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pyrroloquinoxalinones by azomethine ylide dipolar 
cycloaddition chemistry
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1. Introduction

Cycloaddition reactions using azomethine ylides have been 
used widely to synthesise organic molecules containing 
pyrrolidine and pyrrole rings.1–4 There are many ways to prepare 
the intermediate azomethine ylides and one of the most simple 
involves the reaction between a secondary amine and an 
aldehyde. If the amine contains an electron withdrawing group in 
the α-position, such as an ester, then the resulting iminium ion 
can be deprotonated to give an azomethine ylide.5–16 As an 
alternative to an ester, a lactone can be used as a stabilising group 
to generate azomethine ylides, which has allowed access to a 
variety of different polycyclic compounds.17–19 In contrast, 
electron withdrawing amides or lactams are relatively uncommon 
as stabilising groups for intermediate azomethine ylides.20–25 Six-
membered lactams such as piperazinones are important 
functional groups which have a large number of applications, 
especially in medicinal chemistry.26–28 However piperazinones 
and their benzo-fused derivatives (dihydroquinoxalinones, 1) 
have not, to the best of our knowledge, been used to form 
azomethine ylides for dipolar cycloaddition reactions. 
Cycloadducts 2 have an interesting tricyclic structure, where a 
pyrrolidine is fused with a dihydroquinoxalinone (Scheme 1).
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Scheme 1. General cycloaddition reaction under study.
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Figure 1. Bioactive tricyclic quinoxalin(on)es.

The pyrroloquinoxalinone structure has been synthesised 
previously using cyclization reactions.29–36 However, [3+2] 
cycloaddition reactions could provide a very efficient route to 
these compounds, which have the potential for significant 
biologically activity. Similar structures have been found to have 
biological relevance as, for example, GABA/benzodiazepine 
receptor ligands, 5-HT3 receptor agonists, or vascular smooth 
muscle relaxants (Fig. 1).37–40 Herein, we highlight the use of 3,4-
dihydroquinoxalin-2(1H)-one 1 in [3+2] cycloaddition reactions 
to generate a series of novel tetracyclic compounds based on this 
core ring system.

2. Results and Discussion

We began by synthesising the dihydroquinoxalinone 1 using a 
known procedure (see supplementary data).41 With this 
compound in hand we studied the use of conditions similar to 
those reported by Siedel and co-workers42 to try to effect the 
desired cycloaddition reaction (Scheme 2). Heating 
dihydroquinoxalinone 1 with benzaldehyde, 4 Å molecular sieves 
(MS), benzoic acid and N-methylmaleimide in toluene failed to 
give the desired cycloaddition product and returned only 
recovered starting materials. Substituting benzoic acid for the 
stronger acid camphorsulfonic acid (CSA) gave a similar result, 
but oxidised compound 3 was isolated instead of compound 1. It 
was clear that oxidation of the starting material was interfering 
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1-Methyl-3,4-dihydroquinoxalin-2(1H)-one was heated with a range of aldehydes to generate 
intermediate azomethine ylides which underwent [3+2] cycloaddition reactions with N-methyl 
or N-phenylmaleimide to give substituted tetrahydropyrroloquinoxalinones. Only one (racemic) 
stereoisomer was formed in each case and the stereochemical outcome was verified by single 
crystal X-ray analysis. The products from this multicomponent reaction could be oxidised with 
DDQ to the pyrroloquinoxalinones. 
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with the desired reaction.43 To investigate the oxidation reaction 
further, dihydroquinoxalinone 1 was heated at reflux in toluene 
with 10 mol% CSA in the absence of aldehyde or maleimide. 
Analysis of the reaction mixture after 17 h by 1H NMR 
spectroscopy indicated a mixture of dihydroquinoxalinone 1 and 
its oxidised form 3 in a 1:1.2 ratio. In contrast, by carrying out 
the same reaction under an argon atmosphere, 1H NMR 
spectroscopy of the reaction mixture indicated that no oxidised 
material 3 had been formed.
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Scheme 2. Initial attempted cycloaddition reaction.

