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Abstract

We report herein two novel tetraphenyl silicon derivatives,
bis(4-(dibenzo[b,d]thiophen-4-yl)phenyl)diphenylsilane (DBTSIDBT) and bis(4-
(dibenzo[b,d]furan-4-yl)phenyl)diphenylsilane (DBFSIDBF) achieved by coupling
dibenzothiophene  (DBT) and  dibenzofuran  (DBF)  moieties  with
bis(4-bromophenyl)diphenylsilane. This linking strategy raises the triplet energy,
glass transition temperature (Tg) and thermal stability of DBTSIDBT and DBFSIDBF.
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Therefore, they can serve as hosts, producing phosphorescence at high efficiency in
organic light-emitting diodes. Consequently, (2-phenylpyridine) iridium(111) (Ir(ppy)s)
based phosphorescence organic light-emitting diodes (PHOLEDs) with green
emission were designed by applying DBTSIDBT and DBFSIDBF as host materials.
The champion external quantum efficiency (EQE) and maximum luminance of the
devices were 24.5% and over 27000 cd/m? respectively.

Keywords:

Dibenzothiophene, Dibenzofuran, Organosilicon derivatives, Host material, High
triplet energy, Green phosphorescent organic light-emitting diode
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Abstract: We report herein two novel tetraphenyl silicon rigatives,
bis(4-(dibenzo[b,d]thiophen-4-yl)phenyl)diphenydsie DOBTSIDBT) and bis(4-
(dibenzo[b,d]furan-4-yl)phenyl)diphenylsilandBFSIDBF) achieved by coupling
dibenzothiophene  (DBT) and dibenzofuran (DBF) meget with
bis(4-bromophenyl)diphenylsilane. These two compisushow high triplet energy
states, high glass transition temperatufg) (and high decomposition temperature
(Td). Therefore, they can serve as hosts in orgagit-emitting diodes. Consequently,
(2-phenylpyridine) iridium(lll)  (Ir(ppy3) based phosphorescence organic
light-emitting diodes (PHOLEDSs) with green emissigere studied wittbBTSIDBT
andDBFSIDBF as host materials. The champion external quanftimeacy (EQE)
and maximum luminance of the devices were 24.5% amer 27000 cd/f



respectively.
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1. Intruduction

Organic light emitting diodes (OLEDs) emerged ahbibuée decades ago as a new
luminescent technology [1], and much progress leas lachieved since then. OLEDs
could be applied in display and lightening. Comdaneth traditional technologies,
OLEDs have many advantages such as thin and fesiplcture, wide view angle,
fast response and decent transparency. Theref&tED® can be used in various
applications [2-8]. However, OLEDs are not stalwe & prolonged period and this
remains one of the problems that needs to be aghtie® achieve a long device
lifetime [9-11]. Within a typical fluorescence OLEIMe ratio of singlet) and triplet
(T) excitons is 1:3. Therefore, the internal quaneffitiency (IQE) does not exceed
25% and the maximum EQE is less than 5% despitéoitg-term stability. The
discovery of phosphorescent emitters has facititatiee achievement of highly
efficient OLEDs with the utilization of both singland triplet excitons [12]. To date,
low energy PHOLEDs (e.g. orange and red PHOLEDsE lexhibited remarkable
performances [13-16]. However, achieving high epeHOLEDs (e.g. blue
PHOLEDS) is still a challenge. The reasons are rgias follows [9-11]: i) the
availability of high efficiency and long lifetimehpsphors is limited. The available
conventional phosphors lack long-term stability.abidition, PHOLEDs may change
their EL spectra with diffenrent driving voltagé.In order to match the energy levels
of the blue and green phosphors, the host mateerdis to exhibit wide energy gap.
This makes the preparation of such a material tdienge. In addition, these kinds
of host materials often possess deep highest cadupblecular orbital (HOMO) as
well as shallow lowest unoccupied molecular orbi(alUMO). This increases
injection barriers for electrons as well as holése device therefore needs much
higher driving voltage which will further limit theapplication of PHOLEDSs.
Therefore, a long-lasting and high-efficiency OLEDstill on the wish list with no
satisfying solution in sight. Since host materis¢ésve as the dispersion matrix for
phosphor emitters, it is imperative to develop higéffecient host materials for

practical application of PHOLEDs. To meet this riegoent, some semi-empirical



principles have to be established. These included ghermal and morphological
stability, appropriate HOMO/LUMO levels, optimalarge transport and high triplet
energy [9-11]. The design protocol to raise theleti energy of a host material
includes: i) to incorporate the high triplet enengyieties e.g. arylsilane [17-21],
dibenzofuran [22-29], dibenzothiophene [22,30-3kiprene [37-41], and carbazole
[42-44] into host material; ii) to restrain the gagation length in the host material.
Silicon [17-21], phosphine oxide [40] and3sparbon [45] effectively interrupt
intramolecular-conjugation and are commonly adopted for this psep Also,
sterically hindered structures as wellaagho or meta linking strategies can be used to
minimize the conjugation length. This design pnihei has been applied over the
years to develop many highly efficient host materja2,39-44].

