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A novel Cu(l)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with acrylates has been developed. Up to 98/2 exo/endo

selectivity and up to 98% enantiomeric excess have been achieved.

1,3-Dipolar cycloaddition is one of the most powerful and chiral formg: To the best of our knowledge, the endo
methods for the construction of highly substituted five- adduct was either the major or the single product in most
membered heterocyclédvore specifically, 1,3-dipolar cy-  cases, while highly exo- and enantioselective 1,3-dipolar
cloaddition of azomethine ylides and alkenes afford substi- cycloaddition reaction of azomethine ylides has not yet been
tuted prolines with high stereoselectivities. It is well-known well developed:'° Our group has explored Ag(l)-catalyzed
that substituted prolines are widely used as organic catalysts

and aIso.serve as important structurgl units in_ many bio!ogi- (5) () Kanemasa, S.: Tsuge, O.Advances in cycloadditianCurran,
cally active molecule$® Among various versions of this  D.P., Ed.; JAl: London, 1993; Vol. 3, pp 9459. (b) Grigg, R.; Sridharan,

reaction’ the most practical approach is the combination of xbl'“SA‘S”F)arl‘CG'elfzigfyc'oadd“iq"cu”a”' D. P., Bd.; JAI: London, 1993;

N-metalated azomethine yildes and electron-deficient alkenes,

which has been extensively investigated in both racefnic
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highly endo- and enantioselective 1,3-dipolar cyclization || |} IRRERERE

reactions$’® Herein, we present our investigation on the Cu-
(h/P,N-ligand catalyzed [3 2] cycloaddition ofN-metalated

Table 1. Screening Reaction Conditions for the
Enantioselective Cu(l)-Catalyzed 8 2] Cycloaddition

azomethine ylides with acrylates (Scheme 1). The exo adductreaction ofN-(4-Chlorobenzylidene)glycine Methyl Estga

Scheme 1. 1,3-Dipolar Cycloaddition of Azomethine Ylides
and Alkenes
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was obtained as the major product in all cases with high
enantioselectivity. In addition, our study is the first to use
copper(l) salt as the catalyst in the 1,3-dipolar cycloaddition
reaction of azomethine ylides.

Our initial study began withN-(4-chlorobenzylidene)-
glycine methyl esterla) as the 1,3-dipole antert-butyl
acrylate pa) as the dipolarophile, and the experimental
results are summarized in Table 1 and Figure 1. The first

;
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o L1 Ar=Ph, R = i-Pr
\j L2 Ar = 3,5-Me-Ph, R = i-Pr
@Fe o Aer R L3 Ar=Ph, R = tBu
< L4 Ar = 3,5-Me-Ph, R = -Bu
L5 Ar = 3,5-Me-Ph, R = Ph
L1-6 L6 Ar = 3,5-Me-Ph, R = Bn

Figure 1. Structure of ligands for 1,3-dipolar cycloaddition.

attempt, using CuOAc (3 mol %) an8,S,SpFAP (3.3 mol

(9) (a) Peddibhotla, S.; Tepe, J.JJ.Am. Chem. So2004 126, 12776.
(b) Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.;
Komatsu, M.Org. Lett.2003 5, 5043. (c) Ayerbe, M.; Arrieta, A.; Cossio,
F. P.J. Org. Chem1998 63, 1795. (d) Nyerges, M.; Rudas, M.; Toth, G.;
Herenyi, B.; Kadas, |.; Bitter, |.; Toke, LTetrahedron1995 51, 13321.
(e) Harwood: L. M.; Manage, A. C.; Robin, S.; Hopes, S. F. G.; Watkin,
D. J.; Walliams, C. ESynlett1993 777.

(10) For asymmetric exo-selective [8 2] cycloaddition of nitrones,
see: Sibi, M. P.; Ma, Z.; Jasperse, CJPAm. Chem. So004 126, 718.
(b) Sibi, M. P.; Ma, Z.; Itoh, K.; Prabagaran, N.; Jasperse, ©ng. Lett.
2005 7, 2349.
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andtert-Butyl Acrylate 2a2

ee of

Cu(l) ligand T yield® (%) exo°

entry (5mol %) (5.5mol %) solvent (°C) exo endo (%)
19 CuOAc (S,S,Sp)-FAP THF t 62 15 —22
2d CuOAc (S,S,Sp)-FAP MeOH rt 58 10 -75
3d CuOAc (S,S,Sp)-FAP MeOH -20 46 9 -—-83
4¢  CuOAc (S)-BINAP MeOH rt 54 <5 <2
5 CuOAc L1 THF 0 62 20 70
6 CuOAc L2 THF 0 72 11 76
7 CuOAc L3 THF 0 67 16 86
8 CuOAc 14 THF 0 76 5 89
9 CuOAc L5 THF 0 64 12 77
10 CuOAc L6 THF 0 69 16 72
11 CuClOy L4 THF 0 92 6 89
12¢ CuClOy L4 THF —25 85 4 91

210 mol % of EgN was applied as the base. For experimental details,
see the Supporting Informatioklsolated yields after column chromatog-
raphy.¢ Enantiomeric excesses were measured by chiral HPI3Gnol %
of CuOAc, 3.3 mol % of ligand, and 10 mol % afrL,NEt were applied.
€NMR spectroscopic analysis of the crude product indicated the ratio of
exo/endo was 96/4; also see entry 1, Table 2.

