A New Approach to the Atherton-Todd Reaction

L.K. LUKANOV, A.P. VENKOV, N.M. MOLLOV

Department of Chemistry, University of Plovdiv, Zar Assen Str. 24, 4000 Plovdiv, Bulgaria

N-Arylphosphoramidates 4 are prepared by reacting formanilides 1 and chloroacetanilides 1' with diethyl phosphite under phase-transfer conditions.

Phosphorylation of amines by the conventional Atherton-Todd procedure^{1,2} is the most convenient method for the synthesis of phosphoramidates. The phase-transfercatalysed version^{3,4} of this reaction is apparently more convenient and versatile as compared to the conventional approach. However, there are only few examples of *N*-arylphosphoramidates synthesised by both procedures. The interest in *N*-arylphosphoramidates was based on their importance as intermediates in organic synthesis^{5,6} as well as their potential biological activity⁷. Our attempts to apply the conventional Atherton-Todd procedure and its phase-transfercatalysed version for the synthesis of phosphoramidates of *ortho*-substituted anilines were unsuccessful, despite variation of the reaction conditions and the catalyst.

In search of an alternative approach for the synthesis of *N*-arylphosphoramidates, we found that formanilides 1 and chloroacetanilides 1', including the *ortho*-substituted derivatives, are sufficiently stable and nucleophilic under the conditions of the phase-transfer-catalysed version of the Atherton-Todd reaction. They can be used as substrates for phosphorylation with diethyl phosphite (2) to give *N*-arylphosphoramidates 4.

Diethyl N-aryl phosphoramidates 4 are prepared by dropwise addition of diethyl phosphite (2) to a cold solution of formanilide 1 or chloroacetanilide 1' in tetrachloromethane and 30% sodium hydroxide in the presence of catalytic amounts of benzyl triethylammonium bromide (Table). The results show that the outlined procedure of using 1 and 1' for introduction of diethoxyphosphinyl group in orthosubstituted anilines seems to be a useful extension of the Atherton-Todd reaction. The reaction proceeds probably because of the stronger NH-acidity of 1 and 1' and smaller steric hindrance problems in amide anions in comparison with the corresponding anilines. The reaction can proceed

Ar-NH-C-R + HP OC₂H₅

1 R=H
1' R=CH₂CI

Ar OC₂H₅

1 R=CH₂CI

Ar OC₂H₅

$$Ar-NH-P$$
 $Ar-NH-P$
 $Ar-NH-P$

either as a transacylation or the formation of the intermediate 3 can be envisaged, which undergoes fast hydrolysis under the reaction conditions.

The solid-liquid variant of the two phase reaction for the phosphorylation of 1 and 1' can also be applied successfully when potassium hydroxide is used as the base. The yields of 4