In this work, by linking a tetraphenyl silicon bdithg block with dibenzothiophene
(DBT) and dibenzofuran (DBF) units, two new hosttenials exhibiting elevated
glass-transition temperature and triplet energyeweepared. The new host materials
are bis(4-(dibenzdjd]thiophen-4-yl)phenyl)diphenylsilane DBTSIDBT) and
bis(4-(dibenzdp,d]furan-4-yl)phenyl) diphenylsilane  DBFSIDBF). The
silicon-bridge is capable of facilitating transfef energy from host to guest for
smaller steric hindrance. As result, highly effitiegreen PHOLEDs with
(2-phenylpyridine) iridium(lll) (Ir(ppy3) as emitter were realized using the novel host
materials with maximum EQE of 24.5% and luminaneer@®7000 cd/h

3. Results and Discussion
3.1 Syntheses and Characterization

Scheme 1 outlines the preparation steps for bis(4-(dibebzijfhiophen-4-yl)
phenyl)diphenylsilane OBTSIDBT) and bis(4-(dibenzfd]furan-4-yl)phenyl)
diphenylsilane DBFSIDBF). 1,4-Dibromobenzene and dichlorodiphenylsilaneewe
used as precursors for the synthesis of the inthiate
bis(4-bromophenyl)diphenylsilane. Finally, the &trgroducts were obtained in good
yield by one step Suzuki—Miyaura coupling reactrath appropriate boronic acids of
dibenzothiophene (DBT) and dibenzofuran (DBF).

3.2 Thermal Analyses
Thermogravimetric analysis (TGA) as well as diffegral scanning calorimetry
(DSC) were conducted to determine the thermal cleniatics ofDBTSIDBT and



DBFSIDBF. Figure 1 shows that the two compounds possess high thestaaility.
The Ty was measured as 12¢ for DBTSIDBT, while DBFSIDBF shows slightly
lower Ty of 102°C. TheT, data for these materials show a slight differewbéch
may be ascribed to the similarities in their molacweight and molecular structure.
DBTSIDBT and DBFSIDBF also showedryof 474 and 429C respectively at 5%
weight loss. Thdys exhibit a similar trend to theli data.

3.3 Optoelectronic Properties

Figure 3 presents the room temperature UV-vis absorption Rhdspectra of
DBTSIDBT and DBFSIDBF in dichloromethane as well as their phosphorescenc
(Phos) spectra at 77 K in 2-methyltetrahydrofurédiMeTHF). The detailed
parameters are presentedTiable 1. DBTSIDBT and DBFSIDBF exhibit similar
absorption feature. Nonetheless, the maximum abeargravelengths (Ab&may) as
well as the absorption onset of DBT-based compoanelsed-shifted by 16 nm with
respect to those of the DBF-based analogue. Therethe band gapEf) of
DBTSIDBT (3.59 eV) is narrower than that BBFSIDBF (3.77 €V). On the other
hand, DBTSIDBT and DBFSIDBF exhibited very similarPL characteristics. The
similar and structureless PL curves might be duetheir similar molecular
configuration [22]. As shown in their Phos specttBTSIDBT and DBFSIDBF
exhibit well defined vibronic bands with the highealues at 464 nm and 460 nm and
triplet energiesHy) of 2.67 and 2.70 eV respectively. Due to theitatle and high
levels of Er, these compounds could serve as host materialsh@sphorescent
OLEDs.

3.4 DFT Simulation.

The electronic distributions @BTSDBT andDBFSIDBF were further elucidated
by simulating their FMO spatial distributions thgbu DFT calculations at a
B3LYP/6-31G(d) levelFigure 3 presents the spatial distributions of the higlaest
lowest frontier molecular orbitals of these hostenals. These two materials exhibit
similar distributions of LUMO and HOMO. The HOMOsf ®BTSIDBT and
DBFSIDBF are localized on the DBF and DBT unit, respecyivahd the LUMOs

spread across the molecular backbone.

