

Heterogeneous & Homogeneous & Bio- & Nano-

CHEMCATCHEM

CATALYSIS

Accepted Article

Title: A free radical reduction and cyclization of alkyl halides mediated by FeCl2

Authors: Ramesh Rasappan, Feba Thomas Pulikottil, Ramadevi Pilli, Vetrivelan Murugesan, and Chandu G Krishnan

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemCatChem 10.1002/cctc.201900230

Link to VoR: http://dx.doi.org/10.1002/cctc.201900230

Wiley-vch

COMMUNICATION

A free radical reduction and cyclization of alkyl halides mediated by FeCl₂

Feba Thomas Pulikottil, [a] Ramadevi Pilli, [a] Vetrivelan Murugesan, [a] Chandu G Krishnan [a] and Ramesh Rasappan*[a]

Dedication ((optional))

Abstract: Iron mediated catalytic reactions are of great interest in the field of organic synthesis because they are economic, naturally abundant. However, the use of iron catalyst in the field of free radical cyclization or reduction of alkyl halides remains limited. Here we describe the use of an unprecedented combination of iron and zinc in the reduction and 5-exo-trig radical cyclization of alkyl halides under mild condition in the absence of added ligands or additives. The method is distinguished by its wide scope, functional group tolerance and the use of 1,4-cyclohexadiene as the source of hydrogen atom that aids easy purification.

Sustainable chemical reactions play a vital role in industries and the search for economical, environmentally benign and naturally abundant reagent is an important concern.[1] In this context, the development of iron mediated catalysis is very attractive. Over the past decade, iron catalysis has matured into a robust and attractive alternative to precious transition metal catalysts.[2] Despite the synthetic potential of iron catalysis, its application in the field of radical generation from alkyl halides is still lacking. Though the Bu₃SnH (stoichiometric) mediated radical reactions are very well established, the toxicity of tin reagents severely limits their potential use.[3] Photoredox catalysis has been proposed as an alternative to address these concerns raised by tin reagents, however, it often requires the use of expensive catalysts and is mostly limited to alkyl iodides.[4] Recently, there are developments based on iron catalysis appeared in the literature, [5] a close look into these studies reveals the requirement of either Grignard (Scheme 1a) or NaBH4 reagents for the activation of iron catalyst, otherwise stoichiometric Fe(0) was used. [5a] Fensterbank et al. disclosed an elegant method to reduce the halogenoacetals in presence of 10 mol% of FeCl2 and NaBH₄,[5b,5c,5h] Oshima et al. utilized PhMgBr for the activation of FeCl₂.^[5g] Kang et al. used stoichiometric Fe(CO)₅ for the reductive radical cyclization. [5a] A methodology that can utilize iron and avoid the use of harsh conditions or reagents is highly desirable. Inspired by the recent literature on the in-situ reduction of nickel^[6] and iron (Scheme 1b)[7] complexes by Mn/Zn and prompted by our perception that an activated iron may effectively catalyze the

Inexpensive Iron catalyst No added ligands Scheme 1. Iron mediated reduction of alkyl halides. We commenced our study with the 1-(3-bromobutyl)-4-

methoxybenzene 1a which was readily prepared from the corresponding alcohol. After careful investigation, we pleasingly found that a combination of FeCl2, Zn and CHD (1,4cyclohexadiene) in CH₃CN at 50 °C offered the best result, affording 2a in 99% isolated yield (table 1, entry 1). As we speculated, a simple filtration followed by the removal of volatiles afforded the pure (by NMR) product 2a. We found that CHD was more efficient to offer 2a as the sole product, whereas MeOH (entry 2), catechol (entry 3) or Hantzsch ester (entry 4) offered the expected product 2a in poor to moderate yield along with the alkene byproducts that complicate the isolation of 2a. In the absence of CHD (similar to the reported condition),[7a] we observed only 44% of the protodehalogenated product (entry 5) along with traces of alcohol byproduct.

