Triazolyl-Functionalized N-Heterocyclic Carbene Half-Sandwich Compounds: Coordination Mode, Reactivity and in vitro Anticancer Activity

We report investigations on the anticancer activity of organo-metallic [(M= Ru, Os, Rh, and Ir) complexes of N-heterocyclic carbene (NHCs) substituted with a triazolyl moiety. Depending on the precursors, the NHC ligands displayed either mono- or bidentate coordination via the NHC carbon atom or as N,C-donors. The metal complexes were investigated for their stability in aqueous solution, with the interpretation supported by density functional theory calculations, and reactivity to biomolecules. In vitro cytotoxicity studies suggested that the nature of both the metal center and the lipophilicity of the ligand determine the biological properties of this class of compounds. The Ir complex 5d bearing a benzimidazole-derived ligand was the most cytotoxic with an IC50 value of 10 μM against NCI-H460 non-small cell lung carcinoma cells. Cell uptake and distribution studies using X-ray fluorescence microscopy revealed localization of 5d in the cytoplasm of cancer cells.

Introduction

Upon coordination to transition metals N-heterocyclic carbene (NHC) ligands offer σ-donating as well as π-accepting properties to form strong M–L bonds.[1] The inferred stability of M–NHC complexes is advantageous for a variety of applications, including in homogeneous catalysis.[2]

More recently, metal–NHC complexes have been investigated as potential drug candidates, including as anticancer and antibacterial agents.[3] The NHC scaffold derived from azolium pro-carbenes, most commonly imidazolium derivatives, offers facile routes for modification, allowing the fine-tuning of the physicochemical properties and biological activity of metal–NHC complexes.[3c,d] Ag(NHC) compounds were among the first metal–NHC complexes found to exhibit biological activity.[4] In addition to their antimicrobial activity, some examples showed promising anticancer properties comparable to that of cisplatin.[5b,6] Au(NHC) complexes induced Ca2+-sensitive mitochondrial swelling, and the onset of mitochondrial swelling was dependent on the lipophilicity of the compound, which was influenced by the N-substituents of the NHC moiety.[6] Ru(arene) complexes and their isostuctural Os(arene), Ir(arene) and Rh(arene) analogs showed anticancer activity in some cases, seemingly dependent on the lipophilicity of the complexes as evoked by the substitution pattern of the NHC moiety.[3b,d,7] Furthermore, surprising reactivity was observed, particularly in the presence of proteins.[8] Some examples exhibited antiproliferative effects and inhibited thioredoxin reductase,[3d,7b,9] similar to Au(NHC) complexes.[10]

By incorporating a chelating NHC ligand, additional functionality can be introduced into metal–NHC complexes, as well as enhancing their stability. Several Ir(Cp*) complexes with C2–, C2N-, and C2O-coordinating NHC ligands exhibited moderate to high antitumor activity against cancer cells.[11] The cytotoxic activity of the CN-coordinated complexes was further improved by altering the substituents of the Cp* and chelating NHC ligands, to become 3-times more potent than cisplatin. Furthermore, a Ru(cym) complex featuring a chelating pyrazole-NHC ligand was a highly efficient catalyst for alcohol
oxidation as well as displaying significant cytotoxicity against
cisplatin-resistant gastric cancer cells.[11] One method to introduce new functionality into imidazolium-derived NHC complexes is to alkylate an endocyclic nitrogen atom of the imidazole precursor with an alkynyl followed by click chemistry using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The resultant triazolyl moiety converts the pro-carbene into a chelating ligand, which coordinates to metal centers in a C &, C N-bidentate fashion. While the catalytic properties of a diversity of complexes with such ligands were studied for different catalytic applications, the bioactivity was rarely investigated. We have previously reported a series of cationic Ru \((\text{cym})\) complexes \((\text{cym} = \text{η}^3-p\text{-cyrene})\) featuring C &, C N-coordinating NHC-pyridyl ligands that formed 5- and 6-membered metallacycles upon coordination to the Ru \(i\) center. Some of these complexes showed potent antiproliferative activity with IC\(_{50}\) values in the low \(\mu\text{M}\) range. Herein, we expand on the compound type and explore the impact of the metal center and denticity of the ligand on the antiproliferative activity. These investigations are complemented by studies on the aqueous stability and reactivity toward biomolecules as well as their intracellular distribution.

Results and Discussion

CuAAC was utilized to prepare the 1,2,3-triazolyl-NHC precursors \(a\) and \(b\) from 1-methyl-3-propargylimidazolium bromide \(1\) and 1-methyl-3-propargylbenzimidazolium bromide. Successful conversion was confirmed by \(^1\text{H}\) and \(^13\text{C}(\text{H})\) NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. The carbenic carbon and the triazolyl nitrogen atoms enable \(a\) and \(b\) to act either as monodentate ligands to metal centers. \([\text{Ru}^i(\text{cym})(\text{H}_2\text{O})(\text{oxalato})]\) was used as a metal precursor to synthesize complexes with the NHC ligand acting as a monodentate ligand and the remaining coordination sites of the Ru \(i\) center occupied by the bidentate oxalato group. Formation of the carbene by addition of Ag\(_2\)O directs the coordination of \(a\) or \(b\) to the metal center via the carbenic carbon of the imidazole moiety (Scheme 1), yielding \(1\) and \(1\) in low yields (28 and 30%, respectively).

