

Molecular Crystals and Liquid Crystals

ISSN: 1542-1406 (Print) 1563-5287 (Online) Journal homepage: http://www.tandfonline.com/loi/gmcl20

Synthesis and characterization of triosmiumbis[60]fullerene and bis(metal cluster)[60]fullerene compounds

Bo Keun Park

To cite this article: Bo Keun Park (2016) Synthesis and characterization of triosmiumbis[60]fullerene and bis(metal cluster)[60]fullerene compounds, Molecular Crystals and Liquid Crystals, 636:1, 155-158, DOI: 10.1080/15421406.2016.1201404

To link to this article: <u>http://dx.doi.org/10.1080/15421406.2016.1201404</u>

Published online: 01 Nov 2016.

🕼 Submit your article to this journal 🗗

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gmcl20

Synthesis and characterization of triosmium-bis[60]fullerene and bis(metal cluster)[60]fullerene compounds

Bo Keun Park

Center for Thin Film Materials, Korea Research Institute of Chemical Technology, Yuseong, Daejeon, Republic of Korea

ABSTRACT

Triosmium-bis[60]fullerene compound containing dppm ligand, Os₃(CO)₇(dppm)(C₆₀)₂ (**1**), was synthesized by reaction of Os₃(CO)₉(μ_3 - $\eta^{2:}\eta^{2:}\eta^{2-}C_{60}$) and dppm ligand with Me₃NO/MeCN. Reaction of Os₃(CO)₇(1,2-dppm)(μ_3 - $\eta^{2:}\eta^{2:}\eta^{2-}C_{60}$) and Re₃(μ -H)₃(CO)₁₁(NCMe) produced bis(metal-cluster)[60]fullerene compound, [Os₃(CO)₇(1,2-dppm)] (μ_3 - $\eta^{2:}\eta^{2:}\eta^{2-}C_{60}$)[Re₃(μ -H)₃(CO)₉] (**2**). Compounds **1** and **2** were characterized by IR, NMR (¹H and ³¹P), and Mass. Electrochemical property of **1** was confirmed by cyclic voltammetry (CV). **KEYWORDS**

fullerene; bis(metal cluster); osmium; rhenium

Introduction

The researchers have been interested in the fullerene compounds due to their potential application in optical, magnetic, electronic, catalytic, and biological fields [1–5]. The metal cluster-C₆₀ compounds with $\mu_3 - \eta^2 : \eta^2 : \eta^2 : C_{60}$ bonding mode are remarkably thermal stable and electronic communication between C_{60} and metal centers [4, 5]. Moreover, the reported (metal cluster)-bis[60]fullerene sandwich compounds showed strong electronic communication between the two C_{60} [5, 6]. The electrochemical properties of the compounds can be readily fine-tuned by change of ligands attached to the metal center [4, 5]. C₆₀ compounds coordinated to two different metal clusters, $[Os_3(CO)_6(PMe_3)_3](\mu_3 - \eta^2 : \eta^2 : \eta^2 : -C_{60})[Re_3(\mu - H)_3(CO)_9]$ (cis-1 and cis-2 compounds), were reported with their synthetic methods, characterization, DFT calculation, and electrochemical properties [7]. Recently, I and co-workers reported the preparation and electrochemical properties of $Os_3(CO)_7(1,2-dppm)(\mu_3-\eta^2:\eta^2:\eta^2:\gamma^2-C_{60})$ and $Os_3(CO)_7(1,1-dppm)(\mu_3-\eta^2:\eta^2:C_{60})$ [8]. Herein, I report the triosmium-bis[60]fullerene compound containing dppm ligand, $Os_3(CO)_7(dppm)(C_{60})_2$ (1), which were prepared through the synthetic method of $Os_3(CO)_7(1,2-dppm)(\mu_3-\eta^2:\eta^2:\eta^2:C_{60})$ and $Os_3(CO)_7(1,1-\eta^2:\eta^2:\eta^2:\eta^2:Q_{60})$ dppm)(μ_3 - η^2 : η^2 : η^2 - C_{60}). Also, I present the bis(metal-cluster)[60]fullerene compound, $[Os_3(CO)_7(1,2-dppm)](\mu_3-\eta^2:\eta^2:\eta^2:C_{60})[Re_3(\mu-H)_3(CO)_9]$ (2). Compounds 1 and 2 were characterized by spectroscopic methods (IR, ¹H-NMR, and Mass). And, the electrochemical properties of 1 were investigated by cyclic voltammetry (CV).

CONTACT Bo Keun Park parkbk@krict.re.kr Parkbk@krict.re.kr Conter for Thin Film Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea.

