carbonyl complex *trans*-[Ir(4-C₅NF₄)(CO)(P*i*Pr₃)₂] (**6a**), which was characterized before.^[13] An insertion of the carbonyl ligand into the Ir–F bond to give a fluoroacyl species^[9a,9b] was not observed. We also have no indication for the reductive elimination of 2,3,5,6-tetrafluoropyridine or even pentafluoropyridine.^[6,7,20]

Scheme 2. Reactivity of 2a and 2b towards CO and CO₂/H₂O.

The ³¹P{¹H} NMR spectrum of **4a** displays a doublet at $\delta = 21.4$ ppm with a coupling constant of ${}^{2}J_{\rm EP} = 22.0$ Hz, which indicates a *cis* configuration of the phosphane groups and the fluorido ligand. Four multiplets in the ${}^{19}F{}^{1}H{}$ NMR spectrum indicate a hindered rotation of the tetrafluoropyridyl ligand about the Ir-C bond.^[13,16] A broad singlet can be found at $\delta = -444.3$ ppm for the metal-bound fluorine atom.^[5a,9h,17] The ¹H NMR spectrum of **4a** shows a multiplet for the hydrido ligand at $\delta = -5.90$ ppm. The multiplet simplifies to a triplet (${}^{2}J_{H,P}$ = 15.2 Hz) upon ${}^{19}F$ decoupling and to a doublet of doublets (${}^{2}J_{H,F}$ = 14.8 Hz, ${}^{4}J_{\rm H,F} = 9.6$ Hz) upon 31 P decoupling. The *trans* configuration of the hydrido and the carbonyl ligand was verified by determination of the ${}^{2}J_{\text{H,C}}$ coupling constant of 53.0 Hz in the isotopomer *trans*-[Ir(4-C₅NF₄)(F)(H)(13 CO)(P*i*Pr₃)₂] (4a'), which is characteristic of a *trans* arrangement.^[21] The IR spectrum of 4a exhibits an absorption band at 2170 cm⁻¹ for the Ir-H vibration, and one at 2010 cm⁻¹ for the C=O vibration of the carbonyl ligand.^[13,14] Comparable spectroscopic data have been found for trans-[Ir(2- $C_6H_3F_2(F)(H)(CO)(PiPr_3)_2$] (**4b**) and trans-[Ir(2- $C_6H_3F_2(F)(H)(^{13}CO)(PiPr_3)_2$] (4b').

Treatment of a solution of **2a** with CO₂ showed initially no reactivity of **2a** towards CO₂. However, after several days the formation of *trans*-[Ir(4-C₅NF₄)(H){ κ^2 -(*O*, *O*)- O_2 COH}(PiPr_3)₂] (**5a**) could be detected by NMR spectroscopy (Scheme 2).^[14] We presume that in the presence of adventitious water the hydrido hydroxido complex *trans*-[Ir(4-C₅NF₄)(H)(OH)(PiPr_3)₂] was generated, which reacts rapidly with CO₂ to give **5a**, which was reported previously.^[14]

Tertiary silanes can be considered to be good reagents for the replacement of a fluorido by a hydrido ligand.^[22] Indeed, treatment of **2a** or **2b** with an excess amount of Ph₃SiH afforded the formation of Ph₃SiF and the corresponding dihydrido complexes *trans*-[Ir(Ar^F)(H)₂(P*i*Pr₃)₂] (**7a**: Ar^F = 4-C₅NF₄; **7b**: Ar^F = 2-C₆H₃F₂) (Scheme 3), which were described and characterized before.^[13] In addition to the signals of **7a** or **7b**, the ¹⁹F NMR spectra of the reaction mixtures showed a singlet at $\delta = -169.2$ ppm with ²⁹Si satellites (¹J_{F,Si} = 282.5 Hz) for Ph₃SiF.^[23] The presence of Ph₃SiF was also confirmed by an ¹H,²⁹Si HMBC NMR spectrum, which shows a doublet at δ (²⁹Si) = -3.5 ppm (¹J_{F,Si} = 284 Hz).^[23] Note that complex **4a** does not react with Ph₃SiH (Scheme 4).

Scheme 3. Reactivity of 2a towards Ph₃SiH and CH₃C(O)Cl.

Scheme 4. Reactivity of 4a towards CH₃(O)Cl.

Upon treatment of **2a** with acetyl chloride, a quantitative conversion occurs at room temperature within a few minutes. Acetyl fluoride and the hydrido chlorido complex *trans*-[Ir(4-C₅NF₄)(Cl)(H)(PiPr₃)₂] (**8a**) were detected by NMR spectroscopy (Scheme 3). The ³¹P{¹H} NMR spectrum shows a singlet at δ = 33.5 ppm for the phosphane ligands, which are in a mutual *trans* configuration. Four signals in the ¹⁹F NMR spectrum can be assigned to the fluorine atoms of the tetrafluoropyridyl ligand in **8a**. A quartet at δ = 48.6 ppm (³J_{H,F} = 7.2 Hz) indicates the presence of acetyl fluoride.^[24] In the ¹H NMR spectrum, a doublet of triplets at δ = -41.15 ppm (²J_{H,P} = 12.4 Hz, ⁴J_{H,F} = 5.7 Hz) can be found for the hydrido ligand.