Messerle and co-workers \(^{13a, c}\) reported \(C\&N\)-coordinated NHC-triazolyl half-sandwich complexes including the Rh- and Ir\(\text{C}^\text{+}\) compounds \(4\) and \(5\) (Scheme 1). Using the same ligand type, we expanded on the series and prepared complexes from the corresponding \([\text{M}^\text{II}(\text{cym/\text{Cp}'\text{C})}\text{Cl}]\) dimers \((\text{M} = \text{Ru, Os, Rh, Ir})\) and the respective pro-carbenes (Scheme 1). NH\(_2\)PF\(_6\) was added to facilitate counterion metathesis of Cl\(^-\) with PF\(_6^\text{-}\). In initial attempts, nearly stoichiometric amounts of Ag\(_2\)O, pro-carbene, and \([\text{Ru}^i(\text{cym})\text{Cl}]_2\) were used for the preparation of \(1\) and \(1\). However, analysis of the products by \(^1\text{H}\) NMR spectroscopy revealed the formation of only small amounts of the desired product and traces of unreacted Ag\(_7\)(NHC) intermediate and dimeric metal precursors. The stoichiometry of the reaction mixture was optimized and identified as 2.25:1.375:1.0 (pro-carbene:Ag\(_2\)O: \([\text{M}^\text{II}(\text{cym/\text{Cp}'\text{C})}\text{Cl}]_2\)) for preparation of the desired Ru\(^{\text{II}}\) and Os\(^{\text{II}}\)(NHC) complexes \(2\) and \(3\), respectively, at high purity although low to moderate yields. The same synthetic approach was unsuccessful in the preparation of the Rh- and Ir\(^{\text{II}}\)(C\(^{\text{+}}\)) derivatives \(4\) and \(5\). The ESI-mass spectra indicated the presence of the bromido complex (Supporting Information) as both pro-carbenes \(a\) and \(b\) were prepared as the bromide salts. To eliminate the bromide ions in subsequent syntheses, \(a\) and \(b\) were converted into the hexafluorophosphate salts \(c\) and \(d\), respectively. The counterion metathesis of bromide to PF\(_6^\text{-}\) was confirmed by \(^{31}\text{P}\) NMR spectroscopy (data not shown). This process allowed the subsequent reaction steps to proceed successfully to yield complexes \(2\)–\(5\) (17–66%) in high purity.

The synthesized metal complexes were characterized by NMR spectroscopy, ESI-MS, and elemental analysis. In the \(^1\text{H}\) NMR spectra of \(1\) and \(1\), the absence of the pro-carbene proton signal and the slight upfield shift of the triazolyl proton signal from 8.45 to 8.40 ppm and 8.60 to 8.40 ppm, respectively, was considered indicative of NHC complex formation. In the case of \(2\)–\(5\), the triazolyl proton signals experienced significant upfield shifts and were detected in the range of 7.68–8.07 ppm. Furthermore, the absence of the pro-carbene proton signal of the imidazolium and benzimidazolium precur-

![Scheme 1. Preparation of the [Ru\(^i\)(cym)(NHC)(oxalato)] complexes \(1\) and \(1\), and of the [M(cym/Cp')triaryl-NHC]Cl[PF\(_6^\text{-}\)] complexes \(2\)–\(5\).](image-url)
sors suggested that both c and d coordinated to the metal centers through the carbenic carbon and the triazolyl nitrogen atoms to establish a six-membered metalling. Upon metal coordination, the signals of the two sets of bridging methylene protons in the range of 4.83–5.75 ppm became diastereotopic and showed geminal coupling. Furthermore, the differences in the chemical shifts of the triazolyl functionalized NHC ligand to the metal center of the triazole-functionalized NHC ligand to the metal center of the triazole-functionalized NHC ligand to the metal center via the M–NHC bond. This resulted in the formation of 6-membered metalling complexes with distorted boat conformation. Complexes 2c, 2d, 5c, and 5d showed shorter M–NHC bonds compared to 1b (Table 1). In isostructural 2c, 2d, 5c, and 5d, the M–Cl bond length in 2d was significantly longer than for the other compounds, while the M–NHC and M–N3 were the shortest of the series and similar to related metal-NHC complexes.

The Ru–N3 bond length of 2c and 2d was compared to a series of Ru(η6-benzene) complexes featuring a similar bidentate ligand with a triazolyl moiety coordinating to the Ru center through the N3 atom. The distance of Ru–N3 of these complexes is on average 2.09 Å, which is longer than that of 2c and 2d. The bond length differences may be attributed to the S-membered metalling as well as involving S or Se as the other donor atom of the bidentate ligand.

In 5c, protons of the imidazole moiety, methylene linker, and triazole moiety showed interactions with a PF6− counterion. Interactions with PF6− ions were also observed for 5d but involving triazole, methylene, and benzyl protons. The distances of the observed C–H–F interactions ranged from 2.3 to 2.8 Å, which is in accordance with values reported for a series of imidazol-thione complexes (Supporting Information, Figure S2).

Organometallics with metal-halido bonds may undergo ligand exchange reactions in biologically relevant environments, such as in water or DMSO, the latter commonly used to prepare stock solutions for compounds with low aqueous solubility. Therefore, it is essential to investigate the stability of the metal complexes in various solvents.

Figure 1. ORTEP representations of the molecular structures of 1b and one of the enantiomers of 2d (bottom), drawn at 50 % ellipsoid levels. Any counterions and solvent molecules were omitted for clarity.

Table 1. Key bond lengths for 1b, 2c, 2d, 5c, and 5d.

<table>
<thead>
<tr>
<th>Complex</th>
<th>1b</th>
<th>2c</th>
<th>2d</th>
<th>5c</th>
<th>5d</th>
</tr>
</thead>
<tbody>
<tr>
<td>M–Cl</td>
<td>2.4287(7)</td>
<td>2.4435(9)</td>
<td>2.409(2)</td>
<td>2.412(1)</td>
<td></td>
</tr>
<tr>
<td>M–NHC</td>
<td>2.072(3)</td>
<td>2.062(3)</td>
<td>2.035(3)</td>
<td>2.026(9)</td>
<td>2.035(8)</td>
</tr>
<tr>
<td>M–N3</td>
<td>2.084(2)</td>
<td>2.068(3)</td>
<td>2.087(7)</td>
<td>2.077(5)</td>
<td></td>
</tr>
<tr>
<td>M–R1考試</td>
<td>1.690</td>
<td>1.706</td>
<td>1.698</td>
<td>1.825</td>
<td>1.814</td>
</tr>
</tbody>
</table>
respective 1H NMR spectra. Compounds 2c and 3c underwent immediate Cl$_2$/H$_2$O ligand exchange to form the respective aqua complexes (Figures S3 and S4). Dissolution of 4c in 15% DMSO-d$_6$/D$_2$O results in the formation of several sets of signals, presumably a mixture of the chlorido 4c, aqua 4c$^{\text{aq}}$, and DMSO 4c$^{\text{DMSO}}$ complexes, which form an equilibrium rapidly after dissolution (Figure S5). The addition of AgNO$_3$ changed the distribution of the signal sets by converting the chlorido into an aqua complex. In contrast to the other imidazole-based complexes, gradual Cl$_2$/H$_2$O ligand exchange was observed for the Ir derivative 5c, where about 18% of 5c$^{\text{aq}}$ was formed upon dissolution and went to completion within 3 h (Figure S6), as confirmed by the addition of AgNO$_3$ (Figure 2). Furthermore, an aged solution of 5c in DMSO-d$_6$ was diluted with D$_2$O and analyzed which also demonstrated that aqua species are formed rather than the DMSO complex (Figure S7). This was supported by a 1H NMR spectroscopic study in CDCl$_3$, to which several equivalents of DMSO were added and no DMSO complexes were detectable after 4 h (Figure S8).