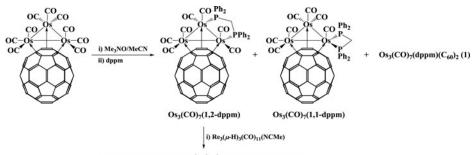
Downloaded by [Australian Catholic University] at 15:53 06 August 2017

Experimental

General comments

Solvents were dried over the appropriate drying agents and distilled immediately before use. Anhydrous trimethylamine *N*-oxide was obtained from Me₃NO·2H₂O (98%, Aldrich) by sublimation (three times) at 90-100°C under vacuum. Os₃(CO)₉(μ_3 - η^2 : η^2 : η^2 -C₆₀) [9] was prepared by the literature methods. Preparative thin layer plates were prepared with silica gel GF₂₅₄ (Type 60, E. Merck).

Preparation of $Os_3(CO)_7(dppm)(C_{60})_2$ (1)

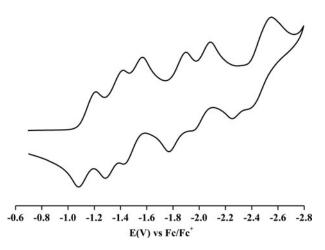

An acetonitrile solution of anhydrous Me₃NO (1.5 mg, 0.0196 mmol) was added dropwise to a chlorobenzene solution (20 mL) of Os₃(CO)₉(μ_3 - η^2 : η^2 : η^2 -C₆₀) (30 mg, 0.0194 mmol) at 0°C. The reaction mixture was allowed to warm to room temperature for 30 min. After evaporation of the solvent *in vacuo*, the residue was dissolved in chlorobenzene (20 mL) containing dppm (30 mg, 0.0780 mmol). The resulting solution was heated at 60°C for 4 h. Evaporation of the solvent and purification by multiple elution method (three times) on preparative TLC (CS₂/CH₂Cl₂ = 15:1) produced Os₃(CO)₇(1,2-dppm)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (15 mg, 0.0080 mmol, 41%, R_f = 0.6) as a brownish green solid [8], compound Os₃(CO)₇(1,1-dppm)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (12 mg, 0.0064 mmol, 33%, R_f = 0.5) as a green solid [8], and compound 1 (5 mg, 0.0019 mmol, 10%, R_f = 0.4) as a brown solid. IR(CH₂Cl₂): ν_{CO} 2025 (vs), 1964 (s), 1944 (sh), 1923 (w) cm⁻¹; ¹H NMR (400 MHz, C₆D₄Cl₂, 298 K): δ 7.76-7.12 (m, 20H, phenyl), 6.56 (dt, 1H, J_{HH} = 15.6 Hz, J_{PH} = 8.3 Hz, PCH₂P), 4.43 (dt, 1H, J_{HH} = 15.6 Hz, J_{PH} = 11.5 Hz, PCH₂P); ³¹P{¹H} NMR (122 MHz, C₆D₄Cl₂, 298 K): δ -34.7 (d, 1P, J_{PP} = 8.1 Hz, PCH₂P), -51.0 (d, 1P, J_{PP} = 8.1 Hz, PCH₂P); MS (MALDI-TOF): m/z: 2592.

Preparation of $[Os_3(CO)_7(1,2-dppm)](\mu_3-\eta^2:\eta^2:\eta^2-C_{60})[Re_3(\mu-H)_3(CO)_9]$ (2)

Os₃(CO)₇(1,2-dppm)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (10 mg, 0.0053 mmol) and Re₃(μ -H)₃(CO)₁₁(NCMe) (10 mg, 0.011 mmol) were dissolved in chlorobenzene (20 mL). The solution was refluxed for 2 h. After cooling at room temperature, evaporation of the solvent and purification by multiple elution method on preparative TLC (CS₂/CH₂Cl₂ = 10:1) produced compound **2** (4 mg, 0.0015 mmol, 28%, R_f = 0.4) as a brown solid. IR (CH₂Cl₂) ν_{CO} 2095 (m), 2076 (m), 2050 (m), 2031 (vs), 2007 (vs), 1975 (s) cm⁻¹; ¹H NMR (1,2-C₆D₄Cl₂, 298 K) δ 7.84 – 7.20 (m, 20H, Ph_2 PCH₂PP h_2), 5.85 (dt, 1H, J_{HH} = 12.5 Hz, J_{PH} = 12.5 Hz, PCH_2 P), 4.91 (dt, 1H, J_{HH} = 12.5 Hz, J_{PH} = 12.5 Hz, PCH_2 P), -15.31 (s, 1H, μ -H), -15.50 (s, 1H, μ -H), -15.65 (s, 1H, μ -H); ³¹P{¹H} NMR (1,2-C₆D₄Cl₂, 298 K): δ – 18.6 (d, 1P, J_{PP} = 32.8 Hz, PCH_2 P), -22.5 (d, 1P, J_{PP} = 32.8 Hz, PCH_2 P); MALDI TOF : m/z 2685.