A reaction of the fluorido hydrido carbonyl complex trans- $[Ir(4-C_5NF_4)(F)(H)(CO)(PiPr_3)_2]$ (4a) with acetyl chloride gave also acetyl fluoride and trans-[Ir(4- C_5NF_4 (Cl)(H)(CO)(PiPr_3)₂] (9a) (Scheme 4). A singlet at δ = 13.1 ppm in the ${}^{31}P{}^{1}H$ NMR spectrum of **9a** could be assigned to the phosphanes in a mutual trans position. Again four multiplets in the ¹⁹F{¹H} NMR spectrum indicate a restricted rotation of the tetrafluoropyridyl ligand about the Ir-C bond.^[13,16] The ¹H NMR spectrum of 9a shows a multiplet at $\delta = -7.99$ ppm, which simplifies to a triplet upon ¹⁹F decoupling (${}^{2}J_{H,P}$ = 16.2 Hz) and to a doublet upon ³¹P decoupling (${}^{4}J_{H,F}$ = 15.3 Hz). For the isotopomer *trans*-[Ir(4-C₅NF₄)(Cl)(H)(13 CO)(P*i*Pr₃)₂] (9a') a carbon-hydrogen coupling of 54.4 Hz indicates a trans arrangement of the hydrido and the carbonyl ligand. The IR spectrum of 9a displays two absorption bands at \tilde{v} = 2276 cm⁻¹ for the Ir–H moiety and at $\tilde{v} = 2015$ cm⁻¹ for the $C \equiv O$ vibration.

Conclusion

In this paper, we have reported the synthesis of the fluorido hydrido complexes *trans*-[Ir(Ar^F)(F)(H)(P*i*Pr₃)₂] (**2a**: Ar^F = 4-C₅NF₄; **2b**: Ar^F = 2-C₅H₃F₂) by oxidative addition of HF at *trans*-[Ir(Ar^F)(η^2 -C₂H₄)(P*i*Pr₃)₂] (**1a**: Ar^F = 4-C₅NF₄; **1b**: Ar^F = 2-C₆H₃F₂) species. Reactivity studies reveal that *trans*-[Ir(4-C₅NF₄)(F)(H)(P*i*Pr₃)₂] (**2a**) and its derivative *trans*-[Ir(4-C₅NF₄)(F)(H)(CO)(P*i*Pr₃)₂] (**4a**) act as a source of fluoride to convert acetyl chloride into acetyl fluoride. However, we did not observe the formation of C-H or C-F bonds by reductive elimination, whereas an HF elimination occurs from *trans*-[Ir(4-C₅NF₄)(F)(H)(CO)-(P*i*Pr₃)₂] (**4a**) to yield *trans*-[Ir(4-C₅NF₄)(CO)(P*i*Pr₃)₂] (**6a**).

Experimental Section

General: All experiments were performed with a Schlenk line under an atmosphere of argon or in an argon-filled glovebox with oxygen levels below 10 ppm. All solvents were dried by stirring with Na/K and then distilled under an atmosphere of argon. ¹³CO was commercially available from Sigma Aldrich. Compounds trans-[Ir(4- $C_5NF_4(\eta^2-C_2H_4)(PiPr_3)_2$ (1a) and *trans*-[Ir(2-C_6H_3F_2)(\eta^2- $C_2H_4)(PiPr_3)_2$] (1b) were prepared according to the literature.^[13] The NMR spectra were recorded with a Bruker DPX 300 NMR spectrometer at 298 K. The ¹H NMR spectroscopic chemical shifts were referenced to residual C_6D_5H at $\delta = 7.16$ ppm or $[D_7]THF$ at δ = 1.72 ppm. The ¹⁹F NMR spectra were referenced to external C_6F_6 at $\delta = -162.9$ ppm and the ³¹P{¹H} NMR spectra were referenced externally to H_3PO_4 at $\delta = 0.0$ ppm. Microanalyses were performed with a HEKAtech Euro EA elemental analyzer. Infrared spectra were recorded with a a Bruker Vertex 70 spectrometer equipped with an ATR unit (diamond).

trans-[**Ir**(4-**C**₅**NF**₄)(**F**)(**H**)(**PiPr**₃)₂] (2a): A solution of *trans*-[**Ir**(4-C₅**NF**₄)(η^2 -C₂H₄)($PiPr_3$)₂] (1a) (238 mg, 0.345 mmol) in THF (21 mL) was treated with Et₃N·3HF (23 µL, 0.141 mmol) at room temperature. The reaction mixture turned from dark red to orange. After stirring for 16 h, all the volatile compounds were removed under vacuum and the residue was then extracted with *n*-pentane (10 mL). The volatile compounds were evaporated under vacuum

from the extract and a yellow powder remained; yield 161 mg (68%). $C_{23}H_{43}F_3IrNP_2$ (682.75): calcd. C 40.46, H 6.35, N 2.05; found C 40.89, H 6.36, N 2.10. IR (ATR): $\tilde{v} = 455 \text{ cm}^{-1}$ (Ir–F). ¹H NMR (300.1 MHz, C_6D_6): $\delta = 2.17$ (dsept, ${}^{3}J_{H,H} = 7.1$, ${}^{2}J_{H,P} = 7.1$ Hz, 6 H, CH), 1.01 (dd, ${}^{3}J_{H,H} = 7.1$, ${}^{3}J_{H,P} = 7.1$ Hz, 18 H, CH₃), 0.98 (dd, ${}^{3}J_{H,H} = 7.1$, ${}^{3}J_{H,P} = 7.1$ Hz, 18 H, CH₃), 0.98 (dd, ${}^{2}J_{H,P} = 12.0$, ${}^{2}J_{H,F} = 12.1$, ${}^{4}J_{H,F} = 2.8$ Hz, 1 H, IrH); the coupling constants were obtained from ${}^{1}H\{{}^{19}F\}$ and ${}^{1}H\{{}^{31}P\}$ NMR spectra. ${}^{19}F\{{}^{1}H\}$ NMR (282.4 MHz, C₆D₆): $\delta = -98.8$ (m, 1 F), -102.3 (m, 1 F), -123.8 (m, 1 F), -126.4 (m, 1 F), -267.4 ppm (br. s, 1 F). ${}^{31}P\{{}^{1}H\}$ NMR (121.5 MHz, C₆D₆): $\delta = 39.5$ ppm (dd, ${}^{2}J_{F,P} = 16.3$, ${}^{4}J_{F,P} = 9.4$ Hz).

