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ABSTRACT: An example of proaromatic C(alkenyl)−H olefina-
tion is reported. This protocol utilized a free carboxylic acid as a
directing group for C(alkenyl)−H activation of 1,4-cyclohexadiene
and coupled with various alkenes. Direct and sequential
bisolefinations of proaromatic acids were achieved. The synthetic
applicability has been exhibited by [4 + 2] cycloaddition and
decarboxylative aromatization of the resulting proaromatic 1,3-
dienes. Additionally, several kinetic studies also have been carried
out to elucidate the reaction mechanism.

Direct C(sp2)−H functionalization has the advantage of
providing access to a complex scaffold from simple

building blocks.1 Although the past decade has seen many
achievements in aromatic and alkene C−H activation, C−H
activation of the proaromatic system remains elusive.
Proaromatics are found in high-value material science.2 The
C−H activation of proaromatics is highly desirable but remains
undeveloped. Major pitfalls in the proaromatic system, such as
1,4-cyclohexadiene, are ring strain, tendency to aromatize, and
an allylic C−H bond cleavage.3 Therefore, the C(sp2)−H
functionalization of 1,4-cyclohexadiene has rarely been realized
(Scheme 1a). The reaction design of the 1,4-cyclohexadiene
ring by introducing a directing group and two additional
substituents at the 1,4-position is of benefit to C(sp2)−H
functionalization and prevention of side reactions (Scheme
1b), allowing synthesis of synthetically valuable conjugated 1,3-
dienes which can serve as a promising scaffold in biomedical
and material sciences.4

The realization of C(alkenyl)−H functionalization to access
molecular complexity and diversity has been attributed to a
significant strategy of introducing an exogenous directing
group.5 However, this method is complex with its multiple
steps in prefabrication of the directing group and extirpation of
it after functionalization. By contrast, utilization of free
carboxylic acid without an exogenous directing group for C−
H functionalization is a straightforward method to facilitate
C−H activation in a step-economical manner.6 Numerous
studies have demonstrated that free carboxylic acid can be
efficiently used as a directing group for C(aryl)−H and
C(alkyl)−H functionalization.7,6h However, the development
of C(alkenyl)−H functionalization using free carboxylic acid as
a directing group, particularly in proaromatics, still under
investigation.
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Scheme 1. Overview, Reaction Design, and Proaromatic
C(Alkenyl)−H Olefination
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Previously, we and Studer‘s group have individually reported
that proaromatic acids 1 initially underwent Pd-catalyzed
carboxylate-directed C(alkenyl)−H olefination with alkenes 2
using Ag(I) or TEMPO as an oxidant followed by tandem
decarboxylative aromatization. As a result, the in situ generated
C−H olefinated 1,3-dienes 3 experienced complete loss of its
proaromaticity leading to the formation of ortho-alkylated
vinylarenes.8 We envisioned that it would be more attractive if
a complementary approach could be established to inhibit the
decarboxylative aromatization enabling synthetically more
valuable 1,3-dienes. Weak coordination of the carboxylate
group, deactivation by transition metals and oxidants, reactive
alkene π-chelation, ring instability, regain of aromaticity, and
unbidden reactions of the π-bond with oxidants are crucial in
C(alkenyl)−H activation of proaromatic carboxylic acids 1.
Herein, we report a palladium-catalyzed unprecedented
proaromatic C(alkenyl)−H activation for direct C(alkenyl)−
H olefination. In addition, this protocol can also be used for
the bis- and sequential C(alkenyl)−H olefination process.
Notably, our protocol also prevents the deterioration of
functionalized carboxylic acid through an intramolecular
cyclization9 and maintains the proaromatic 1,3-diene scaffold
for further synthetic transformations.
In our previous work, we have found olefinated 1,3-diene 3

underwent decarboxylative aromatization in the conditions of
10 mol % of Pd(TFA)2 and 3 equiv of Ag2CO3 at 120 °C.8a A
mild catalytic system needed to be established to suppress
decarboxylative aromatization. Initial studies on the reaction of
4-(tert-butyl)-1-isopropylcyclohexa-2,5-diene-1-carboxylic acid
(1a) with methyl acrylate (2aa) were investigated, and reaction
parameters were optimized under various conditions (Table
1). After extensive screening, 10 mol % of Pd(OAc)2, 1.5 equiv

of AgOAc, and 1 equiv of Cu(OAc)2·H2O at 80 °C in DMSO/
dioxane for 24 h was found to have the highest yield of the
olefinated product 3a at 86% (entry 6).