The Cl$_2$/H$_2$O ligand exchange of 2c–5c was investigated with density functional theory (DFT) calculations using GAUSSIAN 09 W.[16] For all cases, the calculated energy difference was slightly positive for Cl$_2$/H$_2$O ligand exchange (ΔE range = 2.5–4.6 kcal/mol) and negative for Cl$^-$/OH$^-$ ligand exchange (ΔE ranging from $-$55.0 to $-$60.3 kcal/mol). This result suggested that the formation of the hydroxido complexes is more energetically favorable, which would give a singly charged rather than a doubly charged complex cation. Similar calculated energy differences were observed in a series of structurally related Ru(NHC) complexes.[14] The frontier molecular orbitals of 2c–5c and their respective aqua and hydroxido analogs were analyzed (Figures S9–12). While in the respective chlorido and aqua species the HOMOs and LUMOs are located mainly on the metal and its π-bound ligands, the LUMO in 3c is distributed over the metal center and the triazole moiety. In general, the π orbitals of the triazolyl group contributed more extensively to the LUMOs of the compounds than to the HOMOs, independent of the nature of the monodentate ligand.

Metal complexes are prone to form dative covalent bonds to donor atoms of biomolecules. Investigating the interactions between metallo drugs and biomolecules can provide valuable data to help determine possible modes of action responsible for any antiproliferative effects. To study the interactions with biomolecules, 2c–5c were dissolved in 20% MeOD/D$_2$O and one equivalent of L-cysteine (Cys), L-methionine (Met), L-histidine (His), or 9-ethylguanine (EtG) was added. The reaction mixtures were analyzed by 1H NMR spectroscopy over a period of 48 h. Complex 2c showed only minor reactions with the amino acids and EtG (Figures S13–16), while the Os analog 3c did not form adducts with any of the nucleophiles (Figures S17–20). In contrast, the Cp* derivatives 4c and 5c reacted with all the biomolecules (Figures S21–28), the latter however at a slower rate. In particular with His, several sets of signals formed, possibly due to different coordination modes (Figures S23 and S27). Notably, addition of another equivalent of His resulted in significant upfield shifts of the peaks assigned to unreacted His due to pH changes in the sample. Analysis of an incubation mixture of 5c with Cys by ESI-MS supported the formation of a 5c–Cys adduct, which was detected as the [5c–Cl–H$^+$+Cys]$^+$ ion at m/z 702.2324 (m/z$_{\text{theory}}$ 702.2322), while the formation of a 5c–EtG adduct was indicated by a signal emerging at around 8.0 ppm in the 1H NMR spectrum, which can be assigned to H8 of EtG coordinated to the Ir center (Figure 3). The EtG adduct formation was confirmed by ESI-MS and the pseudomolecular ion [5c–Cl–H$^+$+EtG]$^+$ with m/z 759.2781 (m/z$_{\text{theory}}$ 759.2859) was detected.

The in vitro anticancer activity of the complexes and pro-NHCS was studied against human cervical carcinoma (SiHa), colon adenocarcinoma (SW480), colorectal (HCT116), and non-small-cell lung (NCI-H460) cancer cells (Table 2). The compounds demonstrated variable cytotoxic activity with IC$_{50}$ values as low as 10 μM for some derivatives, while others were non-cytotoxic at the concentrations investigated. The pro-NHC c was inactive and only showed minor activity in NCI-H460 and SiHa cells. The IrIII compounds 5c and 5d demonstrated significantly...

![Figure 2](image2.jpg)

Figure 2. Time-dependent 1H NMR spectroscopic stability study for 5c in 15% DMSO-d$_6$/D$_2$O over 120 h.

![Figure 3](image3.jpg)

Figure 3. Time-dependent 1H NMR spectroscopic stability study of the reaction between equimolar amounts of 5c and EtG in 20% MeOD/D$_2$O solution over 48 h. An additional molar equivalent of EtG was added after 48 h to indicate unreacted EtG in solution. Grey boxes denote the change in the chemical shifts of the proton signals of 5c as the result of reacting with EtG in solution.
higher cytotoxicity in all cell lines than the compounds with the other metal centers, with benzimidazole-derived 5d being the most toxic compound against all cell lines (Figure S29). This may be due to the relatively slower Cl/LiO ligand exchange kinetics of Ir complexes, as demonstrated for 5c.

The most cytotoxic compound 5d was selected for further investigations on its uptake and localization in human lung cancer A549 and ovarian cancer SKOV-3 cells by X-ray fluorescence microscopy (XFM) (Figure 4). After treating the cells with 5d (30 μM in 1% DMSO) for 4 h, the confocal images confirmed that the cells remained intact indicating that the uptake of the metal complex occurred while the cells were alive. The high quantities of zinc in cell nuclei enable it to be easily identified in XFM studies.\(^{118}\) The Ir complexes were taken up into the cells, while control experiments showed no signal for Ir in untreated cells (data not shown). The cellular uptake of 5d was consistently observed for both cell lines as indicated by the relatively similar Zn/Ir elemental concentration ratio. By overlaying the distribution of Zn and Ir in the cells, no code-localization was observed which suggests that 5d is taken up into the cytoplasm of SKOV-3 and A549 cells rather than the nuclei. Therefore, it is unlikely that nuclear DNA is the molecular target of 5d.

