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Abstract: Parallel synthesis of a-substituted pyrrolidines, piper-
idines, morpholines, piperazines and diazaspirocycles was achieved
in a single reaction step via the annulation of primary amines with
halo-2-alkenyl esters, amides, nitriles and phenylsulfones.
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Chemical libraries of amides, sulfonamides, ureas and
higher order amines derived from high throughput amine
derivatization chemistries are useful in discovering bio-
logically active compounds.1 Our laboratory has devel-
oped a new family of solid- and solution-phase annulation
reagents, termed SPAn reagents, for the single-step con-
version of primary amines to heterocycles.2 SPAn re-
agents, adaptable to semi-automated library production,
complement existing methodology for generating acyclic
amine derivatives. Two reaction manifolds for amine an-
nulation were previously described. These include the tan-
dem SN2 displacement–intramolecular acylation of resin-
bound haloalkyl esters affording lactams2 and the in-
tramolecular N-dialkylation of resin-bound bismesylates
affording piperidines, piperazines, and diazaspirocycles.3

In this Letter, we describe the application of a third reac-
tion manifold to amine annulation, tandem N-alkylation–
intramolecular Michael addition (SN2-Michael reaction),
affording a-substituted pyrrolidines 1, piperidines 2, mor-
pholines 3, piperazines 4 and novel diazaspirocycles 5 and
6 (Scheme 1).

Scheme 1 High throughput amine derivatization

Bunce and co-workers reported the one-pot synthesis of
N-benzyl heterocycles bearing an a-acetate residue by re-
action of 6- or 7-halo-2-alkenoates with benzylamine.4

The reaction proceeds by a tandem N-alkylation–intramo-
lecular Michael addition. Products yielding five- and six-
membered rings formed easily while higher order rings
were not obtained. We believed that the relatively mild re-
action conditions (EtOH, 80 °C, 36 h) and modest yields
(ca. 50%) were compatible with primary amines possess-
ing a diverse range of functionality. To investigate this,
iodides 7 and 8 were prepared and reacted with the prima-
ry amines a1–a4 (Figure 1).

Figure 1 SPAn reagents and amine inputs used in this study

Treatment of one equivalent of amine with one equivalent
of iodide in EtOH (0.3 mM) at 80 °C for 72 hours was de-
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lation under thermal reaction conditions (entries 1–8,
Table 1). In many instances the purity of crude products
1a–d/2a–d was <75%, which did not meet our purity cri-
teria for biological screening. The major by-product
present in varying amounts was the corresponding dialky-

lated amine. It was therefore advantageous to routinely
purify the products. This was conveniently carried out us-
ing a multichannel CombiFlash system. The yields of the
purified products 1a–d/2a–d ranged from 40–75%.