%), afforded the desired produeko3ain 62% yield and
22% ee along with 15% afndoe3a (entry 1, Table 1). The
stereochemistry was confirmed by the NOESY spectrum (see
the Supporting Information). Higher enantioselectivities could
be achieved when methanol was applied as the solvent;
however, the yields were still only moderate (entries 2 and
3, Table 1). Various chiral ligands other than FAP were next
employed in this reaction (Figure 1). We found that several
phosphino-oxazoline ligandsl—6,'! in combination with
CuOAc, could catalyze this [3 2] cycloaddition reaction,
providing good exo selectivity and high enantiomeric
excesses of exo adduct (entries®, Table 1). Notably,
the highest exo selectivity (exo adduct 76%; endo adduct
5% based on isolated yield) and enantiomeric excess (89%
ee for exo adduct) were obtained wHeh, which is derived
from (9-tert-leucinol, was employed (entry 8, Table 1). The
yield and enantiomeric excess of the exo adduct could be
further improved by applying CuClas the copper precursor
and conducting the reaction at a lower temperature (compare
entries 8 and 12, Table 1). Thus, the optimized reaction
conditions were established as 5 mol % of Cug &5 mol
% of L4, and 10 mol % of BN in THF at —25 °C.*? In
contrast to the excellent enantiomeric excess of the exo
adduct, very low enantiomeric excesses (about 5%) of the
corresponding endo adduct were observed under the opti-
mized conditions.

To explore the scope of Cu(4 catalytic system, the
[3 + 2] cycloadditions of various imineka—i with several
dipolarophiles2a—d were carried out under the optimized

(11) For Cu(l)-P,N-ligand catalyzed asymmetric mannich reactions of
glycine derivatives with immines, see: Bernardi, L.; Gothelf, A. S.; Hazell,
R. G.; Jgrgensen, K. Al. Org. Chem2003 68, 2583 and references therein.
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Table 2. Cu(l)-Catalyzed Enantioselective Cycloadditionlat—i with Various Dipolarophile Substrat&a—d?2
AN CO,Me RZOQC \R1 R? 0,C,

1 Cu(l) / Ligand /Z_—S\
* ﬂcozwm Ar CO,Me

R!  CO,R%? 10 mol% base
\—/

2 exo-3 endo-3
entry Arin1 R1R2%in 2 base adduct exo/endo® yield of exo® (%) ee of exo? (%)
1 p-CIPh (1a) H,t-Bu (2a) Et;N 3a 96/4 85 91
2¢ 0-C1Ph (1b) 2a Et;N 3b 76/24 71 98
3 m-CIPh (1e¢) 2a Et;N 3c 96/4 80 91
4 p-FPh (1d) 2a Et;N 3d 94/6 70 91
5 p-CNPh (1e) 2a DBU 3e 95/5 84 91
6 Ph (1f) 2a DBU 3f 95/5 65 84
7 p-MePh (1g) 2a DBU 3g 97/3 61 89
8 p-OMePh (1h) 2a DBU 3h 97/3 82 91
9 p-Naph (11) 2a DBU 3i 98/2 84 90
10/ la H,Me (2b) EtsN 3j 83/17 77 91
118 la H,Et (2¢) EtsN 3k 84/16 79 91
12~ la COsMe,Me (2d) EtsN 31 98/2 87 93

a All of the reactions were carried out under the optimized reaction conditions: 5 mol % of GUEBOmMol % ofL4, and 10 mol % of base in THF at
—25°C for 20 h. The ratio of exo/endo was determined by NMR spectroscopic analysis of the crude product; exo and endo diastereocisomers were readily
separated by flash column chromatograghigolated yields after column chromatograpR¥nantiomeric excesses were measured by chiral HPR0Y%
of ende3b (42% ee) was isolated 13% ofencb-3j (67% ee) was isolated.16% ofende3k (58% ee) was isolated.Reaction was carried at T, and 1
mol % of CuOAc and 1.1 mol % af4 were employed.