Conclusion

NHC complexes have found widespread application and more recently have attracted interest in anticancer metallodrug research. We report here investigations on ligands that feature a bidentate chelation motif composed of an NHC and a triazole moiety, and their use in different synthetic strategies to prepare half-sandwich organometallic compounds with the ligands in either mono- or bidentate coordination modes. Whereas the Ru and Os complexes underwent rapid chlorido-aqua ligand exchange resulting in stable hydrolysis products, the Rh and Ir derivatives gave more complicated \(^1\)H NMR spectra after dissolution in water/DMSO mixtures. The Ir compound converted into the aqua complex more slowly, while for the Rh derivative a mixture of adducts, most likely with water and DMSO, was observed. This pattern also translated to the biomolecule binding studies with the Ru and Os compounds undergoing only slow or no reaction with biological nucleophiles, while the Rh and Ir compounds reacted with the amino acids and EtG. The Ir derivative proceeded at a slower rate than the Rh compound, owing to the different levels of inertness. Moreover, DFT calculations suggested the formation of hydroxo complexes, which may explain both the different behavior upon dissolution in water and in terms of reactivity to biomolecules. The anticancer activity of the compounds was investigated, and the complexes in which the ligands were coordinated in a monodentate manner were inactive against human cancer cell lines. Of the complexes featuring a bidentate NHC-triazole coordination motif, the Ir(Cp*) derivatives were the only examples that showed anticancer activity with \(\text{IC}_{50}\) values as low as 10 μM for 5d in NCI-H460 cells. The imidazole-derived complexes were less potent than the benzimidazole analogs, suggesting that lipophilicity may impact cellular accumulation. X-ray fluorescence microscopy revealed that the most potent compound 5d was uptaken by the cell uptake and became localized in the cytoplasm in cancer cells.

Table 2. Antiproliferative activity (SRB assay, 72 h treatment) expressed as the IC\(_{50}\) values (μM) for pro-carbines c and d, and complexes 1a–5d against HCT116 (human colorectal carcinoma), NCI-H460 (human non-small cell lung carcinoma), SiHa (human cervical carcinoma), and SW480 (human colon adenocarcinoma) cancer cells expressed as mean ± standard error (n = 3).

<table>
<thead>
<tr>
<th>Compound</th>
<th>HCT116 IC(_{50}) μM</th>
<th>NCI-H460 IC(_{50}) μM</th>
<th>SiHa IC(_{50}) μM</th>
<th>SW480 IC(_{50}) μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>1a</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>2c</td>
<td>>100</td>
<td>>100</td>
<td>80 ± 48</td>
<td>>100</td>
</tr>
<tr>
<td>3c</td>
<td>>100</td>
<td>>100</td>
<td>81 ± 5</td>
<td>>100</td>
</tr>
<tr>
<td>4c</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>5c</td>
<td>36 ± 1</td>
<td>21 ± 6</td>
<td>12 ± 2</td>
<td>70 ± 19</td>
</tr>
<tr>
<td>d</td>
<td>>100</td>
<td>78 ± 6</td>
<td>78 ± 15</td>
<td>>100</td>
</tr>
<tr>
<td>1b</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>2d</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>3d</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>4d</td>
<td>91 ± 8</td>
<td>66 ± 18</td>
<td>64 ± 1</td>
<td>95 ± 6</td>
</tr>
<tr>
<td>5d</td>
<td>17 ± 2</td>
<td>10 ± 1</td>
<td>13 ± 1</td>
<td>26 ± 4</td>
</tr>
</tbody>
</table>

Figure 4. The distribution of Zn and Ir (heatmap color scale) in SKOV-3 and A549 cancer cells after treatment with 5d as determined by X-ray fluorescence microscopy. The overlays of Zn and Ir distributions indicate that 5d is accumulated in the cytoplasm instead of the cell nucleus (Zn, green; Ir, red). Elemental concentrations are given in units of μg cm\(^{-2}\).
Experimental Section

Materials and Methods

All air-sensitive reactions were carried out under N₂ in standard Schlenk or round-bottom flasks. The complexes were prepared in darkness by covering the flask with aluminum foil to prevent photolytic degradation. Acetonitrile and dichloromethane were dried prior to use with Na₂SO₄, while all other solvents purchased from commercial suppliers were used without further purification.

1-Methylbenzimidazole (AK-Scientific, 98 %), 1-methylimidazole (Acros Organic, 99 %), 1,2,3,4,5-pentamethylcyclopentadiene (Merck, ≥ 88 %), 9-ethylguanine (Sigma-Aldrich, 98 %), ammonium hexafluorophosphate (Acros Organic, 99 %), α-terpineole (Sigma-Aldrich, 89 %), benzyl bromide (Merck, ≥ 98 %), celite (Sigma-Aldrich), copper sulfate pentahydrate (ECP, ≥ 98.0 %), L-cysteine (AK Scientific, 98 %), l-histidine (AK Scientific, 98 %), L-methionine (AK Scientific, 98 %), iridium(III) chloride hydrate (Precious Metals Online, 98.0 %), sodium oxalate (BDH), and sodium sulfate (Fluka, 98 %)