trans-[Ir(2-C₆H₃F₂)(F)(H)(PiPr₃)₂] (2b): Et₃N·3HF (150 μ L, 0.920 mmol) was added to a solution of *trans*-[Ir(2-C₆H₃F₂)(η^2 -C₂H₄)(P*i*Pr₃)₂] (1b) (300 mg, 0.459 mmol) in THF (20 mL). The solution turned from dark red to orange while being stirred at room temperature. After 16 h, all the volatile compounds were removed under vacuum and the residue was washed with *n*-pentane (10 mL) to yield 226 mg of an oily orange residue. The residue was then dissolved in THF (15 mL), and the solution was treated with CsF (798 mg, 5.253 mmol) at 323 K for 2 h to remove residual HF. After filtration, the volatile compounds were removed under vacuum from the filtrate. An orange oil remained; yield 221 mg (74%). ¹H NMR (300.1 MHz, C_6D_6): $\delta = 6.76-6.49$ (br. m, 3 H, 2- $C_6H_3F_2$), 2.35 (dsept, ${}^{3}J_{H,H} = 7.1$, ${}^{2}J_{H,P} = 7.1$ Hz, 6 H, CH), 1.15 (dd, ${}^{3}J_{H,H}$ = 7.1, ${}^{3}J_{H,P}$ = 7.1 Hz, 36 H, CH₃), -40.08 ppm (m, 1 H, IrH); the ${}^{3}J_{H,H}$ coupling constant was determined by a ${}^{31}P$ decoupling experiment. ¹⁹F{¹H} NMR (282.4 MHz, C_6D_6): $\delta = -88.3$ (m, 1 F), -91.3 (m, 1 F), -267.0 ppm (br. s, 1 F). ³¹P{¹H} NMR (121.5 MHz, C_6D_6): $\delta = 37.7 \text{ ppm} (dd, {}^2J_{F,P} = 17.2, {}^4J_{F,P} = 4.3 \text{ Hz}).$

trans-[Ir(4-C₅NF₄)(F)(H)(CO)(PiPr₃)₂] (4a): A solution of trans- $[Ir(4-C_5NF_4)(F)(H)(PiPr_3)_2]$ (2a) (21 mg, 0.031 mmol) in C₆D₆ (0.6 mL) was treated with CO gas at room temperature. The solution turned pale yellow within seconds. The NMR and IR spectra revealed a quantitative conversion into trans-[Ir(4-C5NF4)-(F)(H)(CO)(PiPr₃)₂] (4a). After storage at room temperature for several days, the formation of *trans*- $[Ir(4-C_5NF_4)(CO)(PiPr_3)_2]$ (6a) was detected in the reaction mixture. Analytical data for trans-[Ir(4-C₅NF₄)(F)(H)(CO)(P*i*Pr₃)₂] (4a): IR (ATR): \tilde{v} = 2170 (Ir–H), 2010 cm⁻¹ (C=O). ¹H NMR (300.1 MHz, C₆D₆): δ = 2.10 (dsept, ³J_{H,H} = 7.1, ${}^{2}J_{H,P}$ = 7.1 Hz, 6 H, CH), 1.03 (dd, ${}^{3}J_{H,H}$ = 7.1, ${}^{3}J_{H,P}$ = 7.1 Hz, 18 H, CH₃), 0.98 (dd, ${}^{3}J_{H,H} = 7.1$, ${}^{3}J_{H,P} = 7.1$ Hz, 18 H, CH₃), -5.90 ppm (tdd, ${}^{2}J_{H,P} = 15.2$, ${}^{2}J_{H,F} = 9.6$, ${}^{4}J_{H,F} = 14.8$ Hz, 1 H, IrH); the coupling constants were obtained from the ${}^{1}H{}^{31}P{}$ and ${}^{1}H{}^{19}F{}$ NMR spectra. ${}^{19}F{}^{1}H{}$ NMR (282.4 MHz, C₆D₆): δ = -98.5 (m, 1 F), -98.9 (m, 1 F), -109.4 (m, 1 F), -113.5 (m, 1 F), -444.3 ppm (br. s, 1 F). ³¹P{¹H} NMR (121.5 MHz, C₆D₆): δ = 21.4 ppm (d, ${}^{2}J_{EP}$ = 22.0 Hz). The isotopomer *trans*-[Ir(4- C_5NF_4 (F)(H)(¹³CO)(PiPr_3)₂] (4a') can be prepared analogously upon treatment of 2a with ¹³CO. Analytical data for 4a': ¹H NMR (300.1 MHz, C₆D₆): δ = 2.10 (dsept, ³J_{H,H} = 7.1, ²J_{H,P} = 7.1 Hz, 6 H, CH), 1.03 (dd, ${}^{3}J_{H,H} = 7.1$, ${}^{3}J_{H,P} = 7.1$ Hz, 18 H, CH₃), 0.98 (dd, ${}^{3}J_{H,H} = 7.1$, ${}^{3}J_{H,P} = 7.1$ Hz, 18 H, CH₃), -5.90 ppm (tddd, ${}^{2}J_{\text{H,C}} = 53.0, \, {}^{2}J_{\text{H,P}} = 15.2, \, {}^{2}J_{\text{H,F}} = 9.6, \, {}^{4}J_{\text{H,F}} = 14.8 \text{ Hz}, \, 1 \text{ H}, \text{ IrH});$ the coupling constants were obtained from the ${}^{1}H{}^{31}P{}$ and ¹H{¹⁹F} NMR spectra. ³¹P{¹H} NMR (121.5 MHz, C₆D₆): $\delta =$ 21.4 ppm (dd, ${}^{2}J_{EP} = 22.0$, ${}^{2}J_{CP} = 6.2$ Hz). Complex **6a** was identified by comparison of the NMR spectroscopic data with the literature data.[13]