FeCl₃ also offered the protodehalogenated product, albeit in low yield (entry 7), while Fe(acac)₃ did not exhibit noticeable reactivity (entry 8). As shown in entries 9 and 10, no reactivity was found in the absence of either FeCl2 or Zn, evidencing the role of FeCl2 and Zn in the catalytic cycle.[10] Interestingly, the use of Mn as

Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

in field of iron mediated catalytic reactions, [8] we present here an iron mediated reduction and cyclization of alkyl halides. $MX_2 + 2RMgX$ ► M(0) + R-R M = Ni, Fe b) Reduction of nickel and iron complexes.⁶

radical cyclization of unsaturated halogenoacetals (Scheme 1c),

we envisaged a complementary strategy in which zinc can be

used as a terminal reductant. We were also attracted towards the

use of 1,4-cyclohexadiene (CHD) as the source of hydrogen atom

since the resultant benzene could easily be removed, thus

simplifying the purification process. As part of our ongoing interest

F. T. Pulikottil, R. Pilli, V. Murugesan, C. G. Krishnan, Prof. Dr. R. Rasappan School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India E-mail: rr@iisertvm.ac.in

Wiley-vch

COMMUNICATION

reductant resulted in a similar conversion (entry 11). In accordance with the literature on radical reactions, CH₃CN stands out to be the most suitable solvent for this transformation. DMF and DMA also offered 2a in 95% and 94% yields respectively (entries 12 and 13). As expected, Et₂O was not suitable for this transformation (entry 14) and 91% of the starting material was left unreacted. Employing 5 mol% of FeCl2 was sufficient to obtain 96% of 2a (entry 15), albeit rather slowly (42h vs 21h). Carrying out the reaction at room temperature reduced the rate of the reaction (entry 17). Lowering the amount of CHD (entry 18) had significant effect on the yield.

Table 1. Optimization of reaction condition.[a]

entry	deviation from standard condition	1a (%) ^b	yield 2a (%) ^b >99 (90) ^c	
1	none	-		
2	MeOH instead of CHD	9	70	
3	Catechol instead of CHD	41	58	
4	Hantzsch ester	80	18	
5	without CHD in DMA	12	44 ^d	
6	without CHD	36	28	
7	FeCl ₃ instead of FeCl ₂	18	78	
8	Fe(acac) ₃ instead of FeCl ₂	85	9	
9	Without Zn	97	0	
10	without FeCl ₂	96	0	
11	Mn instead of Zn	-	99	
12	DMF instead of CH₃CN	-	95	
13	DMA instead of CH₃CN	-	94	
14	Et ₂ O instead of CH ₃ CN	91	4	
15	5 mol% FeCl ₂	12	86 (96) ^e	
16	1.0 eq. Zn	-	96	
17	rt instead of 50 °C	45	42	
18	1 eq. CHD	13	80	

[a] General reaction condition: 0.5 mmol of 1a, 1.5 mmol of CHD, 10 mol% of FeCl₂, 0.75 mmol of Zn, I.0 M CH₃CN, 50 °C, 21 h. [b] GC yield. [c] isolated yield. [d] 5 eq. of Zn, FeBr2, DMA instead of CH3CN. [e] 46 h instead of 21 h.

With the optimized condition in hand, we sought to investigate the scope of substrates. The results are summarized in table 2. As expected, the alkyl iodides 1c and 1f, benzyl bromides 1g and 1h were protodehalogenated efficiently (Table 2). The unreactive chloride 1b, activated chlorides 1e and 1o were also suitable for transformation and offered the corresponding protodehalogenated products in 57%, 99% and 96% yields respectively. Apart from the primary and secondary alkyl halides, sterically hindered tertiary halides 1d and 1e also underwent successful reduction to the corresponding protodehalogenated products in 98% and 99% yields respectively. Bromoadamantane gave only 25% isolated yield (see SI).