General procedure for the syntheses of compounds 2 c–5 d

Silver(I) oxide (1.00–1.50 mol equiv.) was added to a solution of [Ru(oxalato)(cym)(H₂O)] (104 mg, 0.30 mmol) to afford a brown powder (59 mg, 30 %). Calcd. for C₉H₇NO₄Ru·0.2C₂H₅OH·0.5H₂O: C, 54.19; H, 5.48; N, 11.62 %. Found: C, 54.49; H: 5.16; N: 11.32 %. MS (EI⁻): m/z 600.1171 [M+Na]⁻ (mₚppm = 600.1161, 1H NMR (399.89 MHz, CDCl₃): δ (ppm) 8.00 (s, 1H, H-6), 7.37–7.28 (m, 5H, H-8, H-9, H-10, H-11, H-12), 7.14 (s, 1H, H-3), 6.88 (s, 1H, H-2), 5.61 (dd, J = 6 Hz, J = 1.5 Hz, H-19, 20), 5.55 (dd, J = 6 Hz, J = 1.5 Hz, H-19, 20), 5.31 (d, J = 14 Hz, 1H, H-7a/b), 5.36 (d, J = 14 Hz, 1H, H-7a/b), 5.28 (m, 2H, H-21/22), 5.18 (dd, J = 14 Hz, 1H, H-4a/b), 3.76 (s, 1H, H-1), 2.82 (sept, J = 7 Hz, 1H, H-24), 2.11 (s, 3H, H-15), 1.78 (dd, J = 6 Hz, 3H, H-25/26), 1.26 (d, J = 5.5 Hz, 3H, H-25/26), 1.36 (d, J = 14 Hz, 3H, H-20a). 1H NMR (100.57 MHz, CDCl₃): δ (ppm) 174.1 (C-14), 165.8 (C-15/C-16), 165.3 (C-15/C-16), 142.8 (C-5), 134.7 (C-13), 129.1 (C-8/C-9/C-11/C-12), 128.7 (C-10), 128.5 (C-8/C-9/C-11/C-12), 125.6 (C-8), 124.2 (C-12), 122.0 (C-3), 108.7 (C-23), 97.9 (C-18), 84.7 (C21/C22), 84.1 (C21/C22), 82.1 (C19/C20), 81.6 (C19/C20), 54.5 (C-7), 45.1 (C-4), 37.6 (C-11), 31.6 (C-24), 22.9 (C25/C26), 22.5 (C25/C26), 18.8 (C-17).

Syntheses

General procedure for the syntheses of compounds 1 a and 1 b

Silver(I) oxide (1.00–1.50 mol equiv.) was added to a solution of compounds a or b (1.13–1.50 mol equiv.) dissolved in dichloromethane and the mixture was stirred at 40 °C for 4 h in darkness. A solution of [Ru(oxalato)(cym)(H₂O)] (1.00–1.50 mol equiv.) dissolved in dichloromethane was added and the mixture was allowed to stir at 40 °C for 24 h in darkness. The solvents were evaporated and dichloromethane (ca. 25 mL) was added. The resultant suspension was filtered through a celite pad (ca. 5 cm) and flushed with dichloromethane (ca. 200 mL) followed by a mixture of acetone and methanol (ca. 200 mL, 8:2) as eluent which was collected containing the compound. The solvent was evaporated, the crude product was dissolved in a minimal amount of dichloromethane and the compound was precipitated by addition of n-hexane. The precipitate was dried in vacuo to obtain the pure Ru(η⁴-p-cymene)(oxalato) complexes.

The synthesis of 1a was performed according to the general procedure using a (115 mg, 0.34 mmol), silver(I) oxide (49 mg, 0.21 mmol), and [Ru(oxalato)(cym)(H₂O)] (104 mg, 0.30 mmol) to afford a brown powder (59 mg, 30 %). Calcd. for C₉H₇NO₄Ru·0.2C₂H₅OH·0.5H₂O: C, 54.19; H, 5.48; N, 11.62 %. Found: C, 54.49; H: 5.16; N: 11.32 %. MS (EI⁻): m/z 600.1171 [M+Na]⁻ (mₚppm = 600.1161, 1H NMR (399.89 MHz, CDCl₃): δ (ppm) 8.00 (s, 1H, H-6), 7.37–7.28 (m, 5H, H-8, H-9, H-10, H-11, H-12), 7.14 (s, 1H, H-3), 6.88 (s, 1H, H-2), 5.61 (dd, J = 6 Hz, J = 1.5 Hz, H-19, 20), 5.55 (dd, J = 6 Hz, J = 1.5 Hz, H-19, 20), 5.31 (d, J = 14 Hz, 1H, H-7a/b), 5.36 (d, J = 14 Hz, 1H, H-7a/b), 5.28 (m, 2H, H-21/22), 5.18 (dd, J = 14 Hz, 1H, H-4a/b), 3.76 (s, 1H, H-1), 2.82 (sept, J = 7 Hz, 1H, H-24), 2.11 (s, 3H, H-15), 1.78 (dd, J = 6 Hz, 3H, H-25/26), 1.26 (d, J = 5.5 Hz, 3H, H-25/26), 1.36 (d, J = 14 Hz, 3H, H-20a). 1H NMR (100.57 MHz, CDCl₃): δ (ppm) 174.1 (C-14), 165.8 (C-15/C-16), 165.3 (C-15/C-16), 142.8 (C-5), 134.7 (C-13), 129.1 (C-8/C-9/C-11/C-12), 128.7 (C-10), 128.5 (C-8/C-9/C-11/C-12), 125.6 (C-8), 124.2 (C-12), 122.0 (C-3), 108.7 (C-23), 97.9 (C-18), 84.7 (C21/C22), 84.1 (C21/C22), 82.1 (C19/C20), 81.6 (C19/C20), 54.5 (C-7), 45.1 (C-4), 37.6 (C-11), 31.6 (C-24), 22.9 (C25/C26), 22.5 (C25/C26), 18.8 (C-17).
mixture was stirred at 40 °C for 24 h in darkness. A solution of ammonium hexafluorophosphate (6.75–7.86 mol equiv.) dissolved in methanol (ca. 15 mL) was added to the mixture and allowed to stir for a further 3 h in darkness. The solvents were evaporated and dichloromethane (ca. 25 mL) was added. The resultant suspension was filtered through a celite pad (ca. 10 cm) and fractions were collected after elution with either dichloromethane, acetonitrile, or methanol depending on the compound. The solvent was evaporated, the crude product was dissolved in a minimal amount of dichloromethane and the compound was precipitated by addition of n-hexane. The precipitate was dried in vacuo to obtain the pure complexes.