trans-[Ir(2-C₆H₃F₂)(F)(H)(CO)(PiPr₃)₂] (4b): A slow stream of CO was bubbled through a solution of *trans*-[Ir(2-C₆H₃F₂)-(F)(H)(PiPr₃)₂] (2b) (175 mg, 0.271 mmol) in THF (5 mL) at room

temperature. The solution turned from yellow to pale yellow within seconds. All volatile compounds were removed under vacuum to yield a yellow residue; yield 170 mg (93%). IR (ATR): $\tilde{v} = 2209$ (Ir–H), 2003 cm⁻¹ (C=O). ¹H NMR (300.1 MHz, C₆D₆): $\delta = 6.76-6.49$ (br. m, 3 H, 2-C₆H₃F₂), 2.28 (dsept, ³J_{H,H} = 7.1, ²J_{H,P} = 7.1 Hz, 6 H, CH), 1.19 (dd, ³J_{H,H} = 7.1, ³J_{H,P} = 7.1 Hz, 18 H, CH₃), 1.10 (dd, ³J_{H,H} = 7.1, ³J_{H,P} = 7.1 Hz, 18 H, CH₃), 1.10 (dd, ³J_{H,H} = 9.3, ⁴J_{H,F} = 14.0, 1 H, IrH); the coupling constants were obtained from the ¹H{³¹P} and ¹H{¹⁹F} NMR spectra. ¹⁹F NMR (282.4 MHz, C₆D₆): $\delta = -73.4$ (m, 1 F), -76.8 (m, 1 F), -441.0 (br. s, 1 F). ³¹P{¹H} NMR (121.5 MHz, C₆D₆): $\delta = 20.0$ (d, ²J_{F,P} = 19.5 Hz). Treatment with ¹³CO forms the isotopomer *trans*-[Ir(2-C₆H₃F₂)(F)(H)(¹³CO)(P*i*Pr₃)₂] (**4b**'). ³¹P{¹H} NMR for **4b**' (121.5 MHz, C₆D₆): $\delta = 20.7$ ppm (dd, ²J_{F,P} = 19.3, ²J_{C,P} = 6.0 Hz).

Treatment of *trans*-[Ir(4-C₅NF₄)(F)(H)(PiPr₃)₂] (2a) with Ph₃SiH: Compound 2a (6 mg, 0.009 mmol) was dissolved in C₆D₆ (0.7 mL). Then Ph₃SiH (15 mg, 0.058 mmol) was added to the solution, which turned from yellow to orange within minutes. *cis–trans*-[Ir(4-C₅NF₄)(H)₂(PiPr₃)₂] (7a) and Ph₃SiF could be detected by NMR spectroscopy. Complex 7a was identified by comparison of the NMR spectroscopic data with the literature data.^[13] Analytical data for Ph₃SiF: ¹⁹F NMR (282.4 MHz, C₆D₆): δ = –169.2 ppm (s, with ²⁹Si satellites, ¹J_{F,Si} = 282.5 Hz). ¹H,²⁹Si HMBC (79.5 MHz, C₆D₆): δ (²⁹Si,¹H) = –3.5/7.7 ppm (d, ¹J_{F,Si} = 284 Hz); **2b** reacts with Ph₃SiH in a similar manner to form Ph₃SiF and **7b**.

Treatment of *trans*-[Ir(4-C₅NF₄)(F)(H)(PiPr₃)₂] (2a) with CH₃C-(O)Cl: CH₃C(O)Cl (6 μL, 0.084 mmol) was added to a solution of 2a (53 mg, 0.078 mmol) in THF (12 mL). NMR spectra of the mixture revealed the presence of *trans*-[Ir(4-C₅NF₄)(Cl)(H)(PiPr₃)₂] (8a) and CH₃C(O)F only. Compound 8a was isolated by evaporation of the volatile compounds from the reaction mixture. Analytical data for 8a: C₂₃H₄₃ClF₄IrNP₂ (699.21): calcd. C 39.51, H 6.20, N 2.00; found C 39.17, H 6.29, N 1.49. ¹H NMR (300.1 MHz, C₆D₆): $\delta = 2.34$ (dsept, ³J_{H,H} = 7.1, ²J_{H,P} = 7.1 Hz, 6 H, CH), 0.98 (dd, ³J_{H,H} = 7.1, ³J_{H,P} = 7.1 Hz, 36 H, CH₃), -41.15 ppm (dt, ²J_{H,P} = 12.4, ⁴J_{H,F} = 5.7 Hz, 1 H, IrH). ¹⁹F NMR (282.4 MHz, C₆D₆): $\delta = -99.5$ (m, 1 F), -101.3 (m, 1 F), -121.6 (m, 1 F), -127.6 ppm (m, 1 F). ³¹P{¹H} NMR (121.5 MHz, C₆D₆): $\delta = 33.5$ ppm (s). Analytical data for CH₃C(O)F: ¹⁹F NMR (282.4 MHz, C₆D₆): $\delta = 48.6$ ppm (q, ³J_{H,F} = 7.2 Hz).

