Phenylselenyl Halide Induced Formation of Cyclic Nitrones from Alkenyl Oximes

Ronald Grigg,* a Maria Hadjisoteriou, a Peter Kennewell b and Jasothara Markandu a

- ^a School of Chemistry, Leeds University, Leeds LS2 9JT, UK
- b Roussel Scientific Institute, Kingfisher Drive, Swindon SN3 5BZ, UK

Oximes possessing alk- γ - or - δ -enyl substituents are cyclised by phenylselenyl bromide, or by phenylselenyl chloride and an appropriate silver salt, to the corresponding cyclic nitrones; the seleno nitrones undergo facially specific cycloadditions with *N*-methylmaleimide, bis(alk- γ , δ -enyl) and bis(alk- δ , δ -enyl) ketones undergo regiospecific cyclisation and stereospecific cycloaddition to furnish spirocyclic products.

Inter- and intra-molecular cycloaddition reactions of nitrones have attracted much attention because they provide a potentially flexible entry into the complex molecular frameworks of natural products. Utilising oximes as nitrone precursors in tandem nitrone generation—cycloaddition protocols substantially enhances this flexibility. We have recently introduced a range of such protocols² most of which have four distinct synthetic variants. Further novel developments in this area are now reported.

We have been exploring the generality of electrophile induced oxime-olefin (alkyne) reactions as a source of novel tandem nitrone formation-cycloaddition protocols and in our preceding communication² we reported reactions in which mercuric acetate functioned as the electrophile. This paper is concerned with the application of phenylselenyl halides³ to such processes.

In a preliminary evaluation of phenylselenyl halides it became clear that phenylselenyl bromide, or phenylselenyl chloride in combination with silver triflate (trifluoromethane-sulfonate), usually gave rise to cleaner reactions and improved yields compared with phenylselenyl chloride alone or phenylselenyl chloride in combination with silver tetrafluoroborate.

Oxime 1a which comprised a 2:1 mixture of syn (Me/OH)-and anti-isomers reacted (CH₂Cl₂, 25 °C, 0.5 h) with phenylselenyl bromide (1 mol) to give a quantitative yield of the adduct $2a.\dagger$ Treatment of 2a with anhydrous potassium carbonate (1.1 mol) (CH₂Cl₂, 25 °C, 16 h) afforded the nitrone 3a together with a trace of oxazine $4a.\ddagger$ Heating the nitrone 3a in acetonitrile (80 °C, 9 h) with N-methylmaleimide (1 mol) afforded cycloadduct 5a (70% overall from 1a) as a 3:2 mixture of endo- and exo-isomers. It is apparent from this result that the ratio of nitrone 3a to oxazine 4a does not reflect the syn:anti ratio of the oxime. The nitrone: oxazine ratio is sensitive to the reagents/conditions used as shown by reaction of 1a with PhSeCl-AgOTf (CH₂Cl₂, 0 °C) to give 2b† followed

 $^{^{\}dagger}$ The ^{1}H NMR spectrum (CDCl₃) of **2a** exhibited a broad singlet at δ 5.1 (H_A) and two double doublets at δ 3.6 and 3.34 (H_B, H_C); **2b** δ 5.0 (br s, 1H, H_A) and 3.55 and 3.45 (2 \times dd, 2 \times 1H, H_B, H_C).

 $[\]ddagger$ ¹H NMR data (CDCl₃): **3a** δ 4.3 (br s, 1H, H_A), 3.62 and 3.22 (2 × dd, 2 × 1H, H_B, H_C) and 2.0 (s, 3H, Me); **4a** δ 3.8 (m, 1 H, H_A), 3.25 and 2.9 (2 × dd, 2 × 1H, H_B, H_C) and 1.9 (s, 2H, Me).

6

by treatment with potassium carbonate (CH₂Cl₂, 25 °C), which affords a 2.5:1 mixture of 3a and 4a in 76% combined yield. The diastereofacially specific cycloaddition of this and all the nitrones in this paper accords with our observations on related cases.2,4

Oxime 1b (1:1 mixture of syn- and anti-isomers) reacted under analogous conditions to give the nitrone 3b and subsequently the cycloadducts 5b (61% overall from 1b). In this case none of the corresponding oxazine 4b was observed and only the endo-cycloadduct 5b was obtained. The oxime 1c reacted under the same conditions to give cycloadduct 5c as a 3:2 mixture of *endo*- and *exo*-cycloadducts but again no oxazine was detected. The conversion of oximes 1a-c into cycloadducts 5a-c constitute examples of Class 3 processes according to our classification.2

Class 4 processes² have been explored with both symmetrical and unsymmetrical substrates. Thus, 6 reacts (MeCN, 25 °C, 0.5 h) with phenylselenyl bromide to afford 7, which on treatment with anhydrous potassium carbonate (1.1 mol) (MeCN, 25 °C, 16 h) affords nitrone 8. The nitrone on heating (MeCN, 80 °C, 5 h) affords a single spirocyclic cycloadduct 9 (65% overall from 6).

A similar sequence of reactions was performed on the unsymmetrical dialk-γ,δ-enyl oximes 10. Regiospecific cyclisation (MeCN, 25 °C) to nitrone 11 occurred on treatment of 10 sequentially with phenylselenyl bromide and potassium carbonate. Heating of 11 in acetonitrile (80 °C, 4 h) afforded a single cycloadduct 12 (61%) via the anticipated diastereofacially specific cycloaddition.

The stereochemistry of the cycloadducts reported herein was established by PMR decoupling experiments and NOE studies. A typical example is provided by 12 in which irradiation of H_C caused enhancements of the signals for H_B, H_A and H_D .

Further work on these and related electrophile induced conversion of oximes to nitrones is underway.

We thank the SERC, Roussel and Leeds University for

Received, 3rd August 1992; Com. 2/04157J

References

- 1 J. J. Tufariello, in 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984, vol. 12, p. 83; K. B. G. Torssell, Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH, Weinheim, 1988.
- 2 These are summarised in, R. Grigg, M. Hadjisoteriou, P. Kennewell, J. Markandu and M. Thornton-Pett, J. Chem. Soc., Chem. Commun., 1992, 1388.
- 3 For leading references see: C. Paulmier, in Selenium Reagents and Intermediates in Organic Synthesis, Pergamon Press, Oxford, 1986, ch. 8.
- 4 R. Grigg, J. Markandu, T. Perrior, S. Surendrakumar and W. J. Warnock, Tetrahedron, 1992, 48, 6929; R. Grigg, J. Markandu, S. Surendrakumar, M. Thornton-Pett and W. J. Warnock, Tetrahedron, in the press.