Results and discussion

Compound 1 (10%) with $Os_3(CO)_7(1,2\text{-dppm})(\mu_3 - \eta^2:\eta^2 - C_{60})$ [8] and $Os_3(CO)_7(1,1\text{-dppm})(\mu_3 - \eta^2:\eta^2:\eta^2 - C_{60})$ [8] was produced by decarbonylation of $Os_3(CO)_9(\mu_3 - \eta^2:\eta^2:\eta^2:\eta^2 - C_{60})$ with Me₃NO/MeCN and then subsequent reaction with dppm in CB at 60°C (Scheme 1).


 $[Os_3(CO)_7(1,2-dppm)](\mu_3-\eta^2:\eta^2-\Gamma_{60})[Re_3(\mu-H)_3(CO)_9]$ (2)

Scheme 1. Synthesis of 1 and 2.

Reaction of $Os_3(CO)_7(1,2-dppm)(\mu_3-\eta^2:\eta^2:\Gamma_{60})$ and $Re_3(\mu-H)_3(CO)_{11}(NCMe)$ in CB at reflux temperature gave bis(metal-cluster)[60]fullerene compound, $[Os_3(CO)_7(1,2-dppm)](\mu_3-\eta^2:\eta^2:\Gamma_{60})[Re_3(\mu-H)_3(CO)_9]$ (2) (28%) (Scheme 1). The MALDI TOF mass spectra showed molecular ion isotope multiplets at m/z 2592 for 1 and 2685 for 2.

The ¹H NMR spectra of **1** and **2** show two doublet of triplet (dt) patterns with an intensity ratio of 1:1 in methylene region due to phosphorous atoms and diastereotopicity of metal combined dppm ligand. For **1**, the spectra displays dt peaks at δ 6.56 ($J_{HH} = 15.6 \text{ Hz}$, $J_{PH} =$ 8.3 Hz) and 4.43 ($J_{HH} = 15.6 \text{ Hz}$, $J_{PH} = 11.5 \text{ Hz}$). ¹H NMR spectra of **2** shows dt patterns at δ 5.85 ($J_{HH} = 12.5 \text{ Hz}$, $J_{PH} = 12.5 \text{ Hz}$) and 4.91 ($J_{HH} = 12.5 \text{ Hz}$, $J_{PH} = 12.5 \text{ Hz}$) that is slightly downfield shift than methylene proton peaks of Os₃(CO)₇(1,2-dppm)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (5.55 ($J_{HH} = 14.3 \text{ Hz}$, $J_{PH} = 10.7 \text{ Hz}$) and 4.51 ($J_{HH} = 14.4 \text{ Hz}$, $J_{PH} = 12.6 \text{ Hz}$)) [8]. Also, ¹H NMR spectra of hydride protons for rhenium cluster part reveal three singlets with 1:1:1 intensity ratio at δ -15.31, -15.50, and -15.65. The ³¹P{¹H} NMR spectra exhibit two doublets at δ -34.7 and -51.0 ($J_{PP} = 8.1 \text{ Hz}$) for **1**, and -18.6 and -22.5 ($J_{PP} = 32.8 \text{ Hz}$) for **2** because two phosphine parts of dppm ligand are different environment. ³¹P NMR spectra for starting compound, Os₃(CO)₇(1,2-dppm)(μ_3 - η^2 : η^2 . η_2 . η_2 : $\eta_$

Cyclic voltammogram (CV) of **1** is shown to Figure 1. Half-wave potentials $(E_{1/2})$ of free C₆₀ [5], Rh₆(CO)₅(dppm)₂(CNCH₂Ph)(μ_3 - η^2 : η^2 : η^2 -C₆₀)₂ (**3**) [10], Ir₄(CO)₃(μ_4 -CH)-(PMe₃)₂(μ -PMe₂)(CNCH₂Ph)(μ - η^2 : η^2 -C₆₀)(μ_4 - η^1 : η^1 : η^2 : η^2 -C₆₀) (**4**) [5], and **1** are provided in Table 1.

Figure 1. Cyclic voltammograms of **1** in dry deoxygenated 1,2-dichlorobenzene $(0.1 \text{ M} [(n-Bu)_4 \text{ N}][ClO_4])$. Scan rate = 50 mV/s.