**[Chlorido]{{[1-{benzyl-1,2,3-triazol-4-yl-N}methyl]-3-2-methyldiazole-2-ylidene-kC}{{[q}{-p-cymene}]}rothodium(II)]

hexafluorophosphate 2c**

The synthesis of 2c was performed according to the general procedure using silver(I) oxide (38 mg, 0.16 mmol), C (106 mg, 0.26 mmol), [Ru(cym)Cl2]2 (72 mg, 0.12 mmol), and ammonium hexafluorophosphate (151 mg, 0.93 mmol). The celite pad was washed with dichloromethane (ca. 100 mL) and acetonitrile (ca. 250 mL) was used as an eluent to collect the fraction to afford a yellow powder (27 mg, 17%). Single crystals suitable for X-ray diffraction analysis were grown from acetonitrile/toluene after performing a reaction between [Ru(cym)Cl2]2 and C to yield the complex with a chloride counterion (2c).

Calc. for C29H24Cl2F26N3Ru: C, 43.09; H, 3.47; N, 10.47%. Found: C, 43.47; H, 3.98; N, 10.11%. MS (ESI−): m/z 524.1155 [M−PF6]− (mcalc = 524.1151).

1H NMR (399.89 MHz, CDCl3); δ (ppm) 7.69 (s, 1H, H-6), 7.41–7.34 (m, 3H, H-9, H-10, H-11), 7.34–7.29 (m, 2H, H-8, H-12), 7.17 (d, J = 2 Hz, H-1, H-2), 7.05 (d, J = 1 Hz, H-3), 5.67 (d, J = 6 Hz, H-1, H-17/H-18), 5.60–5.55 (m, 4H, H-7, H-7b, H-17/H-18, H-19/H-20), 5.33 (d, J = 6 Hz, H-19/H-20), 5.29 (d, J = 1 Hz, H-4a/b), 4.98 (d, J = 1 Hz, H-17/H-18, H-19/H-20), 3.96 (s, 3H, H-1), 2.78 (sept, J = 7 Hz, H-1, H-2), 2.12 (s, 3H, H-15), 1.22 (d, J = 7 Hz, H-3, H-23/H-24), 1.20 (d, J = 7 Hz, H-3, H-23/H-24), 1.20 (d, J = 7 Hz, H-3, H-23/H-24), 1.17 (d, J = 7 Hz, H-3, H-23/H-24). 13C NMR (100.57 MHz, CDCl3); δ (ppm) 173.0 (C-14), 141.9 (C-15), 123.8 (C13), 129.5 (C-9, C-10, C-11), 128.8 (C-8, C-12), 123.8 (C-2/C-3), 123.6 (C-6), 123.3 (C-2/C-3), 111.9 (C-21), 101.6 (C-16), 87.4 (C-17/C-18/C-19/C-20), 87.3 (C-17/C-18/C-19/C-20), 86.7 (C-17/C-18/C-19/C-20), 83.8 (C-17/C-18/C-19/C-20), 56.0 (C-7), 44.5 (C-8), 39.4 (C-11), 31.4 (C-22), 23.5 (C-23/C-24), 21.4 (C-23/C-24), 19.1 (C-15).

**[Chlorido]{{[1-{benzyl-1,2,3-triazol-4-yl-N}methyl]-3-methyldiazole-2-ylidene-kC}{{[q}{-p-cymene}]}rothodium(II)]

hexafluorophosphate 3c**

The synthesis of 3c was performed according to the general procedure using silver(I) oxide (42 mg, 0.18 mmol), C (118 mg, 0.30 mmol), Os(cym)Cl2 (104 mg, 0.13 mmol), and ammonium hexafluorophosphate (169 mg, 1.04 mmol). The celite pad was washed with dichloromethane (ca. 100 mL) followed by a mixture of dichloromethane and methanol (ca. 100 mL, 9:1). The latter fraction was collected and evaporated to afford an orange powder (21 mg, 22%).

Calc. for C33H26Cl2F28N5OsP; C, 43.45; H, 3.28; N, 13.6%. Found: C, 43.78; H, 3.49; N, 13.64%. MS (ESI−): m/z 616.1819 [M−PF6]− (mcalc = 616.1819).

1H NMR (399.89 MHz, CDCl3); δ (ppm) 7.92 (s, 1H, H-6), 7.40–7.34 (m, 3H, H-9, H-10, H-11), 7.34–7.30 (m, 2H, H-8, H-12), 7.24 (d, J = 2 Hz, H-2, H-2/H-3), 7.04 (d, J = 2 Hz, H-1, H-2/H-3), 5.64 (d, J = 15 Hz, H-7a/b), 5.59 (d, J = 15 Hz, H-7a/b), 5.42 (d, J = 16 Hz, H-7a/b), 4.86 (d, J = 16 Hz, H-7a/b), 3.89 (s, 3H, H-15), 1.69 (s, 15H, H-1). 13C NMR (100.57 MHz, CDCl3); δ (ppm) 153.2 (C-14), 140.8 (C-5), 132.9 (C-13), 129.5 (C-9, C-10, C-11), 128.7 (C-8, C-12), 121.2 (C-2, C-3), 91.2 (C-16), 56.1 (C-7), 44.5 (C-8), 37.5 (C-1), 9.4 (C-15).

