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Abstract: 

A series of C^N type bis-cyclometalated Ir(III) complexes (Ir1-Ir4) with a 

diphenylamino group at the 4-position of the phenyl ring of 2-phenylpyridine (ppy) 

have been prepared and fully characterized. The influences of substituents (-H, -CH3, 

-F, -CF3) at the pyridyl moiety of ppy on the photophysical and electrochemical 

properties of these Ir(III) complexes have been investigated systematically by 

comparison with the model complex Ir(ppy)2(acac). The Ir(III) complexes (Ir1-Ir4) 

show phosphorescence with emission maxima in the range of 530–558 nm, which 

are all red-shifted relative to Ir(ppy)2(acac) (λmax = 518 nm). These Ir(III) complexes 

demonstrate longer phosphorescence lifetimes and better oxygen-sensitivity than 

Ir(ppy)2(acac). It is remarkable that introduction of both diphenylamino and 

trifluoromethyl groups into the cyclometalating ligand enhances the photostability of 

the corresponding Ir(III) complexes efficiently. The results reveal that the bulky and 

electron-donating characteristics of the diphenylamino group enhance the 

performances of the Ir(III) complexes in oxygen sensing. 

Keywords: Ir(III) complex, diphenylamino group, phosphorescence lifetime, oxygen sensing, 

photostability 
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1. Introduction 

Oxygen sensors have important applications in various fields, including 

clinical analysis, environmental monitoring, and food packaging [1-6]. An 

optical oxygen sensor relies on the quenching of the luminescence of an 

oxygen-sensitive probe (OSP) by molecular oxygen [7, 8]. To reach smooth 

oxygen diffusion and minimize probe self-quenching, OSPs are usually doped 

into an appropriate matrix (such as a polymer) [9, 10]. Reversibility and 

long-term stability are important factors to influence the overall performances 

of the sensor. However, due to the photo-bleaching nature of indicator, OSPs 

immobilized in supporting matrices usually demonstrate decreased intensity 

(poor photostability) during the illumination period under continuous 

conditions [11, 12]. Therefore, the development of novel OSPs with enhanced 

photostability is crucial to an efficient oxygen sensor. At present, most 

oxygen-sensitive probes (OSPs) are based on heavy metal complexes such as 

ruthenium(II), platinum(II), iridium(III), and so on [13-15]. The high 

coupling of the iridium metal core (spin-orbit coupling constant ζIr = 3909 

removes the spin-forbidden nature of the radiative relaxation of the triplet state 

and demonstrates high phosphorescence efficiencies [16, 17]. The facile 

tunability of cyclometalated Ir(III) complexes by the coordinating ligands 

differentiates them from other organometallic compounds [18, 19]. The unique 

properties of Ir(III) complexes make these compounds particularly suitable for 

applications in oxygen sensing [20, 21]. However, it is still a challenge to 
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enhance the photostability of cyclometalated Ir(III) complexes and increase 

their oxygen sensitivity as luminescent O2-sensing materials. 

Electron-donating diphenylamino group (-NPh2) has been often used in 

numerous organic electroluminescence materials, owing to the good 

hole-transporting capability as well as the bulky size for suppressing a 

self-quenching process [22-24]. However, there have been only a few 

complexes modified with a diphenylamino group used in oxygen sensing. In 

2009, Chan and co-workers [25] reported the use of Ir(ppy-NPh2)3 for 

luminescence oxygen sensing. Due to the larger dynamic range of response 

and higher sensitivity, this complex represents a promising candidate for 

oxygen sensing in contrast to Ir(ppy)3. By chemically manipulating the 

Pt(ppy)2(acac) with a diphenylamino group on the phenyl ring of ppy, a new 

family of cyclometalated Pt(II) complexes with long phosphorescence 

lifetimes and good oxygen sensing properties have been reported by our group 

[26]. Inspired by these reports, we envision that bis-cyclometalated Ir(III) 

complexes bearing one acetylacetonate and two 2-phenylpyridine (ppy) 