We next examined the functional group tolerance; ketones 1j and 1k were compatible under the reaction condition and the corresponding products 2j and 2k were isolated in 83% and 57% yields respectively. The esters 1n and 1o were also compatible and offered the products 2n and 2o in 73% and 96% yields. Even the free carboxylic acid 1m and nitrile 1l were smoothly protodehalogenated in 87% and 65% yields. The cholesterol derivative 1i offered the protodehalogenated product in 55% yield. Importantly, most of the products were obtained pure, just after the filtration of insoluble salts and removal of the volatiles.[11] The aryl halides and primary alkyl chlorides were intact under this reaction condition.[12] In the case of substrates 1g, 1l, 1n, and 1o, catechol was used instead of CHD.[13] In order to demonstrate the synthetic applicability of this methodology, we carried out a largescale reaction in which 3.6 mmol of 1e was subjected to the reaction condition with just 1 mol% of FeCl₂ and 1 eq. of Zn and CHD, to obtain the corresponding protodehalogenated product 2e in 95% isolated yield.[14]

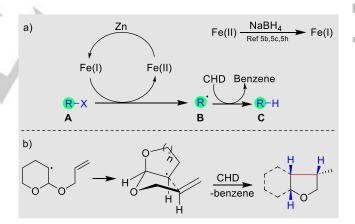
Table 2. Scope of substrates.[a]

[a] Reaction condition: 0.5 mmol of 1, 1.5 mmol of CHD, 10 mol% of FeCl₂, 0.75 mmol of Zn, 1.0 M of CH3CN, 50 °C, isolated yield. [b] GC yield. [c] 3 eq. of catechol was added instead of CHD. [d] 0.1 M of CH₃CN instead of 1.0 M of CH3CN.

To further demonstrate the synthetic utility of this method, we subjected unsaturated halogenoacetals to the optimized condition and observed the formation of synthetically versatile cyclized products (Table 3).[3a-b, 5a-c, 5g-h, 15] The bromoacetal derivative 3a offered the cis-fused syn-substituted 5-exo-trig cyclized product 4a in 60% yield with 84:16 diastereoselectivity, reminiscent of recent literature that demonstrates the intermediacy of alkyl radical in these reactions. The corresponding iodide 3b also offered the cyclized product 4a in 56% yield (88:12 dr). Traces of

COMMUNICATION

Table 3. Radical cyclization of alkyl halides^[a]


			Product 4		
entry	3	time	4	dr ^b	(%) ^c
1	, x		HHH	UI .	(70)
	3a = Br 3b = I	16 h 12 h	4a	84:16 88:12	60 ^d 56
2	X		HHH		
	3c = Br 3c = Br 3d = I	16 h 16 h 12 h	4c	95:5 90:10 97:3	74 ^d 93 ^{d,e} 66
3	Br Ph	32 h	H Ph H 4e	50:50	27
4	X		H		
	3f = Br 3g = I	16 h 12 h	4f	33:67 33:67	52 ^d 94
5	X		H		
	3h = Br 3i = I	16 h 12 h	4h	50:50 50:50	56 ^d 29
6	Ph O Ph 3j	32 h	Ph o Ph 4j	7	77 ^f
7	BuO		BuO O 4k	BuO' o' O' 4k'	
	3k= Br 3l= I	16 h 12 h	4k:4k'(36:64) 4k:4k'(23:77)	trans:cis (65:35) trans:cis (68:32)	27 ^d 46

^[a] Reaction conditions: 0.5 mmol of **3**, 1.5 mmol of CHD, 10 mol% of FeCl₂, 0.75 mmol of Zn, I.0 M of CH₃CN, 50 °C. ^[b] based on crude ¹H NMR. ^[c] isolated yield. ^[d] 80 °C instead of 50 °C. ^[e] catechol used instead of CHD. ^[f] DMA instead of CH₃CN.