Table 1. Optimization of the Pd-Catalyzed C(Alkenyl)−H
Olefination of Proaromatic Acidsa

entry Pd (mol %) oxidant (equiv) t (h) T (°C)
3a

(%)b

1 Pd(OAc)2
(10)

AgOAc (3) 48 50 75

2 Pd(OAc)2
(10)

AgOAc (1.5) 48 50 74

3 Pd(OAc)2
(5)

AgOAc (1.5) 48 50 52c

4 Pd(OAc)2
(10)

AgOAc (1) 48 50 40c

5 Pd(OAc)2
(10)

AgOAc (1.5), Cu(OAc)2·
H2O (1)

48 80 51d

6 Pd(OAc)2
(10)

AgOAc (1.5), Cu(OAc)2·
H2O (1)

24 80 86

7 Pd(OAc)2
(10)

AgOAc (1.5), Cu(OAc)2·
H2O (1)

24 50 35c

8 Pd(OAc)2
(5)

AgOAc (1.5), Cu(OAc)2·
H2O (1)

24 80 66c

9 Pd(TFA)2
(10)

Ag2CO3 (1.5), Cu(OAc)2·
H2O (1)

1 120 75e

aReaction conditions: 1a (0.12 mmol), 2aa (0.1 mmol) in 2 mL of
solvent (DMSO/dioxane = 1:20). bIsolated yield. cRecovery of 1a.
dDecarboxylative aromatization of 3a was observed. eTrace amount of
bisolefination was observed.

Scheme 2. Palladium-Catalyzed C(Alkenyl)−H Olefination
of Proaromatic Acidsa

aReaction was conducted with 1 and functionalized alkenes 2a or
styrene derivatives 2b. b1 (1.2 equiv), 2a (1.0 equiv). cPd(OAc)2 (10
mol %), AgOAc (1.5 equiv) at 50 °C, 48 h. d1 (1.0 equiv), 2b (1.5
equiv), AgOAc (1.5 equiv), Pd(OAc)2 (20 mol %), DMSO/dioxane
(1:20) at 120 °C for 48 h. eThe reaction was performed at 60 °C.

Scheme 3. Palladium-Catalyzed C(Alkenyl)−H
Bisolefination of Proaromatic Acidsa

aReaction was conducted with 1 and functionalized alkenes 2a or
styrene derivatives 2b. bYield of mono-olefinated product. cOnly
mono-olefinated product was observed.
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With the optimized conditions in hand, we investigated the
scope of various proaromatic acids with methyl acrylate 2aa
(Scheme 2). Proaromatic acids containing 4-tert-butyl, 4-
isopropyl, and 4-methyl reacted well with acrylate to afford
olefinated products in 74−86% yields (3a−3d). The efficiency
of the interior methylene proaromatic acid was limited (3d,
13%), even at low temperature. We found that the poor
efficiency of C(alkenyl)−H olefination was due to the rapid
decarboxylative aromatization of the proaromatic acid. Ethyl,
isopropyl, and tert-butyl acrylates were well-tolerated under the
present reaction conditions to give moderate yields (3e−3g).
The α-long chain produced a high yield (3h). Diethyl vinyl
phosphonate, phenyl vinyl sulfone, and acrylonitrile reacted
smoothly and produced desired olefinated products in good
yields (3i−3k). Trimethyl vinyl silane and N,N-dimethyl
acrylamide were also compatible with the reaction conditions,
providing the resultant products in moderate yields (3l and
3m). We next investigated the scope by varying the alkene
derivatives to styrenes. The optimal reaction conditions for
styrene derivatives (2b) were also studied, and we found that
using 20 mol % of Pd(OAc)2, 1.5 equiv of Ag(OAc) at 50 °C
for 48 h gave the satisfactory result (see Table S1 in
Supporting Information for details). Scope of various styrene
derivatives with proaromatic acids 1 were then examined
(Scheme 2). 4-Substituted proaromatic acids 1 generated
olefinated products with styrene in moderate to good yields
(3n−3p). Para-methyl or -methylester styrenes had reasonable
yields (3q and 3r). Meta- or para-methoxy-substituted styrenes

Scheme 4. Palladium-Catalyzed Sequential C(Alkenyl)−H
Bisolefination of Proaromatic Acidsa

aReaction was conducted with mono-olefination products 3 and
alkenes 2a or 2b.

Scheme 5. Mechanistic Studiesa

a(a) Deuterium incorporation experiments. (b) Competitive KIE experiments. (c) Parallel KIE Experiments. (d) Control experiments. (e) Relative
rate experiments.
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led to good yields (3s and 3t). It is worth mentioning that
halide-containing styrenes such as chloro and bromo also
performed well under the reaction conditions (3u−3w).
C(alkenyl)−H bisolefination was also achieved with slight

modification of optimum reaction conditions (see Table S2 in
Supporting Information for details). Bisolefination of proar-
omatic acids was investigated with a range of proaromatic acids
and functionalized alkenes (Scheme 3). Different proaromatic
acids with methyl acrylate produced bisolefinated products in
good yields (4a−4c). Again, methylene proaromatic acid was
ineffective (4d).
Isopropyl and tert-butyl acrylates generated products in good

yields (4e and 4f). α-Methyl, α-hexyl, and α-methylene ester-
bearing acids proceeded well with various functionalized