reaction conditions, and the results are summarized in Table Cu(l)/L4-catalyzed 1,3-dipolar cycloaddition between
2. Very high exo selectivities and excellent enantiomeric imine 1aand dimethyl maleat2d afforded exo addu@l in
excesses were observed in all of the reactions. The cycload-excellent diastereo- and enantioselectivities (87% yield, exo/
dition of 1b with tert-butyl acrylate 2a gave the best endo= 98/2, 93% ee), furnishing four new stereogenic
enantiomeric excess (98%) of the exo add8istin 71% centers in one cycloaddition process (entry 12, Table 2).
isolated yield, though a relatively higher percentage of the Notably, this transformation reached completion within a few
endo adduct was observed (exo/erd@6/24, entry 2, Table  hours even with catalyst loading as low as 1 mol %. The
2). For imines bearing an electron-withdrawing substituent absolute configuration of the exo add@dttwas determined
on the phenyl, the reactions proceeded smoothly in the by X-ray analysis of its corresponding tosylate derivadve
presence of 10 mol % of triethylamine as the base (entries(eq 1), and it was assigned a§254R,5R (see the Sup-
1-4, Table 2), while for substrates having no substituent or porting Information):3

an electron-donating substituent, such as a methyl or methoxy

group, on the phenyl unit, the reactions were sluggish and  Me0,G,  co,Me MeO,C,  CO,Me

could not reach complete conversion under the same reaction ,& TSN ,& Ea 1
conditions (even with a prolonged reaction time). However, PCPh™ N“=COMe CHyClpt - p-CIPR™ 7 =COZMe a0
we were pleased to find that the reactions of these substrates ex0-31 Ts

could take place more efficiently when a stronger base, such 93% ee (25,35,4R.5R)-exo0-4

as 8-diazabicyclo[5.4.0Jundec-7-ene (DBU), was used instead
of triethylamine, leading to the desired exo adducts in high  on the basis of our results, we propose the following
yields and excellent enantioselectivities (entrie®5Table reaction pathway (Scheme 2). The first step is the formation
2) The reaCtionS 01aW|th Other acrylates, SUCh as methyl Of Comp|exA by Coordination Of |m|ne‘L to the Copper(|)
acryate gb) and ethyl acrylateZc), also proceeded smoothly  catalyst. The reactive azomethine ylideopper(l) complex
at—25 °C with the same catalytic system. The corresponding B is generated through the abstraction of a proton by the
exo adducts3j and 3k were obtained with high ee’s (91%  gmine base. CompleR reacts with different dipolarphiles
for both) and good yields (entries 10 and 11, Table 2). {9 give intermediateC, which releases the desired cycload-
(12) General Procedure.The catalyst was prepared by stirring Cu(eH dition product .and rege'ner'ates both the active catalyst and
CN),CIO (8.2 mg, 0.025 mmol, 5 mol %) and ligand (15.1 mg, 0.0275 the base. The intermedialeis an 18-electron complex and
mmol, 5.5 mol %) in THF (2 mL) fol h atroom temperature. The mixture  has a tetrahedral arrangement of the ligands around the

was then cooled te-25 °C, imine substratéd (0.50 mmol), dipolarophile ; ; _
2 (0.75 mmol, 1.5 equiv). and base (0.05 mmol, 10 mol 56) were added copper metal atom. The steric repulsion between the electron
subsequently, and the resulting mixture was stirread-25 °C for 20 h.
When the reaction was complete as monitored by TLC, the mixture was  (13) CCDC-268934 contains the supplementary crystallographic data for
passed through a short column of silica gel and the diastereometric ratio this paper. These data can be obtained free of charge via www.ccdc.ca-
(exo/endo) was determined by the NMR spectroscopic analysis of the crudem.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data
product. The pure adducts were then purified by column chromatography Centre, 12 Union Road, Cambridge CB21EZ, UK.; fax:464)1223-336-

on silica gel (hexanes/ethyl acetate/1% triethylamine). 033; or depost@ccdc.cam.ac.uk).
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Scheme 2. Mechanism of Cu(l)-Catalyzed 1,3-Dipolar

Cycloaddition
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withdrawing group of dipolarophiles and the substituent of

to the good exo selectivity that is observed for this Cu(l)-
catalyzed transformation.

In conclusion, we have developed a novel Cu(l)/P,N-ligand
catalyzed asymmetric 1,3-dipolar cycloaddition of azome-
thine ylides with acrylates, providing exo products of
polysubstituted proline derivatives in up to 98% enantiomeric
excess. To our knowledge, these results are the best to date
for metal-catalyzed 1,3-dipolar cycloadditionfmetalated
azomethine ylides in terms of both exo selectivities and
enantioselectivities. Further investigation of the reaction
scope and detailed mechanism study are underway.
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the ligand inhibits the endo approach. This may contribute 0L0516925
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