unsaturated product was seen along with the expected product 4a which might account to the moderate yield of substrates 3a and 3b.

fused *syn*-substituted bicyclic product **4c** with excellent internal alkene also successfully offered the cyclized product albeit in lower yield (entry 3). ¹⁶ Further, the halogenoacetals **3f-3i** also resulted in the bicyclic products **4f** and **4h** with moderate to excellent yields. The acyclic halogenoacetal **3j** offered the corresponding cyclized product **4j** in 77% isolated yield. The *O*-homoallyl derivatives **3k** and **3l** gave the cyclized (6-exo-trig) product **4k** (entry 7) in relatively low yield along with the uncyclized protodehalogenated product **4k**' in 27% and 46% yields respectively. ^{5h} In accordance to the literature, ^[3a-b,5a-c,5g-h,15] the observed selectivity towards *cis*-fused *syn* substitution can be explained by a transition state shown in scheme 2b, where the endo cyclization of the alkene occurs predominantly.

It has been proposed in the previous studies^[7] that the Fe(I) is generated upon mixing either FeCl₂ and Zn or FeCl₂ and NaBH₄,^[5b,5c,5h] though Fe(0) cannot be ruled out. It is also noticed that the alkyl halide is intact in the absence of either FeCl₂ or Zn (entries 9 and 10, table 1). The presence of a radical intermediate is evident from the formation of a *cis*-fused bicyclic product. Based on these results, we propose a catalytic cycle as shown in scheme 2a. A single electron transfer (SET) from Fe(I) to an alkyl halide A leads to the formation of a radical intermediate B, subsequent intramolecular endocylic radical cyclization (5-*exo-trig*) followed by the abstraction of hydrogen atom from CHD led to the desired product C. The observed diastereoselectivity for substrates **3a-d** can be understood using the transition state model presented in Scheme 2b.^[17,18]

Scheme 2. Mechanistic proposal and a transition state model.

In summary, we have developed an iron mediated free radical protodehalogenation of alkyl halides (1°, 2° and 3°) and cyclization of unsaturated halogenoacetals using Zn as a terminal reductant and CHD as the hydrogen donor. The developed catalytic system is compatible with various functional groups and sterically hindered halides. Initial studies revealed a radical intermediate during the reaction which serves as a useful alternative to the tin and photochemical mediated reactions.

COMMUNICATION

Experimental Section

Under an inert atmosphere, the oven dried Schlenk tube was charged with iron (II) chloride (10 mol%, 0.05 mmol, 6.4 mg) and zinc (1.5 eq., 0.75 mmol, 49 mg) followed by the addition of acetonitrile (0.5 mL) and 1, 4-cyclohexadiene (3.0 eq., 1.5 mmol, 142 μ L). After stirring for a minute at room temperature, the alkyl halide (1.0 eq., 0.5 mmol) was added and continued stirring at 50 °C. The completion of reaction was monitored using TLC. After the reaction was complete, the mixture was filtered through plug of Celite or silica, eluting with Et₂O/CH₂Cl₂/EtOAc (based on the volatility and polarity of the material) to remove metal salts and the filtrate was concentrated under vacuum to obtain protodehalogenated product. If needed the crude was subjected for further purification by flash column chromatography (petroleum ether/ethyl acetate) to give the corresponding product.

Acknowledgements

We thank the Science and Engineering Research Board, DST No: EMR/2015/001103/OC and Ramanujan Fellowship SB/S2/RJN059/2015 for financial support. FTP, RP and VM acknowledge IISER, Trivandrum for fellowship.