alkenes (4g−4k). Trimethyl vinyl silane and N,N-dimethyl
acrylamide were well tolerated (4l and 4m). However, styrene
afforded both mono- and bisolefinated products, whereas
diethyl vinylphosphonate and phenylvinylsulfone yielded only
mono-olefinated products under the present reaction con-
ditions.
We have investigated the efficiency of the carboxylate

directing group of sterically crowded mono-olefination
products in the sequential bisolefination process (Scheme 4).
The optimal reaction conditions were also studied, and it was
found that using 10 mol % of Pd(OAc)2, 2 equiv of Ag(OAc),
and 1 equiv of Cu(OAc)2·H2O at 80 °C in dioxane for 24 h
gave the quantitative yield (see Table S3 in Supporting
Information for details). From mono-olefinated styrene, both
symmetrical and unsymmetrical bisolefinated products were
afforded in good to excellent yields (4n, 5a−5e). Similarly,
with acrylates, desired products were obtained in excellent
yields (5f and 5g).
Mono-olefinated ester was well compatible with styrene

(5g), diethyl vinyl phosphonate (5h), phenyl vinyl sulfone
(5i), N,N-dimethyl acrylamide (5j), acrylonitrile (5k), and
isobutyl acrylate (5l) resulting in excellent yields. Mono-
olefinated silane was also compatible with methyl acrylate and
delivered the product 5m in excellent yield.
Mechanistic studies were performed to gain insights into the

proaromatic C(alkenyl)−H olefination (Scheme 5). The
reversibility experiment was conducted in the presence of
D4-AcOH, and a higher level of deuterium incorporation was
found at both proximal positions (1a-d2), suggesting that the
C(alkenyl)−H activation is a reversible process (Scheme 5a).
Kinetic isotope effect experiments revealed that C(alkenyl)−H
activation of the proaromatic acid is the rate-determining step
(Scheme 5b, c). Moreover, 6 was subjected to standard
conditions; an ester did not confer to carboxylate palladacycle
and failed to deliver the product. This highlights the crucial
involvement of carboxylic acid in the palladacycle for
proaromatic C(alkenyl)−H activation (Scheme 5d). Relative
rate experiments were conducted for carboxylic acids and
alkenes (Scheme 5e). In the reaction event of different steric
hindrance substituents at the 4-position of acids, the β-H
elimination was analogous and the competition of C(alkenyl)−
H bond activation and decarboxylative aromatization was
solely influenced by electronic and steric properties. The
results implied that C(alkenyl)−H activation highly favored
tert-butyl substituents. Similarly, the C(alkenyl)−H bond
activation was identical in several electronically varied styrenes,
but β-H elimination was influenced by electronic properties.
Results demonstrated that electronic bias on the styrene ring
could not influence β-H elimination.
The proaromatic C(alkenyl)−H olefination is practically

applicable and amenable to scale up and use for gram-scale
synthesis without any modification of reaction conditions
(Scheme 6a). We also demonstrated the postsynthetic
applications of olefinated cyclic carboxylic acids. Mono-
olefinated acids reacted well with o-silyl aryl triflates through
O-arylation of the acid followed by [4 + 2] cycloaddition,
which directly provides multiple rings of cyclic aryl ester
products 7−11 in good yields. The trimethylsilyl group was
detached, and the product 8 was obtained with a 69% yield.
Moreover, in the presence of 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone, bisolefinated acids underwent decarboxylative
aromatization quantitatively and readily converted into
alkylated divinylbenzene derivatives 12−23, which also

Scheme 6. Synthetic Utilities

aScale-up and practical gram-scale. Postsynthetic transformations. b[4
+ 2] cyclization. cDecarboxylative aromatization.

Scheme 7. Proposed Mechanism
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represents an important class of compounds in organic
chemistry and materials science10 (Scheme 6b, c).
Scheme 7 illustrates a proposed catalytic cycle for this Pd-

catalyzed proaromatic C(alkenyl)−H olefination. Initially,
proaromatic acid 1 weakly coordinates with Pd(II), followed
by a reversible C(alkenyl)−H bond activation, leading to
formation of a proaromatic five-membered exo-palladacycle
Int-A. Subsequent alkene coordination to Int-B occurs, which
is followed by a 1,2-migratory insertion to give Int-C. β-H
elimination provides an olefinated product 3 and Pd(0)
species. Pd(II) is regenerated by the oxidant from Pd(0), thus
completing the catalytic cycle.
In summary, we have developed an efficient method of

proaromatic C(alkenyl)−H olefination that allows the syn-
thesis of highly substituted 1,3-dienes. This method is
compatible with a wide range of electron-rich, -neutral, and
-deficient alkenes. This approach is straightforward, conven-
ient, scalable, practical, and atom-economical and has high
functional group tolerance. Direct and sequential bisolefina-
tions of proaromatic acids were also achieved. Functionalized
proaromatic acids were employed to expand synthetic
diversifications. This study advances the C−H activation to a
new arena of the proaromatic system, which may govern wide
synthetic applications in the near future.
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