Table 1 Amine Annulation Products

Entry Amine SPAn reagent Product R n X Yield (%)a

1 a1 7 1a (4-phenyl)phenethyl 1 CO2Et (55) 61

2 a2 7 1b 3-pyridinylmethyl 1 CO2Et (60) 73

3 a3 7 1c cyclohexyl 1 CO2Et (60) 58

4 a4 7 1d 2-methoxyethyl 1 CO2Et (45) 52

5 a1 8 2a (4-phenyl)phenethyl 2 CO2Et (60) 81

6 a2 8 2b 3-pyridinylmethyl 2 CO2Et (55) 65

7 a3 8 2c cyclohexyl 2 CO2Et (48) 43

8 a4 8 2d 2-methoxyethyl 2 CO2Et (52) 55

9 a1 9 1e (4-phenyl)phenethyl 1 CONHBn 45

10 a2 9 1f 3-pyridinylmethyl 1 CONHBn 38

11 a1 10 2e (4-phenyl)phenethyl 2 CONHBn 70

12 a2 10 2f 3-pyridinylmethyl 2 CONHBn 72

13 a5 9 1g 3-indolylethyl 1 CONHBn 35

14 a3 10 2g cyclohexyl 2 CONHBn 60

15 a1 11 1h (4-phenyl)phenethyl 1 CON(Me)Bn 62

17 a2 11 1i 3-pyridinylmethyl 1 CON(Me)Bn 60

18 a2 12 2h 3-pyridinylmethyl 2 CON(Me)Bn 53

19 a3 11 1j cyclohexyl 1 CON(Me)Bn 46

20 a5 12 2i 3-indolylethyl 2 CON(Me)Bn 51

21 a1 13 2j (4-phenyl)phenethyl 2 CN 78

22 a2 13 2k 3-pyridinylmethyl 2 CN 86

23 a6 13 2l 2,2-diphenylethyl 2 CN 87

24 a1 14 2m (4-phenyl)phenethyl 2 SO2Ph 85

25 a2 14 2n 3-pyridinylmethyl 2 SO2Ph 85

26 a4 14 2o 2-methoxyethyl 2 SO2Ph 85

27 a2 15 1k 3-pyridinylmethyl 1 CO2H 92

28 a2 16 2p 3-pyridinylmethyl 2 CO2H 90

29 a3 15 1l cyclohexyl 1 CO2H 92

30 a5 16 2q 3-indolylethyl 2 CO2H 98

a Isolated yields in brackets are from the thermal reaction conditions while all other yields are from the microwave-assisted reaction conditions.
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Given the success of this initial study, a set of annulation
reagents was conceived to diversify the a,b-unsaturated
ester.5 The new SPAn reagents included the a,b-unsatur-
ated amides 9–12, a,b-unsaturated nitrile 13 and a,b-un-
saturated phenyl sulfone 14. The optimized reaction
conditions used to prepare 1a–d/2a–d from 7 and 8 were
only modestly successful in the annulation of amine a1
with 9–12. The yields were generally poor (<30%). In
fact, the desired products derived from the tandem SN2-
Michael reaction with reagents 13 and 14 were not ob-
served under these reaction conditions. Conducting the re-
actions in a variety of solvents, temperatures and reaction
times did not lead to a significant improvement in yield.
The application of microwaves was then investigated to
potentially circumvent this problem. After some experi-
mentation, optimized reaction conditions were identified:
one equivalent each amine and SPAn reagent with five
equivalents of either diisopropylethylamine (DIEA) or
macroporous carbonate resin (MP-carbonate) in DMSO at
150 °C for 15 minutes. Under microwave-assisted condi-
tions, SPAn reagents 9–14 reacted smoothly with a range
of amines to give a-substituted pyrrolidines and pipe-
ridines (entries 9–30, Table 1). The resin-bound SPAn re-
agents 15/16 (1.5 equiv) were found sufficiently reactive
as their alkyl chlorides and performed well with a range of
amines furnishing carboxylic acids (entries 27–30,
Table 1) after standard TFA-mediated resin cleavage in
high yield without resorting to chromatography. The mi-
crowave reaction conditions were also successfully ap-
plied to 7/8 → 1a–d/2a–d, significantly reducing reaction
time from three days to less than one hour. DMSO was the
critical solvent choice for the microwave-assisted annula-
tion as poor results were achieved with EtOH and other
solvents. Further structure diversity in the annulation
products was possible by introducing a heteroatom into
the iodoalkenyl chain as per a,b-unsaturated iodoalkyl
ether 17 and sulfonamide 18 (Scheme 2). The correspond-
ing morpholines 3a,b and N-methylsulfonyl piperazines
4a,b were obtained in ca. 60–90% yield from representa-
tive amines a2 and a6 under the optimized microwave-as-
sisted reaction conditions.

Scheme 2 Morpholine and piperazine annulation products

The iodoacrylates 19 and 20 were also examined as SPAn
reagents (Scheme 3). It was thought that the Boc-N-meth-
ylaminomethyl group at the C-3 position in combination
with the ester function might act as a latent N-methylca-
prolactam. Amines a2, a5 and a6 were reacted with 19/20
under the optimized thermal reaction conditions. The in-
termediate SN2-Michael adducts (21) were purified by sil-

ica gel chromatography to remove unwanted dimer, and
then treated with 4 N HCl–dioxane in EtOH (80 °C 1 h)
followed by triethylamine in EtOH (80 °C, 2 h). Lactams
5a,b and 6a,b were isolated in up to 55% yield establish-
ing the feasibility of spirocyclic ring formation. Further
refinement of this two-pot three-step process is ongoing
using the microwave protocol and exploring alternatives
to nitrogen protection.

As a demonstration of the utility of the new SPAn re-
agents to generate structure–activity relationship (SAR)
information, 6b-naltrexamine a7 was derivatized with re-
agents 7/8 and 15/16 (Table 2). The novel heterocyclic de-
rivatives 1m,n and 2r,s (obtained as mixture of their
respective diastereomers) were screened for binding (Ki)
against the human opioid receptors m, k, and d.6 The re-
sulting nascent SAR indicates that agents 1m and 2r are
potent dual k/d ligands with ca. 6- to 13-fold selectivity
over m. Interestingly, the m receptor appears relatively in-
sensitive to the change in the pendent ester versus carbox-
ylic acid group (esters 1m/2r versus acids 1n/2s). This is
in contrast to the k and d receptor affinity which is clearly
sensitive to the negatively charged carboxylate group (up
to a 15-fold loss in affinity). In a final study, mono-N-
Boc-protected diamine a8 was annulated with reagents 7
and 8 followed by Boc-deprotection and acylation with 4-
trifluoromethylphenylacetic acid furnishing 22a and 22b
(obtained as a mixture of their respective diastereomers).
This is the first demonstration of bidirectional functional-
ization of a diamine using first a SPAn reagent and then
traditional N-acylation. Compounds 22a and 22b dis-
played opioid receptor binding with 22a being a four-fold
more potent k ligand (Ki = 200 nM).