Keywords: iron; catalysis; protodehalogenation; reductive cyclization; radicals; zinc

- a) P. J. Dunn, Chem. Soc. Rev. 2012, 41, 1452-1461; b) P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538-1558; c) V. Polshettiwar, A. Decottignies, C. Len, A. Fihri, ChemSusChem 2010, 3, 502-522; d) R. A. Sheldon, Green Chem. 2014, 16, 950-963; e) D. S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl, ChemSusChem 2010, 3, 169-180; f) J. T. Dam, U. Hanefeld, ChemSusChem 2011, 4, 1017-1034.
- a) I. Bauer, H. J. Knölker, Chem. Rev. 2015, 115, 3170-3387; b) G. Cera, L. Ackermann, Top. Curr. Chem. 2016, 374; c) P. J. Chirik, Acc. Chem. Res. 2015, 48, 1687-1695; d) S. Fleischer, S. L. Zhou, S. Werkmeister, K. Junge, M. Beller, Chem. Eur. J. 2013, 19, 4997-5003; e) A. Furstner, R. Martin, Chem. Lett. 2005, 34, 624-629; f) A. Guerinot, J. Cossy, Top. Curr. Chem. 2016, 374; g) B. A. F. Le Bailly, S. P. Thomas, Rsc Advances 2011, 1, 1435-1445; h) R. Loska, C. M. R. Volla, P. Vogel, Adv. Synth. Catal. 2008, 350, 2859-2864; i) K. Mori, J. Synth. Org. Chem. Jpn. 2010, 68, 75-76; j) A. Piontek, E. Bisz, M. Szostak, Angew. Chem., Int. Ed. 2018, 57, 11116-11128; k) A. A. O. Sarhan, C. Bolm, Chem. Soc. Rev. 2009, 38, 2730-2744; I) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086-9139; m) Y. Sunada, H. Nagashima, J. Synth. Org. Chem. Jpn. 2017, 75, 1253-1263; n) C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217-6254; o) C. Cassani, G. Bergonzini, C.-J. Wallentin, ACS Catal. 2016, 6, 1640-1648; p) A. Fürstner, Angew. Chem., Int. Ed. 2009, 48, 1364-1367; q) K. Gopalaiah, Chem. Rev. 2013, 113, 3248-3296; r) J. Legros, B. Figadère, Nat. Prod. Rep. 2015, 32, 1541-1555; s) T. L. Mako, J. A. Byers, Inorg. Chem. Front. 2016, 3, 766-
- a) K. C. Majumdar, G. V. Karunakar, B. Sinha, Synthesis 2012, 44, 2475-2505;
 b) H. Ishibashi, T. Sato, M. Ikeda, Synthesis 2002, 6, 695-713;
 c) S. Z. Zard, Angew. Chem., Int. Ed. 1997, 36, 672-684.
- [4] a) I. Ghosh, T. Ghosh, J. Bardagi, B. König, Science 2014, 346, 725-728;
 b) X. Li, Z. Hao, F. Zhang, H. Li, ACS Applied Materials & Interfaces 2016, 8, 12141-12148;
 c) Q. Liu, B. Han, W. Zhang, L. Yang, Z.-L. Liu, W. Yu, Synlett 2005, 14, 2248-2250;
 d) T. Maji, A. Karmakar, O. Reiser, J. Org. Chem. 2011, 76, 736-739;
 e) J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, J. Am. Chem. Soc. 2009, 131, 8756-8757;
 f) J. Nguyen, E. D'Amato, J. Narayanam, C. Stephenson, Nat Chem 2012, 4, 854-859;
 g)