ligands functionalized with a bulky electron-donating diphenylamino group 

could also serve as efficient OSPs for oxygen-sensing. In this paper, we 

present the synthesis and characterization of a series of Ir(III) complexes 

(Ir1-Ir4) functionalized with a diphenylamino group at the cyclometalating 

ligands and a acetylacetone (acac) as the ancillary ligand. The photophysical 

and electrochemical properties of these bis-cyclometalated Ir(III) complexes 
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have been investigated systematically, and the results demonstrate that 

introduction of a diphenylamino group at the 4-position of phenyl ring in ppy 

can improve the photostability of the Ir(III) complexes effectively compared 

with Ir(ppy)2(acac). Introducing a -CF3 group at the 5-position of the pyridyl 

ring of cyclometalating ligand could further improve the photostability. These 

photostable Ir(III) complexes with prolonged phosphorescence lifetimes 

exhibit efficient oxygen-sensitivity compared with Ir(ppy)2(acac). 

2. Experimental 

2.1. Materials and measurements 

All starting materials were purchased from commercial suppliers and used 

without further purification. The solvents were treated as required prior to use. 

1H NMR and 13C NMR spectra were recorded on a 400 MHz Varian Unity 

Inova spectrophotometer. Mass spectra were recorded with a MALDI micro 

MX spectrometer. UV/Vis absorption spectra were recorded on an HP8453 

UV/Vis spectrophotometer. Emission spectra were recorded with a PTI-700 

spectrofluorimeter. Photoluminescence quantum yields were measured relative 

to [Ir(ppy)2(acac)] (ФP = 0.34 in CH2Cl2, under degassed conditions). 

Phosphorescence lifetimes were measured on an Edinburgh FLS920 

Spectrometer (picosecond pulsed diode laser made in the U. K., model: 

EPL-405). Cyclic voltammograms of the Ir(III) complexes were recorded on 

an electrochemical workstation (BAS100B/W, USA) at room temperature in a 
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0.1 M [Bu4N]PF6 solution under argon conditions. Phosphorescent intensity 

response of sensing films of the Ir(III) complexes were recorded with a F-7000 

spectrofluorimeter. Thickness of sensing films was analyzed on a QUANTA 

450 scanning electron microscopy (SEM). 

2.2. Synthesis 

 

Here Scheme 1. Synthesis of bis-cyclometalated Ir(III) complexes for this study. (i) 

Pd(OAc)2, K2CO3, EtOH/H2O 3:1(v/v), 80 ºC, in air, 30-60 min. (ii) IrCl3·3H2O, 

EtOCH2CH2OH/H2O 3:1(v/v), 110 ºC, N2, 24 h. (iii) Hacac, K2CO3, EtOCH2CH2OH, 120 

ºC, N2, 24 h. 

 

Chemical structures and the detailed synthetic protocols of the Ir(III) complexes 

are shown in Scheme 1. The cyclometalating ligands L1-L4 were prepared via a 

palladium-catalyzed ligand-free and aerobic Suzuki reaction in aqueous ethanol 

developed by our group [27]. All of the bis-cyclometalated Ir(III) complexes were 

synthesized in two steps from the cyclometalation of IrCl3·3H2O with the 

corresponding ligands to form the chloride-bridged dimers initially, followed by 

treatment with acetylacetone (Hacac) in the presence of K2CO3 to obtain the target 

Ir(III) complexes. 

2.2.1. Synthetic procedure of ligands L1-L4 

A mixture of 2-pyridyl bromide, 1.5 equiv. of arylboronic acid, 2 equiv. of 

K2CO3, Pd(OAc)2 (1.5 mol%), ethanol/water (3:1 v/v) was stirred at 80 °C in 

air for indicated time. The reaction mixture was added to brine (15 mL) and 

extracted with ethyl acetate (4×15 mL). The solvent was concentrated under 
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vacuum, and the product was isolated by short-column chromatography on 

silica gel. 