	E _{1/2} 0/-1	E _{1/2} ^{-1/-2}	E _{1/2} ^{-2/-3}	E _{1/2} -3/-4	E _{1/2} -4/-5	E _{1/2} -5/-6	E _{1/2} -6/-7	solvent
C ₆₀ 1 3 4	1.06 1.14 1.19 1.25	- 1.43 - 1.35 - 1.38 - 1.32	1.91 1.49 1.62 1.66	- 2.38 - 1.83 - 1.86 - 1.82	- 2.03 - 2.12 - 2.35	2.41 2.58	— 2.56 ^a	CB CB CB CB

Table 1. Half-Wave Potentials ($E_{1/2}$ vs $E^{\circ}_{Fc/Fc+}$) of Free C₆₀, **3**, **4**, and **1**.

^aTwo-electron process and peak potential of irreversible process.

CV of **1** exhibits five-well separated, reversible, one-electronic redox couples at -1.14, -1.35, -1.49, -1.83, and -2.03 V and one irreversible two-electron redox wave at -2.56 V. The five electron redox waves are sequentially added into the two C₆₀ moieties such as C₆₀-Os₃-C₆₀⁻, C₆₀⁻-Os₃-C₆₀⁻, C₆₀⁻-Os₃-C₆₀²⁻, C₆₀²⁻, C₆₀²⁻, and C₆₀²⁻-Os₃-C₆₀³⁻. Similar behaviors were reported bis[60]fullerene compounds, **3** and **4**, and the reversible reduction potentials of **1** show anodic shifts compared to those of **3** and **4**. The irreversible two-electron reduction (-2.56 V) is considered to show due to instability of the compound with high negative charge.

Conclusion

Triosmium-bis[60]fullerene (Os₃(CO)₇(dppm)(C₆₀)₂, **1**) and bis(metal cluster)[60]fullerene ([Os₃(CO)₇(1,2-dppm)](μ_3 - η^2 : η^2 : η^2 -C₆₀)[Re₃(μ -H)₃(CO)₉], **2**) was synthesized and characterized. Electrochemical property of **1** are anodic shift and less stability than those of reported bis[60]fullerenes (Rh₆(CO)₅(dppm)₂(CNCH₂Ph)(μ_3 - η^2 : η^2 : η^2 -C₆₀)₂ (**3**) and Ir₄(CO)₃(μ_4 -CH)(PMe₃)₂(μ -PMe₂)(CNCH₂Ph)(μ - η^2 : η^2 -C₆₀)(μ_4 - η^1 : η^1 : η^2 : η^2 -C₆₀) (**4**)).

Acknowledgments

This research was supported by a grant from Development of Metal-Chalcogen Fullerene Hybrid Materials (KK-1407-B7) and the Development of Organometallics and Device Fabrication for IT·ET Convergence (KK-1502-H00) through the Korea Research Institute of Chemical Technology (KRICT).

References

- [1] Bendikov, M., Wudl, F. & Perepichka, D. F. (2004). Chem. Rev., 104, 4891-4945.
- [2] Nakamura, E., & Isobe, H. (2004). Acc. Chem. Res., 36, 807-815.
- [3] Balch, A. L., & Olmstead, M. M. (1998). Chem. Rev., 98, 2123-2165.
- [4] Lee, K., Song, H., & Park, J. T. (2003). Acc. Chem. Res., 36, 78-86 and references therein.
- [5] Park, B. K., Lee, G., Kim, K. H., Kang, H., Lee, C. Y., Miah, M. A., Jung, J., Han, Y.-K., & Park, J. T. (2006). J. Am. Chem. Soc., 128, 11160–11172 and references therein.
- [6] Lin, Y.-S., & Yeh, W.-Y. (2014). Organometallics, 33, 731-735.
- [7] Park, B. K., Lee, C. Y., Jung, J., Lim, J. H., Han, Y.-K., Hong, C. S., & Park, J. T. (2007). Angew. Chem., Int. Ed., 46, 1436–1439.
- [8] Jun, T., Park, B. K., & Lee, C. Y. (2014). J. Organomet. Chem., 763-764, 20-25.
- [9] Park, J. T., Song, H., Cho, J.-J., Chung, M.-K., Lee, J.-H., & Suh, I.-H. (1998). Organometallics, 17, 227–236.
- [10] Lee, K., Choi, Y. J., Cho, Y.-J., Lee, C. Y., Song, H., Lee, C. H., Lee, Y. S., & Park, J. T. (2004). J. Am. Chem. Soc., 126, 9837–9844 and references therein.