**[Chlorido]{{[1-{benzyl-1,2,3-triazol-4-yl-N}methyl]-3-methyldiazole-2-ylidene-kC}{{[q}{-p-cymene}]}rothodium(II)]

hexafluorophosphate 2d**

The synthesis of 2d was performed according to the general procedure using silver(I) oxide (47 mg, 0.20 mmol), C (150 mg, 0.33 mmol), [Ru(cym)Cl2]2 (91 mg, 0.15 mmol), and ammonium hexafluorophosphate (163 mg, 1.00 mmol). The celite pad was washed with dichloromethane (ca. 100 mL) and acetonitrile (ca. 250 mL) was...
used as an eluent to collect the fraction to afford an orange powder (107 mg, 50%). Single crystals suitable for X-ray diffraction analysis were grown from acetonitrile/toluene after performing a reaction between [Ru(μC≡C)]₂ and d to yield the complex with a chloride counterion (2d)². Calcd. for C₆H₅Cl,N₃PbCl: C, 46.8; H, 4.39; N, 9.68%. Found: C, 46.36; H, 4.47; N, 9.82%. MS (ESI⁺): m/z 574.1301 [M—PF]⁺ (mₐ = 574.1311). ¹H NMR (399.89 MHz, CDCl₃); δ (ppm) 7.79 (s, 1H, H-10), 7.57–7.54 (m, 1H, H-3), 7.46–7.42 (m, 1H, H-6), 7.40–7.34 (m, 3H, H-4, H-5, H-6, H-12, H-13, H-14, H-15, H-16), 5.69 (d, J = 6 Hz, 1H, H-17), 5.72 (d, J₁₉₋₁₈ = 16 Hz, 1H, H-8a/b), 5.69–5.66 (m, 1H, H-21/H-22), 5.65–5.62 (m, 2H, H-11a/b, H-23/H-24), 5.56 (d, J₂₇₋₂₈ = 5–16 Hz, 1H, H-11a/b), 5.44 (d, J = 12 Hz, 1H, H-23/H-24) 5.08 (d, J₁₅₋₁₆ = 16 Hz, 1H, H-8a/b), 4.17 (s, 3H, H-1), 2.52 (sept, J₉₋₁₀ = 7 Hz, 3H, H-26), 2.13 (s, 3H, H-19), 1.25 (d, J₇₋₈ = 2 Hz, 3H, H-27/H-28), 1.24 (d, J₇₋₈ = 2 Hz, H-27/H-28). ¹³C NMR (100.57 MHz, CDCl₃); δ (ppm) 187.3 (C-18), 141.7 (C-9), 135.3 (C-2), 134.0 (C-17), 132.7 (C-17), 129.5 (C-13, C- 14, C-15), 128.9 (C-12, C-16), 124.4 (C-4/C-5), 124.2 (C-4/C-5), 124.0 (C-10), 113.4 (C-25), 110.4 (C-6), 110.1 (C-3), 102.0 (C-20), 88.4 (C-21/C-22), 88.0 (C-21/C-22), 87.8 (C-23/C-24), 84.3 (C-23/C-24), 56.1 (C-11, 40.8 (C- 8), 35.5 (C-1), 31.4 (C-26), 23.6 (C-28), 21.3 (C-27), 19.2 (C-19).

[Chlorido[1-[(1-benzyl-1,2,3-triazol-4-yl)-methyl]-3-methylbenzimidazol-2-ylidene-κC[η2-p-cymene]osmium(II)] hexafluorophosphate 5d]

The synthesis of 5d was performed according to the general procedure using silver(I) oxide (47 mg, 0.20 mmol), d (150 mg, 0.33 mmol), [Os(cym)Cl₂](PF₆)₂ (133 mg, 0.82 mmol). The celite pad was eluted with dichloromethane (ca. 100 mL) followed by a mixture of dichloromethane and methanol (ca. 100 mL, 9:1). The reaction mixture was added to each complex and dilute with DMSO-D₆ to reach a DMSO-D₆ content of 20%. ²H NMR spectra were recorded for 120 h. To determine the stability in aqueous solution, 2c-5c (1–2 mg) were dissolved in DMSO-d₆ and ¹H NMR spectra were recorded for 120 h. For 5c 1 equiv. of AgNO₃ was added after 120 h to confirm the completion of the chlorido/aqua exchange. To determine the possible formation of a DMSO-d₆ complex of 5c the compound (2 mg) was dissolved in DMSO-d₆ and its ¹H NMR spectrum was recorded. After 2 h, a small portion was taken from the sample and diluted with DMSO-d₆ to a DMSO-d₆ content of 15% and ¹H NMR spectra were recorded for 4 h. AgNO₃ (2 equiv.) was added after 4 h. Furthermore, a ¹H NMR spectrum of 5c (2 mg) dissolved in CDCl₃ was recorded. DMSO-d₆ was then added to the sample and ¹H NMR spectra were recorded after 0.5, 2, and 4 h. After 4 h, more DMSO (8 equiv.) was added and the ¹H NMR spectrum was recorded.

Stability studies

To evaluate the ligand exchange reaction over longer periods, 2c-4c were dissolved in DMSO-d₆, diluted with DMSO-d₆ to a DMSO-d₆ content of 15%, and ¹H NMR spectrum of 4c was recorded after 4 h. AgNO₃ (2 equiv.) was added after 4 h. Furthermore, a ¹H NMR spectrum of 4c (2 mg) dissolved in CDCl₃ was recorded. ¹H NMR spectrum was recorded.

Biomolecule interaction studies

The biomolecule interactions of 2c-5c were studied by ¹H NMR spectroscopy. All complexes were initially dissolved in MeOD-d₄ and diluted with D₂O to obtain solutions in 20% MeOD-d₆/D₂O. L-cysteine, L-cystine, L-histidine, and L-phenylalanine were dissolved in MeOD-d₄ and diluted with D₂O to obtain solutions in 20% MeOD-d₆/D₂O. Equimolar amounts of the biomolecule solutions were added to each complex and ¹H NMR spectra were recorded.
X-ray fluorescence microscopy (XFM)

Sample preparation. Silicon nitride membranes (Silson Ltd, Warwickshire, England) were washed for 2 min each in Milli-Q water, 70 % ethanol, and 100 % ethanol in a small Petri dish. The membranes were air-dried under sterile conditions and transferred into wells of 12-well culture plates, which were exposed to UV-light overnight. A549 cells were kindly provided by Dr. Judy Li and Dr. Alex Staudacher from the Hanson Institute at University of South Australia (passage 32). SKOV-3 cells were kindly provided by Dr. Carmela Ricciardelli from the Robinson Research Institute at The University of Adelaide, Australia. The cells were cultured in a T75 flask and were collected after trypsinizing (0.25 % trypsin and ethylenediaminetetraacetic acid) for 3 min. The cells were spun down at 1,200 rpm for 5 min. Cell supernatant was discarded and the pellet was suspended in 1 mL culturing media (A549: RPMI 1640, 5 % FCS, and 1 % penicillin/streptomycin; SKOV-3: DMEM/F12, 10 % FCS, L-glutamine, 1 % penicillin/streptomycin and 0.1 % fungizone). Cell suspensions were mixed with trypan blue solution (0.4 %) and transferred into a cell counting chamber slide (Invitrogen). The cells were counted with Countess II (Life Technologies). The cell solutions were prepared with culturing media, and A549 (80) and SKOV-3 cells (2,000) were seeded onto each membrane without making contact with the pipette tip. The cells were incubated for 3 h at 37 °C and 5 % CO₂ atmosphere for attachment. Culturing media (1.4 mL) was added carefully to each well, and the cells were incubated overnight at 37 °C, 5 % CO₂.