2.2.2. Synthetic procedure of Ir(III) complexes Ir1-Ir4 

A mixture of IrCl3·3H2O (0.5 mmol) and 2.5 equiv. of cyclometalating 

ligand was heated to 110 °C in a mixed solvent of 2-ethoxyethanol and water 

(3:1 v/v) under nitrogen for 24 h. Upon cooling to room temperature, the 

yellow precipitate was collected by filtration and washed with water. The wet 

solid was completely dried to give the crude cyclometalated Ir(III) 

µ-chloro-bridged dimer. Without further purification, the dimeric Ir(III) 

complex, subsequently reacted with 10 equiv. of the acetylacetone (Hacac) in 

the presence of 10 equiv. of K2CO3 in 2-ethoxyethanol at 120 °C under 

nitrogen for 24 h. After cooling to room temperature, the precipitate was 

collected by filtration, washed with water and dried. The crude product was 

purified by column chromatography over silica using CH2Cl2:n-hexane (1:1) 

as eluent to provide the desired Ir(III) complexes. 

Ir1: Yield 57%, a yellow solid; 1H NMR (400 MHz, CDCl3) δ = 8.24 (d, J = 

4.8 Hz, 2H), 7.42-7.36 (m, 4H), 7.30 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 8.0 Hz, 

8H), 6.95-6.90 (m, 12H), 6.79 (t, J = 6.8 Hz, 2H), 6.48 (d, J = 8.0 Hz, 2H), 

5.77 (s, 2H), 5.23 (s, 1H), 1.82 (s, 6H). 

Ir2: Yield 48%, a yellow solid; 1H NMR (400 MHz, CDCl3) δ = 8.04 (m, 2H), 

7.31 (d, J = 8.0 Hz, 2H), 7.26-7.24 (m, 2H), 7.19 (d, J = 7.2 Hz, 2H), 7.12 (t, J 

= 8.0 Hz, 8H), 6.92 (d, J = 8.0 Hz, 12H), 6.49 (m, 2H), 5.72 (d, J = 2.4 Hz, 
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2H), 5.22 (s, 1H), 2.20 (s, 6H), 1.82(s, 6H). 13C NMR (100 MHz, CDCl3) δ = 

184.3, 165.2, 147.6, 147.3, 147.0, 146.9, 138.9, 136.9, 129.6, 128.7, 125.9, 

125.0, 123.7, 122.3, 117.4, 114.3, 100.4, 28.9, 18.4. MALDI-TOF-MS (m/z): 

962.3136 [M]+, 863.2747 [M-acac]+. 

Ir3: Yield 50%, a greenish-yellow solid; 1H NMR (400 MHz, CDCl3) δ = 8.10 (t, J = 

2.4 Hz, 2H), 7.39-7.36 (m, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.20-7.13 (m, 10H), 

6.97-6.92 (m, 12H), 6.50 (d, J = 8.0 Hz, 2H), 5.69 (d, J = 2.4 Hz, 2H), 5.26 (m, 1H), 

1.84 (s, 6H). 13C NMR (100 MHz, CDCl3) δ = 184.9, 164.7, 157.8, 155.3, 147.5, 

147.3, 146.5, 137.1, 135.6, 128.8, 125.3, 125.2, 124.2, 123.9, 123.7, 122.8, 118.2, 

118.1, 114.1, 100.7, 28.8. MALDI-TOF-MS (m/z): 970.2690 [M]+, 871.2173 

[M-acac]+. 

Ir4: Yield 69%, an orange-yellow solid; 1H NMR (400 MHz, CDCl3) δ = 8.42 

(s, 2H), 7.51-7.45 (m, 4H), 7.32 (d, J = 8.0 Hz, 2H), 7.18-7.14 (m, 8H), 

7.01-6.95 (m, 12H), 6.54-6.51 (m, 2H), 5.63 (d, J = 2.4 Hz, 2H), 5.26 (s, 1H), 

1.83 (s, 6H). 13C NMR (100 MHz, CDCl3) δ = 185.2, 171.0, 150.0, 149.0, 

146.8, 144.7, 135.5, 133.2, 133.1, 129.0, 126.1, 125.9, 124.3, 123.8, 123.6, 

122.2, 121.8, 121.6, 117.0, 113.2, 100.9, 28.7. MALDI-TOF-MS (m/z): 

1070.2633 [M]+, 971.2294 [M-acac]+. 