In summary, a-substituted pyrrolidines, piperidines, mor-
pholines, piperazines and diazaspirocycles were obtained
in a single reaction step from primary amines and SPAn
reagents 7–20.7 Microwave irradiation resulted in a sub-
stantial reduction in overall reaction time versus conven-
tional heating, improvement in product yields and was
essential for the formation of derivatives with a-methyl-
cyano (13 → 2j–l) and a-methyl(phenylsulfonyl) (14 →
2m–o) ring substituents. The new annulation chemistry
represents a valuable complement to existing acyclic
amine derivatization methodologies. Further examples of
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SPAn reagents affording medicinally relevant heterocy-
cles will be reported subsequently.
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8.55 (s, 1 H), 8.20 (s, 1 H), 6.95–7.55 (m, 9 H), 5.65 (m, 1 
H), 4.00, 4.34 (m, 2 × 1 H), 2.45–3.45 (m, 6 H), 0.90–2.05 
(m, 7 H). 13C NMR (75 MHz, CDC13): d = 172.7, 137.7, 
136.8, 128.5, 127.4, 127.1, 123.0, 121.5, 119.8, 118.5, 
113.0, 110.8, 65.5, 56.1, 55.1, 44.0, 32.5, 30.8, 23.4, 21.5. 
MS (ESI): m/z = 362 [M + H]+. HRMS (TOF): m/z [M + H]+ 
calcd for C23H28N3O: 362.2232; found: 362.2245. 
2-{1-[2-(1H-Indol-3-yl)ethyl]piperidin-2-yl}-N-benzyl-
N-methylacetamide (2i): 1H NMR (400 MHz, CDC13) d = 
8.68, 8.78 (m, 1 H), 6.95–7.55 (m, 9 H), 4.52 (m, 2 H), 4.00 
(m, 1 H), 2.95–3.70 (m, 6 H), 2.80, 2.95 (2 × s, 3 H, NMe 
rotomers), 0.90–2.20 (m, 9 H). MS (ESI): m/z = 390 [M + 
H]+. HRMS (TOF): m/z [M + H]+ calcd for C25H32N3O: 
390.2545; found: 390.2561. 
2-[1-(2,2-Diphenylethyl)piperidin-2-yl]acetonitrile (2l): 
1H NMR (400 MHz, CDC13): d = 7.10–7.35 (m, 10 H), 4.15 
(m, 1 H), 3.12 (m, 1 H), 2.95 (m, 1 H), 2.75 (m, 1 H), 2.65 
(m, 1 H), 2.30 (m, 3 H), 1.30–1.75 (m, 6 H). 13C NMR (75 
MHz, CDC13): d = 144.0, 129.3, 128.5, 126.0, 117.9, 59.8, 
59.5, 57.9, 49.3, 31.1, 26.2, 22.8, 22.3. MS (ESI): m/z = 305 
[M + H]+. HRMS (TOF): m/z [M + H]+ calcd for C21H25N2: 
305.2018; found: 305.2050. 
3-{[2-(Phenylsulfonylmethyl)piperidin-1-
yl]methyl}pyridine (2n): 1H NMR (400 MHz, CDC13): d = 
8.45 (m, 1 H), 7.98 (m, 1 H), 7.50–7.75 (m, 6 H), 7.20 (m, 1 
H), 3.25–3.60 (m, 5 H), 2.30 (m, 2 H), 1.40–1.90 (m, 6 H). 
13C NMR (75 MHz, CDC13): d = 150.8, 146.9, 145.5, 139.5, 
137.0, 133.1, 129.5, 128.0, 122.5, 64.8, 65.9, 59.4, 55.6, 
55.5, 29.9, 26.8, 22.5. MS (ESI): m/z = 331 [M + H]+. HRMS 
(TOF): m/z [M + H]+ calcd for C18H23N2O2S: 331.1480; 
found: 331.1492. 
2-{1-[2-(1H-Indol-3-yl)ethyl]piperidin-2-yl}acetic Acid 
(2q): 1H NMR (400 MHz, CDC13): d = 10.95 (s, 1 H), 7.38, 
7.60 (2 × d, J = 7.4 Hz, 2 × 1 H), 6.85–7.20 (m, 3 H), 1.50–
3.50 (m, 15 H). 13C NMR (75 MHz, CDC13): d = 180.0, 
136.2, 127.0, 123.1, 121.1, 120.2, 119.5, 113.9, 110.5, 67.0, 
58.1, 57.9, 55.0, 32.3, 26.1, 23.8, 23.5. MS (ESI): m/z = 287 
[M + H]+. HRMS (TOF): m/z [M + H]+ calcd for 
C17H23N2O2: 287.1793; found: 287.1810. 
Methyl 2-[4-(2,2-Diphenylethyl)morpholin-3-yl]acetate 
(3b): 1H NMR (400 MHz, CDC13): d = 7.10–7.35 (m, 10 H), 
4.10 (m, 1 H), 3.65 (s, 3 H), 3.40–3.60 (m, 4 H), 2.90–3.10 