Metal complex incubation. 5d (30 μM, 1 % DMSO in media) was added to the wells carefully in 2 separate portions of 0.7 mL, enough to soak the cell-coated silicon nitride membrane in solution. The cells were incubated for 4 h. The compound solution was aspirated from the well carefully, avoiding contact with the membrane, then the membrane was washed with PBS (0.7 mL) and aspirated. The cells were fixed onto the membrane with 4 % buffered paraformaldehyde (0.7 mL). After 5 min, the paraformaldehyde solution was aspirated. The membrane was washed with PBS (0.7 mL) and aspirated. A solution of ammonium acetate (100 mM, 0.7 mL) was added to the membrane carefully and soaked for 2 min, after which ammonium acetate was aspirated. The latter step was repeated before Milli-Q water (0.7 mL) was added to cover the surface of the membrane and to wash out excess ammonium acetate. The membrane was then allowed to dry slowly while covered. The membrane was stored at room temperature for subsequent experimentation.

Australian Synchrotron instrumentation and operating conditions. The distributions of Zn and Ir in A549 cells incubated with 5d were mapped at the XFM beamline at the Australian Synchrotron (Clayton VIC, Australia) with modifications to the protocol described previously. The beam was tuned to an incident energy of 15.8 keV using a Si(111) monochromator and focused to ~1.5 μm using a Kirkpatrick-Baez mirror pair. A 384-element silicon array detector (Maia 384; Brookhaven National Laboratory, Upton, NY and CSIRO, Clayton, Victoria, Australia) in 180 ° backscatter geometry was used to collect the fluorescence signal from the samples with a dwell time of 80–200 ms/point. Analysis of XRF data was performed using the Dynamic Analysis method as implemented in the GeoPIXE software package.

Advanced Photon Source instrumentation and operating conditions. The distributions of Zn, and Ir in SKOV-3 cells incubated with 5d were mapped at the 2-ID-D beamline at the Advanced Photon Source (Argonne National Laboratory, Lemont, IL) with modifications to the protocol described previously. A double multilayer monochromator and a gold “high flux” zone plate setup was used to focus a monochromatic beam into a spot of 300–400 nm FWHM in diameter. Cells treated with 5d were imaged with an incident X-ray energy of 13.1 keV to excite at the L-edge of Ir; the P and Zn maps for these cells were generated from K-edge fluorescence of these elements. An energy-dispersive silicon drift detector (Vortex EM, SII Nanotechnology, Northridge, California, USA) was used to collect the X-ray fluorescence spectra from the sample, which was placed in a He environment at an angle of 75 ° to the incident beam. All elemental maps were recorded in fly-scan mode, with a 0.5 μm step-size in x and y direction, and a 150 ms dwell time for the 5d-treated cell maps. Elemental maps were generated with the MAPS software package by Gaussian fitting of the raw emission spectra for each image pixel. The Gaussian peaks were matched to characteristic X-ray emission lines to determine the fluorescence signal for each element. Quantification of the data (in μg/cm²) was performed by comparing the X-ray fluorescence intensities to those from National Bureau of Standards thin film standards NBS-1832, NBS-1833 (National Bureau of Standards, Gaithersburg, MD, USA).

DFT calculations

GAUSSIAN 09 W was used to calculate the optimized ground state structures and frequencies for the different molecules by density functional theory (DFT) with the B3LYP–D3 hybrid exchange functional and a split basis set for C, H, N, Cl (6-31G(d,p)) and the transitional metal iridium, osmium, rhodium, and ruthenium (SDDAll) in vacuum. The SCRF (self-consistent reaction field) keyword was implemented for the optimization of the molecules in aqueous environment. This method is the integral equation formalism variant of the Polarizable Continuum Model (IEFPCM). The EmpiricalDispersion = GD3 keyword was implemented for the empirical dispersion correction for the optimization of the molecules. The frontier orbitals were viewed and obtained through the Avogadro software (version 1.2.0).

Acknowledgements

We thank the University of Auckland (University of Auckland Doctoral Scholarship to K.K.H.T. and the Faculty of Science Research and Development Fund) and the Cancer Research Trust New Zealand for financial support. K.K.H.T. is grateful for a Maurice Wilkins Centre COVID-19 PhD Student Stipend Extension. M. H. is supported by a Sir Charles Hercus Health Research Fellowship through the Health Research Council of New Zealand. We are grateful to Tanya Groupto for collecting the single crystal X-ray diffraction data, and Tony Chen and Mansa Nair for collecting the ESI-MS data. This research was undertaken in part using the XFM beamlines at the Australian Synchrotron, part of ANSTO. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Travel funding to perform experiments at the Advanced Photon Source was provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron, part of ANSTO, funded by the Australian Government.
Conflict of Interest

The authors declare no conflict of interest.

Keywords: anticancer activity • biomolecule reactions • bioorganometallics • coordination mode • intracellular distribution

Coordinated efforts against cancer: Organometallic Ru, Os, Rh, and Ir complexes of mono- or bidentately coordinating N-heterocyclic carbenes showed metal center-dependent cytotoxicity, with the IrIII derivatives being the most potent anticancer agents in vitro. The biological activity seems related to the stability of the compounds in aqueous solution, together with the distinct reactivity to biomolecules.