2.3. Preparation of oxygen sensing films and their photostability 

Oxygen sensing films were prepared according to the literature [28]: EC 

(9.95 mg) was dissolved in CH2Cl2 (0.90 mL) and then 0.10 mL Ir1 (0.5 

mg/mL) in CH2Cl2 was added to the solution. After thoroughly mixing, 0.1 
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mL of the solution was coated on a silica glass disk (diameter 1.4 cm). The 

solvent was evaporated at room temperature and a thin film was obtained as 

shown in Fig. 4(A). The samples with different loading levels and different 

matrices were prepared with procedure similar to that described above. The 

photostability of the complexes in EC film was investigated by illuminating 

the sensing film with a 254 nm 16 W ZF-7A UV lamp at a distance of 3 cm in 

the air for 90 min. Emission intensities were measured before and after 

exposure of the film to illumination. The power density on the films is 21.5 

W/m2. General procedure for the oxygen sensing test was performed according 

to the reported method [29]. 

3. Results and Discussion 

3.1. Photophysical and electrochemical properties 

UV−vis absorption spectra and emission spectra of complexes Ir1-Ir4 in CH2Cl2 

(1.0 × 10-5 M) at room temperature are presented in Fig. 1 and the corresponding 

data are listed in Table 1. Similarly to other previously reported cyclometalated Ir(III) 

complexes [30, 31], the complexes (Ir1-Ir4) exhibit strong absorption bands in the 

ultraviolet region belong to the spin-allowed intraligand (1π−π*) transitions. The 

long wavelength with lower extinction coefficient can be assigned to singlet and 

triplet metal-to-ligand charge-transfer (1MLCT and 3MLCT) transitions. The results 

in Fig. 1 show that Ir1-Ir4 functionalized with an electron-donating diphenylamino 

group have larger molar extinction coefficient than that of Ir(ppy)2(acac). Especially, 

the spectrum of Ir4 is red-shifted obviously compared to other complexes under the 
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same measurement conditions, due to the electron-withdrawing ability of the -CF3 

substituent [32, 33]. 

The normalized emission spectra of these complexes are shown in Fig. 1. The 

emission maxima of Ir1-Ir4 are red-shifted compared to Ir(ppy)2(acac) (λmax at 518 

nm), owing to the electron-donating ability of the diphenylamino moiety. 

Additionally, the substituents at 5-position of pyridyl ring also affected the emission 

properties of the complexes. Introducing a -CH3 group at the 5-position of the 

pyridyl ring results in a slight blue-shift of 2 nm for Ir2 (λmax at 530 nm) relative to 

Ir1 (λmax at 532 nm). Instead of a -CH3 group with a fluorine, a red-shift of 4 nm for 

Ir3 is reached, while introducing a -CF3 group at the same position imparts a more 

substantial red-shift up to 26 nm for Ir4 (λmax at 558 nm). These results show that the 

emission of the complexes could be finely tuned by the modification of the 

structures of complexes. The phosphorescence quantum yields (Φp) of Ir1-Ir4 range 

from 0.18 to 0.30 (Table 1). The phosphorescence lifetimes (τ) of Ir1-Ir4 in 

degassed CH2Cl2 are in the range of 3.46-3.90 µs at room temperature (Fig. 2), 

which are longer than that of Ir(ppy)2(acac) (1.55 µs). 