Table 2 Biologically Active Annulation Products

Entry Prod R Ki(m) nM Ki(k) nM Ki(d) nM

1 1m Et 32 5.4 6.0

2 2r Et 91 6.8 6.7

3 1n H 55 40 91

4 2s H 44 54 81

5 22a – 1840 200 1100

6 22b – 1500 840 >5000
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(m, 3 H), 2.65 (m, 1 H), 2.50 (m, 2 H), 2.30 (m, 1 H). 13C 
NMR (75 MHz, CDC13): d = 174.1, 144.8, 129.9, 129.1, 
126.6, 72.3, 69.0, 64.1, 660.9, 52.3, 51.8, 38.1. MS (ESI): m/
z = 340 [M + H]+. HRMS (TOF): m/z [M + H]+ calcd for 
C21H26NO3: 340.1913; found: 340.1944. 
Methyl 2-[4-(Methylsulfonyl)-1-(pyridin-3-
ylmethyl)piperazin-2-yl]acetate (4a): 1H NMR (400 MHz, 
CDC13): d = 8.50 (m, 2 H), 7.35, 7.75 (m, 2 × 1 H), 3.70 (s, 
3 H), 3.62 (m, 2 H), 3.50 (m, 1 H), 2.92 (s, 3 H), 2.20–2.75 
(m, 8 H). 13C NMR (75 MHz, CDC13): d = 173.8, 152.0, 
147.8, 156.1, 137.0, 123.2, 60.8, 60.1, 54.7, 51.8, 51.1, 48.5, 
40.2, 38.3. MS (ESI): m/z = 328 [M + H]+. HRMS  (TOF): 
m/z [M + H]+ calcd for C14H22N3O4S: 328.1331; found: 
328.1362. 
1-(2,2-Diphenylethyl)-7-methyl-1,7-
diazaspiro[4.4]nonan-8-one (5b): 1H NMR (400 MHz, 

CDC13): d = 7.10–7.35 (m, 10 H), 4.05 (t, J = 7.5, 1 H), 3.40 
(s, 3 H), 3.17 (d, J = 10.2 Hz, 1 H), 2.65–3.00 (m, 5 H), 2.50, 
2.12 (2 × d, J = 17.2 Hz, 2 × 1 H), 1.75 (m, 4 H). MS (ESI): 
m/z = 335 [M + H]+. HRMS (TOF): m/z [M + H]+ calcd for 
C22H27N2O: 335.2123; found: 335.2148. 
Ethyl {6b-[17-(Cyclopropylmethyl)-3,14-dihydroxy-4,5-
epoxymorphinan-6b-yl]pyrrolidin-2-yl}acetate (1m): 
mixture of diastereomers. 1H NMR (400 MHz, CDC13): d = 
6.71, 6.74 (2 × d, J = 8.1 Hz, 2 × 0.5 H), 6.52, 6.54 (2 × d, 
J = 8.1 Hz, 2 × 0.5 H), 4.75 (d, J = 7.4, 0.5 H), 4.53 (d, J = 
8.2 Hz, 0.5 H), 4.21 (m, 1 H), 4.07 (dd, J = 7.0, 14.0 Hz, 1 
H), 3.60 (br s, 1 H), 1.38–3.20 (m, 24 H), 1.30, 1.21 (2 × t, 
J = 7.1 Hz, 2 × 1.5 H), 0.85 (m, 1 H), 0.54 (s, 2 H), 0.15 (s, 
2 H). MS (ESI): m/z = 483 [M + H]+. HRMS (TOF): m/z [M 
+ H]+ calcd for C28H39N2O5: 483.2859; found: 483.2885.
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