3.5 FMO Energy Levels
To obtain energy levels of these materials, th&édMD levels were evaluated via



UPS analysed-igure 4 presents the UPS spectra@BTSIDBT and DBFSIDBF.
The HOMOs can be extracted using the equatifvo = hv — Ex, where,hv is
photon energy (He lhv = 21.22 eV) andg, is kinetic energy of photo-electrons.
LUMOs can be evaluated using equati@iuvo = Eg + Enomo, Egy is the optical
energy gap. Therefore, levels of HOMO/LUMO BBTSDBT andDBFSIDBF are
calculated to be -6.24/-2.65 and -6.45/-2.68 epeetvely.

3.6 Electroluminescent Properties

The electroluminescent (EL) characteristicsD&8TSIDBT andDBFSIDBF were
investigated by fabricating green phosphorescenE@Y_based on Ir(ppy)with a
structure of ITO/HAT-CN (10 nm)/TAPC (55 nm)/Hos® vol% Ir(ppy} (20
nm)/TmPyPB (35 nm)/Lig (2 nm)/Al (120 nm). 9 wt%(dpy) were doped into
DBTSIDBT andDBFSIDBF to achieve the emitting layer (EML). The corresgiog
molecular structures and energy diagrams are shiowRigure 5. The current
density—voltage—luminancel{V-L) characteristics; current efficiency (CE), paw
efficiency (PE) and external quantum efficiency @Q@s a function of luminance
and the EL spectra are shownRigure 6(a), 6(b) and 6(c), respectively.Table 2
presents the EL parameters.

As revealed inFigure 6(a), the devices hosted IYBTSIDBT and DBFSIDBF
exhibit relatively low turn-on voltages of 4.4 aAd’ V at 1000 cd/f respectively.
TheDBTSIDBT andDBFSIDBF based devices can achieve the maximum luminance
of 19000 and 27000 cdfprespectivelyFigure 6(b) presents the efficiencies of green
devices based on Ir(ppy)For DBFSIDBF hosted device, high efficiency of 83.5
cd/A, 61.7 Im/W and 24.5% were realized for CE, BRd EQE respectively.
DBTSIDBT based devices show relatively inferior maximum ®E, and EQE of
52.0 cd/A, 45.8 Im/W and 14.4% respectively. Mommwt is noteworthy that both
devices exhibited flat efficiency roll-offs. At 100cd/nf, devices based on
DBTSIDBT showed an increase in EQE from 14.4% to a maximatuevof 14.5%.
At 10000 cd/mi, the EQE retained a high value of 13.7%. At 1000r¢, the device
based orDBFSIDBF demonstrated a reduction in EQE from the highelsteva4.5%
to 24.4%, and was able to retain 23.6% at 5000 Td{mtably, at 10000 cd/mthe
EQE was only slightly reduced to 23.3%, which wak lsigher than the maximum
EQE of 14.4% for devices based DBTSIDBT. It is worth noting that the relatively

good hole and electron transport properties of bBEed host material (Figure 7) and



the higherEr will favor the balanced charge transport and effit energy transfer
from host to dopant, which may account in partitsrbetter EL performance. The
green devices exhibit typical CIE coordinates ¢bpy); based devices are (0.28, 0.64)
at 5 mA/cni. It means that emission is originated from Ir(ppghd not from
DBTSIDBT or DBFSIDBF. This could be attributed to the hidfys exhibited by
these hosts which effectively confines emissiorninithe dopant molecule.
4. Conclusion

In conclusion, two novel organosilicon derivativeBTSIDBT and DBFSIDBF,
achieved by the attachment of DBT or DBF to bis{drlophenyl)diphenylsilane
were designed, synthesized and characterized. &wttpounds exhibited high triplet
energy and good thermal stability due to the sletdibking strategy. The materials
were applied as hosts for Ir(ppyg@mitter in green phosphorescence OLEDs with
simple device structures. Green PHOLEDs based D&+SiDBF achieved a
maximum EQE of 24.5% with low efficiency roll-off.hese results reveal the great
potentials of tetraphenyl silicon derivatives ahd possibility of subjecting them to
extended study for high efficiency OLEDSs.
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Figure 1. Differential scanning calorimetry (DSC, left) atlitermogravimetric analyses (TGA,

right) of DBTSIDBT andDBFSIDBF.