Table. Phosphoramidates 4a-h prepared

Prod- uct	Yield [%] from		m.p. [°C]	Molecular Formula ^a or	I.R. (CHCl ₃) ^b [cm ⁻¹]		¹ H-N. M. R. (CDCl ₃ /TMS) ^c δ[ppm]	M.S.d m/e
	1	1′	[C]	Lit. m.p. [°C]	v _{NH}	v _{P = O}	o [bbm]	(M +)
4 a	60	70	96-97	94–95° ⁴	3200	1240	1.32 (t, 6H, $J = 10 \text{ Hz}$); 4.16 (q, 4H, $J = 10 \text{ Hz}$), 6.90-7.20 (m, 5H)	229
4b	30	60	65-65.5°	C ₁₁ H ₁₈ NO ₄ P (259.3)	3200	1240	1.30 (t, 6H, $J = 10 \text{ Hz}$); 3.78 (s, 3H); 4.10 (q, 4H, $J = 10 \text{ Hz}$); 6.65–7.05 (m, 4H)	259
4c	70	60	75–77 °	75-77° ⁴	3200	1250	1.35 (t, 6 \dot{H} , $J = 10$ Hz); 4.10 (q, 4H, $J = 11$ Hz); 7.06 (d, 2H, $J = 8$ Hz); 7.70 (d, 2H, $J = 16$ Hz)	263
4d	30	80	oil	C ₁₁ H ₁₈ NO ₄ P (259.3)	3400	1240	1.30 (t, 6H, $J = 10 \text{ Hz}$); 3.85 (s, 3H); 4.10 (q, 4H, $J = 11 \text{ Hz}$); 6.85–7.30 (m, 4H)	259
4e	50	85	oil	C ₁₀ H ₁₄ Cl ₂ NO ₃ P (298.1)	3300	1240	1.35 (t, 6 H, $J = 10$ Hz); 4.15 (q, 4H, $J = 10$ Hz); 7.08-7.35 (m, 3H)	298
4f	45	80	8384°	C ₁₁ H ₁₈ NO ₃ P (243.3)	3430	1250	1.34 (t, 6H, $J = 10 \text{ Hz}$); 2.28 (s, 3H); 4.05 (q, 4H, $J = 11 \text{ Hz}$); 7.10–7.40 (m, 4H)	243
4g	70	62	113°	$C_{14}H_{24}NO_3P$ (285.3)	3390	1220	1.20 (t, 6H, $J = 11 \text{ Hz}$); 1.25 (t, 6H, $J = 10 \text{ Hz}$); 2.30 (q, 4H, $J = 11 \text{ Hz}$); 4.00 (q, 4H, $J = 10 \text{ Hz}$); 7.02 (s, 3H)	285
4h	75	70	94–95°	C ₁₂ H ₂₀ NO ₃ P (257.3)	3380	1240	1.28 (t, 6H, $J = 11 \text{ Hz}$); 2.40 (s, 3H); 4.00 (q, 4H, $J = 11 \text{ Hz}$); 6.98 (s, 3H)	257

 $^{^{\}rm a}$ Satisfactory microanalyses obtained: C \pm 0.35, H \pm 0.20, N \pm 0.30.

The I.R. spectra were recorded on a C. Zeiss Specord I.R. spectrophotometer.

^c The ¹H-N.M.R. spectra were measured at 60 MHz using a Perkin-Elmer R-24B spectrometer.

^d The mass spectra were recorded on a MS-D300 spectrometer.

are comparable with the above results. This variant cannot be applied when potassium hydrogen carbonate/potassium carbonate is used as the solid phase.

Diethyl N-Arylphosphoramidates 4; General Procedure:

To a stirred suspension of 1 or 1' (5 mmol) in tetrachloromethane (25 ml), 30% aqueous sodium hydroxide (10 ml) and benzyltriethylammonium bromide (0.2 g) cooled in an ice/water bath, is added dropwise diethyl phosphite (2; 0.828 g, 6 mmol) in tetrachloromethane (5 ml). Stirring is then continued for 1 h at ice bath temperature and 4 h at room temperature. The separated organic layer is dried with anhydrous sodium sulphate and the solvent is removed by evaporation in vacuo to give the crude N-arylphosphoramidate 4 which is purified by recrystallisation or column chromatography.

Received: December 27, 1984

¹ Atherton, F. R., Openshaw, H. T., Todd, A. R. J. Chem. Soc. 1945, 660.

² Atherton, F.R., Todd, A.R. J. Chem. Soc. 1947, 674.

³ Zwierzak, A. Synthesis 1975, 507.

Zwierzak, A. Osowska, K. Synthesis 1984, 223.

Wadsworth, W.S., William, Jr., Emmons, D. J. Am. Chem. Soc. 1962, 84, 1316.

⁶ Zwierzak, A., Pilichowska, S. Synthesis 1982, 922.

⁷ Saito, J., Kudamatsu, A., Shiokawa, K., German Patent (DOS) 2741085, (1978), Nihon Tokushu Noyaku Seizo K. K.; C. A. 1978, 89, 5925.