We therefore repeated the cycloaddition reaction under an 
inert atmosphere and were pleased to find that the desired 
cycloadduct 4 was formed as a single racemic diastereoisomer in 
moderate yield (Scheme 3). The reaction conditions were 
optimised as shown in Table 1. Initially increasing the amount of 
CSA caused an increase in the yield of cycloadduct 4, with a 
maximum yield of 57% being obtained when 15 mol% of CSA 
was added (Entry 3). Decreasing the reaction temperature caused 
a decrease in the yield of cycloadduct 4 (Entry 5). Although the 
addition of the drying agent MgSO4 did not affect the yield 
(Entry 6), the use of 4 Å molecular sieves was beneficial (Entry 
7). Changing the molar ratio of dihydroquinoxalinone 1 and 
benzaldehyde gave variable yields of cycloadduct 4 (Entries 
8−10) with the best result being obtained when using 1.5 eq. 
dihydroquinoxalinone 1 and 1 eq. benzaldehyde (Entry 8). 
However, it was possible to obtain a good yield with 1 eq. of 
each of component: 1, PhCHO, and N-methylmaleimide (Entry 
9). Finally, when the acid was changed from CSA to benzoic acid 
there was a decrease in the yield (Entry 11).
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Scheme 3. Cycloaddition to give tetracycle 4.

Table 1. Optimization of the cycloaddition in Scheme 3.
Entry Conditions Yield 4 (%)

1 2 eq. 1, no acid, 110 °C, no drying agent 0

2 2 eq. 1, 10 mol% CSA, 110 °C, no drying agent 47

3 2 eq. 1, 15 mol% CSA, 110 °C, no drying agent 57

4 2 eq. 1, 20 mol% CSA, 110 °C, no drying agent 49

5 2 eq. 1, 15 mol% CSA, 90 °C, no drying agent 40

6 2 eq. 1, 15 mol% CSA, 110 °C, MgSO4 48

7 2 eq. 1, 15 mol% CSA, 110 °C, 4 Å MS 63

8 1.5 eq. 1, 15 mol% CSA, 110 °C, 4 Å MS 69

9 1 eq. 1, 15 mol% CSA, 110 °C, 4 Å MS 54

10 1.5 eq. PhCHO, 15 mol% CSA, 110 °C, 4 Å MS 25

11 1.5 eq. 1, 15 mol% PhCO2H, 110 °C, 4 Å MS 32

The stereochemistry of compound 4 was confirmed by single 
crystal X-ray crystallography (Fig. 2), which showed a trans 
configuration between the protons α to the amine nitrogen atom 
and therefore that the [3+2] cycloaddition occurs with the S-

shaped ylide (assuming a concerted process, although it is 
possible that the reaction is stepwise). The dipolarophile N-
methyl maleimide approaches trans to the phenyl group (endo 
selectivity). 

Figure 2. Single crystal X-ray structure for (±)-4.

Using the optimised conditions, we then explored the substrate 
scope of the reaction. By varying the aldehyde, we were able to 
obtain a range of different cycloadducts 5−8 (Scheme 4). The 
reaction was successful with both electron-poor (4-nitro) and 
electron-rich (4-methoxy) benzaldehydes, although the yield of 
cycloadduct 6 in the latter case was low. It was pleasing to find 
that the reaction was successful with a heteroaryl group 
(thiophenyl) and with the non-aromatic aldehyde cyclohexane-
carbaldehyde, which gave the desired cycloadducts 7 and 8 
respectively. In all cases for products 5−8 only a single 
stereoisomer was isolated and each had very similar coupling 
constants in the 1H NMR spectra, suggesting that they all have 
the same relative stereochemistry as determined for adduct 4.
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Scheme 4. Exploring the scope of the aldehyde RCHO.

We then attempted to expand the scope of the dipolarophile by 
testing different electron-poor alkenes. However mostly starting 
materials and no desired cycloadducts were isolated on heating 
amine 1 and PhCHO with dimethyl fumarate, methyl trans-
cinnamate, diethyl acetylenedicarboxylate, or 
benzylidenemalononitrile. The reaction was successful with N-
phenylmaleimide to give cycloadduct 9 in 39% yield (Scheme 5).
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Scheme 5. Cycloaddition with N-phenylmaleimide.

Finally, the scope of chemistry was extended by oxidation of 
cycloadducts 4 and 7 using 4,5-dichloro-3,6-dioxo-1,4-
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cyclohexadiene-1,2-dicarbonitrile (DDQ). This resulted in the 
formation of compounds 10 and 11, respectively, in good yields 
(Scheme 6).
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Scheme 6. Oxidation of the cycloadducts.

3. Conclusion

In conclusion, we have demonstrated a successful and simple 
protocol for a multicomponent coupling reaction involving 
azomethine ylide dipolar cycloaddition chemistry from 
dihydroquinoxalinone 1 and a variety of aldehydes. The scope of 
the dipolarophile needs further study but the chemistry allows 
access to novel heterocyclic products as single stereoisomers. 
The strategy provides a way to prepare libraries of compounds 
based on the pyrroloquinoxalinone core for biological screening.
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