Treatment of *trans*-[Ir(4-C₅NF₄)(F)(H)(CO)(PiPr₃)₂] (4a) with CH₃C(O)CI: A solution of 4a (18 mg, 0.025 mmol) in C₆D₆ (0.7 mL) was treated with CH₃C(O)Cl (2 μL, 0.028 mmol). The quantitative formation of *trans*-[Ir(4-C₅NF₄)(Cl)(H)(PiPr₃)₂] (9a) and CH₃C(O)F was detected by NMR spectroscopy. Evaporation of the volatile compounds afforded complex 9a as a pale yellow powder. Analytical data for 9a: C₂₄H₄₃ClF₄IrNOP₂ (727.22): calcd. C 39.64, H 5.96, N 1.93; found C 39.68, H 6.48, N 1.93. IR (ATR): $\tilde{v} = 2276$ (Ir–H), 2015 cm⁻¹ (C=O). ¹H NMR (300.1 MHz, C₆D₆): $\delta = 2.16$ (dsept, ³J_{H,H} = 7.1, ²J_{H,P} = 7.1 Hz, 6 H, CH), 1.06 (dd, ³J_{H,H} = 7.1, ³J_{H,P} = 7.1 Hz, 18 H, CH₃), 0.95 (dd, ³J_{H,H} = 7.1, ³J_{H,P} = 7.1 Hz, 18 H, CH₃), 0.95 (dd, ³J_{H,H} = 7.1, ³J_{H,P} = 7.1 Hz, 18 H, CH₃), -7.99 ppm (dt, ²J_{H,P} = 16.2, ⁴J_{H,F} = 15.3 Hz, 1 H, IrH). ¹⁹F NMR (282.4 MHz, C₆D₆): $\delta = -97.4$ (m, 1 F), -97.8 (m, 1 F), -105.4 (m, 1 F), -110.0 ppm (m, 1 F). ³¹P{¹H} NMR (121.5 MHz, C₆D₆): $\delta = 13.1$ ppm (s).

Structure Determination: Yellow crystals of **2a** were obtained by slow evaporation of the solvent from an *n*-pentane solution at 243 K. Suitable crystals of **2b** were grown from an *n*-hexane solution at room temperature. The diffraction data were collected with a STOE IPDS 2 Θ diffractometer at 100 K. Crystallographic data are depicted in Table 2. The structures were solved with direct methods

(SHELXTL PLUS or SIR97) and refined with the full-matrix leastsquares method on F^2 (SHELXL-97).^[25] Hydrogen atoms were placed at calculated positions and refined using a riding model. The hydrogen atoms bound at iridium were not located.

Table 2. Crystallographic data.

	2a	2b
Crystal dimensions [mm ³]	$0.07 \times 0.06 \times 0.05$	$0.32 \times 0.30 \times 0.08$
Crystal colour	orange	yellow
Empirical formula	C ₂₃ H ₄₃ F ₅ IrNP ₂	$C_{24}H_{46}F_3IrP_2$
$M_{\rm r}$	682.75	645.78
Crystal system	monoclinic	triclinic
Space group	$P2_1/n$	$P\overline{1}$
<i>a</i> [Å]	9.2726(2)	8.3249(3)
<i>b</i> [Å]	24.0899(4)	10.2917(3)
c [Å]	11.8937(3)	16.4867(5)
a [°]	_	79.991(2)
β [°]	90.025(2)	83.239(3)
γ [°]	-	71.438(2)
V [Å ³]	2656.77(10)	1315.73(7)
Z	4	2
$D_{\text{calcd.}} [\text{mg}\text{m}^{-3}]$	1.707	1.630
μ (Mo- K_{α}) [mm ⁻¹]	5.193	5.226
θ range [°]	2.35 to 30.49	2.11 to 29.18
Reflns. collected	15607	24890
Indep. reflns.	8092	7075
R _{int}	0.0289	0.1067
Completeness	99.7	99.5
Absorption correction	numerical	numerical
GoF on F^2	0.992	1.126
R_1 , w R_2 (all data)	0.0418, 0.0785	0.0247, 0.0670
$R_1, WR_2 [I_0 > 2\sigma(I_0)]$	0.0316, 0.0758	0.0225, 0.0664
Max diff. peak/hole [eÅ ⁻³]	1.363 / -2.404	1.204 / -3.237

CCDC-841984 (for **2a**) and -841983 (for **2b**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supporting Information (see footnote on the first page of this article): Computational details for **2a** and **2b** for this article is available.

Acknowledgments

The authors gratefully acknowledge support from the GRK "Fluorine as a Key Element" funded by the Deutsche Forschungsgemeinschaft. We would like to thank Dr. B. Braun and Dr. S. Mebs for helpful discussions concerning the X-ray crystal-structure analyses as well as Prof. B. Paulus (FU Berlin) for support with the DFT calculations. We acknowledge D. Warner, L. Zámostná and T. Ahrens for experimental assistance.