100

429°C 474°C
80}
°
S 60}
= —DBFSIDBF
> 40 —DBTSIDBT
=

100 200 300 400 500 600 700
Temperature (°C)

1.0 UV-vis

0.8

0.6

0.4

0.2

Normalized Intensity (a.u.)

0.0

—e— DBTSIiDBT
—<«— DBFSIiDBF

1 1
300 400

1 1
500 600 700

Wavelength (nm)

Figure 2. UV-Vis absorption, PL and Phos spectrd8&T SIDBT andDBFSIDBF.



Table 1. Physical Properties @BTSIDBT andDBFSIDBF.

AbShmad  Plima® T/ To ES  E

Host HOMOYeV  LUMOYeV
/nm /nm °cC °C eV eV
DBTSIDBT 285 355 112 474 361 2.67 -6.24 -2.65
DBFSIDBF 254 351 102 429 350 2.70 -6.45 -2.68

# Measured in toluene solution at room temperatﬁTg. Glass transition temperaturély:
Decomposition temperaturéEg: Band gaps, calculated from the corresponding rakiso
onset.°Er: Measured in 2-MeTHF glass matrix at 77'KHOMO levels, calculated from UPS

data.’ LUMO levels, calculated from the HOMO afg.

¢ e
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Figure 3. HOMO/LUMO distributions and molecular structufeDBT SIDBT andDBFSIDBF.
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Figure 5. Molecular structures and representative enenggl lliagram of the materials.
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Figure 6. Current density—voltage—luminanck-Y—L) characteristics (a); current efficiency (CE),

Current density—voltage—luminancé-Y—L) characteristics (a); current efficiency (Cppwer

efficiency (PE) and external quantum efficiency @&Qversus luminance curves for

Ir(ppy)s-based devices (b) and EL spectra at 5 mAfah
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Figure 7.J-V characteristics of hole- and electron-only desicHole-only devices:
ITO/ MoOs (10 nm)/Host (100 nm)/ MoQ (10 nm)/ Al (100 nm); electron-only
devices: ITO/ TmPyPB (20 nmiost (100 nm)/ TmPyPB (20 nm)/ Liq (2 nm)/ Al
(200 nm).

Table 2. Electroluminescence characteristics of the devices

% ’7CEC /7PEC EQEC CIE¢
(V] [cd A [Im W] [%0] (X, y]

1 DBTSIDBT 4.4 53.4,53.4,50.0 45.38,37.7,28.4 .5144.5,13.7 0.28,0.64
2 DBFSIDBF 4.7 83.5,82.9,78.0 61.7,56.1,40.9 2244,23.2 0.28,0.64

Devicé Host

% The notations 1 and 2 in devices indicate theagsvfabricated with DBTSIDBT and DBFSIDBF
as the hosts respectively. Device configuratio©/HAT-CN (10 nm)/TAPC (55 nm)/Host: 9%
Ir(ppy)s (20 nm)/TmPyPB (35 nm)/Liq (2 nm)/Al (120 nn‘i)VoItages at 1000 cd/m® Efficiencies
in the order of the maxima at 1000 cd/and at 10000 cd/m® Commission International de
leelaiage coordinates measured at 5 mA/cm




Scheme 1. Synthetic routes tDBTSIDBT andDBFSIDBF-.

Figure 1. Differential scanning calorimetry (DSC, left) atlitermogravimetric analyses (TGA,
right) of DBTSIDBT andDBFSIDBF.

Figure 2. UV-Vis absorption, PL and Phos spectrd®&T SIiDBT andDBFSIDBF-.

Figure 3. HOMO/LUMO distributions and molecular structufeDBT SIDBT andDBFSIDBF.
Figure 4. UPS spectra ddBTSIDBT andDBFSIDBF.

Figure 5. Molecular structures and representative enengl liagram of the materials.

Figure 6. Current density—voltage—luminanck-Y—L) characteristics (a); current efficiency (CE),
power efficiency (PE) and external quantum efficen(EQE) versus luminance curves for
Ir(ppy)s-based devices (b) and EL spectra at 5 mAfah

Table 1. Physical Properties @BTSIDBT andDBFSiDBF-.

Table 2. Electroluminescence characteristics of the devices



Two novel organosilicon derivatives, DBTSIDBT and DBFSIDBF, were designed,
synthesized, and applied as host materialsin green PHOLEDSs.

Both materials showed good thermal stability and high triplet energy.

The Ir(ppy)s based PHOLED hosted by DBFSIDBF exhibited relatively high EQE

of 24.5% with lower efficiency roll-off.
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