- J. T. Petroff II, A. H. Nguyen, A. J. Porter, F. D. Morales, M. P. Kennedy, D. Weinstein, H. E. Nazer, R. D. McCulla, *J. Photochem. Photobiol., A* **2017**. *335*. 149-154.
- a) J. Y. Hwang, J. H. Baek, T. I. Shin, J. H. Shin, J. W. Oh, K. P. Kim, Y. You, E. J. Kang, Org. Lett. 2016, 18, 4900-4903; b) S. H. Kyne, C. Lévêque, S. Zheng, L. Fensterbank, A. Jutand, C. Ollivier, Tetrahedron 2016, 72, 7727-7737; c) S. H. Kyne, M. Clémancey, G. Blondin, E. Derat, L. Fensterbank, A. Jutand, G. Lefèvre, C. Ollivier, Organometallics 2018, 37, 761-771; d) A. Cornia, U. Folli, S. Sbardellati, F. Taddei, J. Chem. Soc., Perkin Trans. 2 1993, 1847-1853; e) M. A. Fakhfakh, X. Franck, R. Hocquemiller, B. Figadère, J. Organomet. Chem. 2001, 624, 131-135; f) U. Folli, F. Goldoni, D. Iarossi, S. Sbardellati, F. Taddei, J. Chem. Soc., Perkin Trans. 2 1995, 1017; g) Y. Hayashi, H. Shinokubo, K. Oshima, Tetrahedron Lett. 1998, 39, 63-66; h) A. Ekomié, G. Lefèvre, L. Fensterbank, E. Lacôte, M. Malacria, C. Ollivier, A. Jutand, Angew. Chem., Int. Ed. 2012, 51, 6942-6946.
- a) D. A. Everson, B. A. Jones, D. J. Weix, J. Am. Chem. Soc. 2012, 134, 6146-6159; b) W. Xue, H. Xu, Z. Liang, Q. Qian, H. Gong, Org. Lett. 2014, 16, 4984-4987; c) X. Wang, S. Wang, W. Xue, H. Gong, J. Am. Chem. Soc. 2015, 137, 11562-11565; d) K. Huihui, J. Caputo, Z. Melchor, A. Olivares, A. Spiewak, K. Johnson, T. DiBenedetto, S. Kim, L. Ackerman, D. Weix, J. Am. Chem. Soc. 2016, 138, 5016-5019; e) T. Qin, L. Malins, J. Edwards, R. Merchant, A. Novak, J. Zhong, R. Mills, M. Yan, C. Yuan, M. Eastgate, P. Baran, Angew. Chem., Int. Ed. 2017, 56, 260-265; f) D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920-921; g) L. K. G. Ackerman, M. M. Lovell, D. J. Weix, NATURE 2015, 524, 454-457; h) D. J. Weix, Acc. Chem. Res. 2015, 48, 1767-1775; i) E. C. Hansen, D. J. Pedro, A. C. Wotal, N. J. Gower, J. D. Nelson, S. Caron, D. J. Weix, Nature Chem. 2016, 8, 1126-1130; j) L. Huang, A. Olivares, D. Weix, Angew. Chem., Int. Ed. 2017, 56, 11901-11905.
- a) C. Cheung, F. Zhurkin, X. Hu, J. Am. Chem. Soc. 2015, 137, 4932-4935;
 b) C. W. Cheung, X. Hu, Chem. Eur. J. 2015, 21, 18439-18444;
 c) W. Cheung, X. Hu, Nature Communications 2016, 7, 12494.
- [8] R. Pilli, V. Balakrishnan, R. Chandrasekaran, R. Rasappan, Org. Biomol. Chem. 2019, 17, 1749-1753.
 - a) A. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856-13863; b) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 3686-3687; c) G. Cahiez, V. Habiak, C. Duplais, A. Moyeux, Angew. Chem., Int. Ed. 2007, 46, 4364-4366; d) A. Silberstein, S. Ramgren, N. Garg, Org. Lett. 2012, 14, 3796-3799; e) T. Agrawal, S. P. Cook, Org. Lett. 2013, 15, 96-99; f) T. Iwasaki, H. Takagawa, S. Singh, H. Kuniyasu, N. Kambe, J. Am. Chem. Soc. 2013, 135, 9604-9607; g) T. Mesganaw, N. K. Garg, Org. Process Res. Dev. 2013, 17, 29-39; h) T. Agrawal, S. Cook, Org. Lett. 2014, 16, 5080-5083; i) D. Gärtner, A. Stein, S. Grupe, J. Arp, A. Jacobi von Wangelin, Angew. Chem., Int. Ed. 2015, 54, 10545-10549; j) M. Jin, L. Adak, M. Nakamura, J. Am. Chem. Soc. 2015, 137, 7128-7134; k) M. Tobisu, T. Takahira, N. Chatani, Org. Lett. 2015, 17, 4352-4355; I) S. Kessler, J. Bäckvall, Angew. Chem., Int. Ed. 2016, 55, 3734-3738; m) A. Rivera, R. Still, D. Frantz, Angew. Chem., Int. Ed. 2016, 55, 6689-6693; n) M. Tobisu, T. Takahira, T. Morioka, N. Chatani, J. Am. Chem. Soc. 2016, 138, 6711-6714. O) M. Clémancey, T. Cantat, G. Blondin, J.-M. Latour, P. Dorlet and G. Lefèvre, Inorg. Chem., 2017, 56, 3834-3848.
- [10] It is important to note that the traces of FeCl₂ (from an unclean stir bar) can catalyze the reaction.
- [11] No silica column purification was required when CHD was used as the source of hydrogen atom, however, a silica column purification was necessary when we use catechol as the source of hydrogen atom.
- [12] see SI for more details
- [13] When we noticed the formation of homo-coupled or unindentified byproducts, we employed catechol instead of 1,4-cyclohexadiene.
- [14] see page number S13 in SI for more details
- a) M. Pezechk, A. P. Brunetiere, J. Y. Lallemand, *Tetrahedron Lett.* 1986,
 27, 3715-3718; b) C. Hackmann, H. J. Schäfer, *Tetrahedron* 1993, 49,
 4559-4574; c) A. Vaupel, P. Knochel, *J. Org. Chem.* 1996, 61, 5743-5753; d) A. L. J. Beckwith, D. M. Page, *Tetrahedron* 1999, 55, 3245-