- a) N. M. Doherty, N. W. Hoffman, Chem. Rev. 1991, 91, 553– 573; b) E. F. Murphy, R. Murugavel, H. W. Roesky, Chem. Rev. 1997, 97, 3425–3468; c) H. W. Roesky, I. Haiduc, J. Chem. Soc., Dalton Trans. 1999, 2249–2264; d) A. Mezzetti, C. Becker, Helv. Chim. Acta 2002, 85, 2686–2703; e) V. V. Grushin, Acc. Chem. Res. 2010, 43, 160–171.
- [2] Reviews on C-F bond activations: a) J. L. Kiplinger, T. G. Richmond, C. E. Osterberg, *Chem. Rev.* **1994**, *94*, 373-431; b) J. Burdeniuc, B. Jedlicka, R. H. Crabtree, *Chem. Ber./Recueil* **1997**, *130*, 145–154; c) T. G. Richmond, *Angew. Chem.* **2000**, *112*, 3378–3380; *Angew. Chem. Int. Ed.* **2000**, *39*, 3241–3244; d) T. Braun, R. N. Perutz, *Chem. Commun.* **2002**, 2749–2757; e) W. D. Jones, *Dalton Trans.* **2003**, 3991–3995; f) U. Mazurek, H. Schwarz, *Chem. Commun.* **2003**, 1321–1326; g) H. Torrens,

Coord. Chem. Rev. 2005, 249, 1957–1985; h) R. N. Perutz, T. Braun, Comprehensive Organometallic Chemistry III, Vol. 1 (Eds.: R. H. Crabtree, M. P. Mingos), Elsevier, Oxford 2007, p. 725; i) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183; j) G. Meier, T. Braun, Angew. Chem. 2009, 121, 1575–1577; Angew. Chem. Int. Ed. 2009, 48, 1546–1548; k) R. P. Hughes, Eur. J. Inorg. Chem. 2009, 4591–4606; l) T. G. Driver, Angew. Chem. 2009, 121, 8116–8119; Angew. Chem. Int. Ed. 2009, 48, 7974–7976; m) A. D. Sun, J. A. Love, Dalton Trans. 2010, 39, 10362–10374; n) T. Braun, F. Wehmeier, Eur. J. Inorg. Chem. 2011, 613–625; o) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333–348.

- [3] For transition-metal-mediated fluorination reactions, see, for example: a) E. M. Carreira, B. L. Pagenkopf, *Chem. Eur. J.* 1999, 5, 3437–3442; b) V. V. Grushin, *Chem. Eur. J.* 2002, 8, 1007–1014; c) C. Bobbio, V. Gouverneur, *Org. Biomol. Chem.* 2006, 4, 2065–2075; d) T. Furuya, J. E. M. N. Klein, T. Ritter, *Synthesis* 2010, *11*, 1804–1821; e) T. W. Lyons, M. S. Sanford, *Chem. Rev.* 2010, *110*, 1147–1169; f) T. Furuya, A. S. Kamlet, T. Ritter, *Nature* 2011, *473*, 470–477; g) J. M. Brown, V. Gouverneur, *Angew. Chem.* 2009, *121*, 8762–8766; *Angew. Chem. Int. Ed.* 2009, *48*, 8610–8614.
- [4] a) L. Hintermann, F. Läng, P. Maire, A. Togni, Eur. J. Inorg. Chem. 2006, 1396–1412; b) K. L. Hull, W. Q. Anani, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 7134–7135; c) J. A. Akana, K. X. Bhattacharyya, P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2007, 129, 7736–7737; d) T. Furuya, H. M. Kaiser, T. Ritter, Angew. Chem. 2008, 120, 6082–6085; Angew. Chem. Int. Ed. 2008, 47, 5993–5996; e) T. Furuya, T. Ritter, J. Am. Chem. Soc. 2008, 130, 10060–10061; f) X. Wang, T.-S. Mei, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 7520–7521; g) W. Wang, J. Jasinski, G. B. Hammond, B. Xu, Angew. Chem. 2010, 122, 7405– 7410; Angew. Chem. Int. Ed. 2010, 49, 7247–7252; h) C. Hollingworth, A. Hazari, M. N. Hopkinson, M. Tredwell, E. Benedetto, M. Huiban, A. D. Gee, J. M. Brown, V. Gouverneur, Angew. Chem. 2011, 123, 2661–2665; Angew. Chem. Int. Ed. 2011, 50, 2613–2617.
- [5] a) J. E. Veltheer, P. Burger, R. G. Bergman, J. Am. Chem. Soc. 1995, 117, 12478–12488; b) P. Barthazy, L. Hintermann, R. M. Stoop, M. Wörle, A. Mezzetti, A. Togni, Helv. Chim. Acta 1999, 82, 2448–2453; c) P. Barthazy, R. M. Stoop, M. Wörle, A. Togni, A. Mezzetti, Organometallics 2000, 19, 2844–2852; d) P. Barthazy, A. Togni, A. Mezzetti, Organometallics 2001, 20, 3472–3477.
- [6] a) W. J. Marshall, V. V. Grushin, Organometallics 2003, 22, 555–562; b) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2004, 126, 3068–3069; c) W. J. Marshall, V. V. Grushin, Organometallics 2004, 23, 3343–3347; d) S. A. McGregor, D. C. Roe, W. J. Marshall, K. M. Bloch, V. I. Bakhmutov, V. V. Grushin, J. Am. Chem. Soc. 2005, 127, 15304–15321; e) D. V. Yandulov, N. T. Tran, J. Am. Chem. Soc. 2007, 129, 1342–1358; f) V. V. Grushin, W. J. Marshall, Organometallics 2007, 26, 4997–5002; g) T. Furuya, T. Ritter, J. Am. Chem. Soc. 2008, 130, 10060–10061; h) A. W. Kaspi, A. Yahav-Levi, I. Goldberg, A. Vigalok, Inorg. Chem. 2008, 47, 5–7; i) N. D. Ball, M. S. Sanford, J. Am. Chem. Soc. 2009, 131, 3796–3797.
- [7] D. A. Watson, M. Su, G. Teverovkiy, Y. Zhang, J. Garzía-Fortanet, T. Kinzel, S. L. Buchwald, *Science* 2009, 325, 1661–1664.
- [8] a) M. Reinhold, J. E. McGrady, R. N. Perutz, J. Am. Chem. Soc. 2004, 126, 5268–5276; b) N. A. Jasim, R. N. Perutz, A. C. Whitwood, T. Braun, J. Izundu, B. Neumann, S. Rothfeld, H.-G. Stammler, Organometallics 2004, 23, 6140–6149; c) A. Steffen, M. I. Sladek, T. Braun, B. Neumann, H.-G. Stammler, Organometallics 2005, 24, 4057–4064; d) S. Burling, P. I. P. Elliott, N. A. Jasim, R. J. Lindup, J. McKenna, R. N. Perutz, S. J. Archibald, A. C. Whitwood, Dalton Trans. 2005, 3686–3695; e) T. Schaub, M. Backes, U. Radius, J. Am. Chem. Soc. 2006, 128, 15964–159645; f) T. Braun, J. Izundu, A. Steffen, B. Neumann, H.-G. Stammler, Dalton Trans. 2006, 5118–5123; g) T. Wang,