COMMUNICATION

3254; e) K. Stalinski, D. P. Curran, *J. Org. Chem.* **2002**, *67*, 2982-2988; f) K. Fujita, H. Yorimitsu, K. Oshima, *Bull. Chem. Soc. Jpn.* **2004**, *77*, 1727-1736; g) L. Gandon, A. Russell, J. Snaith, *Org. Biomol. Chem.* **2004**, *2*, 2270-2271; h) A. Millán, L. Álvarez de Cienfuegos, D. Miguel, A. G. Campaña, J. M. Cuerva, *Org. Lett.* **2012**, *14*, 5984-5987; i) Y. Shen, J. Cornella, F. Juliá-Hernández, R. Martin, *ACS Catal.* **2017**, *7*, 409-412; j) Y. Kuang, X. Wang, D. Anthony, T. Diao, *Chem. Commun.* **2018**, *54*,

- 2558-2561; k) J. L. Kuo, C. Lorenc, J. M. Abuyuan, J. R. Norton, *J. Am. Chem. Soc.* **2018**, *140*, 4512-4516.
- [16] The poor yield can be attributed to the difficulty in isolation of the pure product.
- [17] A. L. J. Beckwith, C. J. Easton, A. K. Serelis, J. Chem. Soc., Chem. Commun. 1980, 482-483.
- [18] A. L. J. Beckwith, Chem. Soc. Rev. 1993, 22, 143-151.

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

or
$$R_{R1}$$
 R^2 CHD , 12-32 h R_{R1} R^2

Iron catalysis: Protodehalogenation and cyclization of alkyl halides using inexpensive iron catalyst was developed, the use of 1,4-cyclohexadiene was crucial to obtain excellent yields.

Feba Thomas Pulikottil, Ramadevi Pilli, Vetrivelan Murugesan, Chandu G Krishnan and Ramesh Rasappan*

Page No. - Page No.

A free radical reduction and cyclization of alkyl halides mediated by FeCl₂