FULL PAPER

- B. J. Alfonso, J. A. Love, Org. Lett. 2007, 9, 5629-5631; h) T. Schaub, P. Fischer, A. Steffen, T. Braun, U. Radius, A. Mix, J. Am. Chem. Soc. 2008, 130, 9304-9317; i) S. A. Johnson, C. W. Huff, F. Mustafa, M. Saliba, J. Am. Chem. Soc. 2008, 130, 17278-17280; j) A. Nova, S. Erhardt, N. A. Jasim, R. N. Perutz, S. A. Macgregor, J. E. McGrady, A. C. Whitwoord, J. Am. Chem. Soc. 2008, 130, 15490-15498; k) T. Wang, J. A. Love, Organometallics 2008, 27, 3290-3296; 1) H. L. Buckley, A. D. Sun, J. A. Love, Organometallics 2009, 28, 6622-6624; m) H. L. Buckley, T. Wang, O. Tran, J. A. Love, Organometallics 2009, 28, 2356–2359; n) S. A. Johnson, E. T. Taylor, S. J. Cruise, Organometallics 2009, 28, 3842-3655; o) M. E. Doster, S. A. Johnson, Angew. Chem. 2009, 121, 2219-2221; Angew. Chem. Int. Ed. 2009, 48, 2185-2187; p) A. Nova, M. Reinhold, R. N. Perutz, S. A. Macgregor, J. E. McGrady, Organometallics 2010, 29, 1824-1831; q) M. R. Cargill, G. Sandford, A. J. Tadeusiak, D. S. Yufit, J. A. K. Howard, P. Kilickiran, G. Nelles, J. Org. Chem. 2010, 75, 5860-5866; r) D. Breyer, T. Braun, A. Penner, Dalton Trans. 2010, 39, 7513-7520.
- [9] a) A. J. Blake, R. W. Cockman, E. A. V. Ebsworth, J. H. Holloway, J. Chem. Soc., Chem. Commun. 1988, 529–530; b) E. A. V. Ebsworth, N. Robertson, L. J. Yellowlees, J. Chem. Soc., Dalton Trans. 1993, 1031–1038; c) S. A. Brewer, K. S. Coleman, J. Fawcett, J. H. Holloway, E. G. Hope, D. R. Russell, P. G. Watson, J. Chem. Soc., Dalton Trans. 1995, 1073–1076; d) A. Yahav, I. Goldberg, A. Vigalok, J. Am. Chem. Soc. 2003, 125, 13634–13635; e) A. Yahav, I. Goldberg, A. Vigalok, Inorg. Chem. 2005, 44, 1547–1553; f) A. W. Kaspi, A. Yahav, I. Goldberg, A. Vigalok, J. Goldberg, A. Vigalok, Inorg. Chem. 2008, 47, 5–7; g) T. Furuya, T. Ritter, J. Am. Chem. Soc. 2008, 130, 10060–10061; h) J. Fawcett, D. A. J. Harding, E. G. Hope, Dalton Trans. 2010, 39, 5827–5832.
- [10] a) K. S. Coleman, J. Fawcett, J. H. Holloway, E. G. Hope, R. Nassar, J. Fluorine Chem. 2001, 112, 185–189; b) K. Seppelt, *Inorg. Chem.* 2003, 42, 7116–7122.
- [11] a) K. S. Coleman, J. H. Holloway, E. G. Hope, J. Langer, J. Chem. Soc., Dalton Trans. 1997, 39, 4555–4559; b) J. Gil-Rubio, B. Weberndörfer, H. Werner, J. Chem. Soc., Dalton Trans. 1999, 1437–1444; c) M. Gorol, N. C. Mösch-Zanetti, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, Eur. J. Inorg. Chem. 2004, 2678–2682.
- [12] a) A. C. Cooper, K. Folting, J. C. Huffman, K. G. Caulton, Organometallics 1997, 16, 505–507; b) C. Becker, I. Kieltsch, D. Broggini, A. Mezzetti, Inorg. Chem. 2003, 42, 8417–8429; c) C. J. Bourgeois, S. A. Garratt, R. P. Hughes, R. B. Larichev, J. M. Smith, A. J. Ward, S. Willemsen, D. Zhang, A. G. DiPasquale, L. N. Zakharov, A. L. Rheingold, Organometallics 2006, 25, 3474–3480; d) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128, 12644–12645; e) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2009, 131, 918–919; f) T. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang, W. A. Goddard, T. Ritter, J. Am. Chem. Soc. 2010, 132, 3793–3807; g) N. D. Ball, J. W. Kampf, M. S. Sanford, Dalton Trans. 2010, 39, 632–640; h) A. Rossin, M. Peruzzini, F. Zanobini, Dalton Trans. 2011, 40, 4447–4452.
- [13] M. Ahijado Salomon, T. Braun, I. Krossing, Dalton Trans. 2008, 5197–5206.

- [14] P. Kläring, S. Pahl, T. Braun, A. Penner, *Dalton Trans.* 2011, 40, 6785–6791.
- [15] For a possible hydrolysis of fluorido complexes, see: M. C. Pilon, V. V. Grushin, *Organometallics* **1998**, *17*, 1774–1781.
- [16] a) M. Ahijado, T. Braun, Angew. Chem. 2008, 120, 2996–3000; Angew. Chem. Int. Ed. 2008, 47, 2954–2958; b) G. Meier, T. Braun, Angew. Chem. 2011, 123, 3338–3342; Angew. Chem. Int. Ed. 2011, 50, 3380–3384; c) M. Ahijado Salomon, A.-K. Jungton, T. Braun, Dalton Trans. 2009, 7669–7677; d) M. Ahijado Salomon, T. Braun, A. Penner, Angew. Chem. 2008, 120, 8999–9003; Angew. Chem. Int. Ed. 2008, 47, 8867–8871.
- [17] a) J. Fawcett, D. A. J. Harding, E. G. Hope, K. Singh, G. A. Solan, *Dalton Trans.* 2010, *39*, 10781–10789; b) J. Choi, D. Y. Wang, S. Kundu, Y. Choliy, T. J. Emge, K. Krogh-Jespersen, A. S. Goldman, *Science* 2011, *332*, 1545–1548.
- [18] G. Socrates, Infrared and Raman Characteristic Group Frequencies, Wiley, 2001, New York, p. 305.
- [19] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349–1356.
- [20] a) D. Noveski, T. Braun, B. Neumann, A. Stammler, H.-G. Stammler, *Dalton Trans.* 2004, 4106–4119; b) T. Braun, D. Noveski, M. Ahijado, F. Wehmeier, *Dalton Trans.* 2007, 3820–5125; c) M. Teltewskoi, J. A. Panetier, S. A. Macgregor, T. Braun, *Angew. Chem.* 2010, *122*, 4039–4043; *Angew. Chem. Int. Ed.* 2010, *49*, 3947–3951.
- [21] A. S. Goldman, J. Halpern, J. Organomet. Chem. 1990, 382, 37–253.
- [22] a) D. Noveski, T. Braun, M. Schulte, B. Neumann, H.-G. Stammler, *Dalton Trans.* 2003, 4075–4083; b) M. Aizenberg, D. Milstein, *Science* 1994, 265, 359–361; c) T. Braun, F. Wehmeier, K. Altenhöner, *Angew. Chem.* 2007, 119, 5415–5418; *Angew. Chem. Int. Ed.* 2007, 46, 5321–5324; d) M. F. Kühnel, D. Lentz, *Angew. Chem.* 2010, 122, 2995–2998; *Angew. Chem. Int. Ed.* 2010, 49, 2933–2936; e) D. Noveski, T. Braun, S. Krückemeier, *J. Fluorine Chem.* 2003, 125, 959–966.
- [23] a) C. Blankenship, S. E. Cremer, J. Organomet. Chem. 1989, 371, 19–30; b) P. D. Lickiss, R. Lucas, J. Organomet. Chem. 1996, 510, 167–172; c) O. Farooq, J. Chem. Soc. Perkin Trans. 1 1998, 661–665; d) R. J. Lindup, T. B. Marder, R. N. Perutz, A. C. Whitwood, Chem. Commun. 2007, 3664–3666.
- [24] a) L. J. Krause, J. A. Morrison, J. Am. Chem. Soc. 1981, 103, 2995–3001; b) A. Haas, T. Maciej, J. Fluorine Chem. 1982, 20, 581–588; c) W. Dmowski, M. Kaminski, J. Fluorine Chem. 1983, 23, 219–228; d) P. E. Hansen, F. M. Nicolaisen, K. Schaumburg, J. Am. Chem. Soc. 1986, 108, 625–629; e) I. D. Gridnev, A. V. Shastin, E. S. Balenkova, Tetrahedron 1991, 47, 5577–5584; f) R. Wagner, B. Wiedel, W. Guenther, H. Goerls, E. Anders, Eur. J. Org. Chem. 1999, 9, 2383–2390.
- [25] a) SHELXTL-PLUS, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1990; G. M. Sheldrick, Acta Crystallogr, Sect. A: Found. Crystallogr. 2008, 64, 112; b) G. Cascarano, A. Altomare, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, D. Sigli, M. C. Burla, G. Polidori, M. Camalli, Acta Crystallogr, Sect. A 1996, 52, C79.

Received: August 31, 2011

Published Online: December 21, 2011