The electrochemical properties of the Ir(III) complexes were studied by 

cyclic voltammetry (CV) and the results are also listed in Table 1. The HOMO 

and LUMO energies can be calculated by following equations (EHOMO (eV) = 

-e(4.4 +���
�����), ELUMO (eV)= EHOMO + Eg). The energy gaps (Eg) between the 

HOMO and LUMO levels of Ir1-Ir4 (2.47, 2.49, 2.43 and 2.36 eV) decrease 

in comparison with the Ir(ppy)2(acac) (2.54 eV). At an anodic scan rate of 100 
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mV/s, the CVs of Ir1-Ir4 show oxidation potentials of 0.63, 0.58, 0.68, and 

0.77 V versus saturated calomel electrode (SCE), respectively (see Fig. S2, 

Supplementary Information). These positive oxidation potentials are assigned 

to the metal-centered Ir(III)/Ir(IV) oxidation couple, in accordance with the 

reported cyclometalated Ir(III) systems [34]. As shown in Table 1, it is found 

that introducing the electron-donating group -CH3 in the pyridine unit leads to 

a low potential for Ir2, while introducing an electron-withdrawing group -F 

(Ir3) or -CF3 (Ir4) at the same position makes the oxidation process shift to a 

more positive potential. 

 

Here Fig. 1. Absorption (up) and emission spectra (down, λex= 400 nm) of Ir1-Ir4 and 

Ir(ppy)2(acac) in CH2Cl2 solution at room temperature. 

 

Here Fig. 2. Phosphorescence decay profiles of Ir1-Ir4 and Ir(ppy)2(acac) in CH2Cl2 solution at 
room temperature. 

 

Here Table 1. Photophysical and electrochemical data of the Ir(III) complexes. 

 

3.2. Fitting Formula of Oxygen Sensing 

Optical oxygen sensing process of the luminescence quenching involves dynamic 

collision between molecular oxygen (triplet) and the excited state of the OSPs, 

leading to a reduction of its intensity and decay time [10]. The process can be 

described as follows: IrIII*+O2→Ir III+O2*, where IrIII  denotes the complex and the “*” 

indicates the excited state (Fig. 3) [35, 36]. The phosphorescence intensity of Ir(III) 

complexes immobilized in a matrix is quenched by oxygen according to the 
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Stern-Volmer equation [37-39]: 

�	

�
=

�	

�
= 1 + ��� ∙ ���      (1) 

In the equation, I is the phosphorescence intensity, and τ is the lifetime of an OSP. I0 

and τ0 are the corresponding values in the absence of oxygen. KSV is the 

Stern-Volmer quenching constant and		��� 	is the partial pressure of oxygen. For 

heterogeneous O2-sensing films, a two-site model is required to study the quenching 

effect. In the two-site model, the O2-sensitive complexes are considered as two 

different portions. In the conventional form, it reads as follows (see Eqs 2 and 3) [40, 

41]. 

�

�	
=

�

�	
=

��

������∙���
+

��

������∙���
      (2) 

f1 + f2 = 1      (3) 

where f1 and f2 denote the fractional contribution of the total luminescence 

emission from the OSP due to the heterogeneity of the microenvironment. It is 

assumed that there exists two distinctly different components, one (f1) being 

quenchable, the other (f2) either not being quenched at all, or being quenched 

at a very different rate. The weighted quenching constant	���
 ��(�!"

 ��
= #� ∙

�!"� + #$ ∙ �!"$	) is the guide of the sensitivity of an oxygen sensor, and 

higher values of ���
 �� indicate that the oxygen sensor is more sensitive to 

oxygen quenching. 

 

Here Fig. 3. Illustration of simplified mechanism for oxygen sensing. 
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3.3. Effects of the polymer matrices and OSP contents on oxygen sensing 

An optical oxygen sensor is ususally composed of an OPS and a sensor matrix. 

Generally, polymers or organically modified silica (ormosils) are mainly employed 

as matrix materials in an optical oxygen sensor [25, 42-45]. The selection of a 

favorable matrix is a key to a successful sensor [10]. In this work, we prepared 

sensing films of OSPs immobilized in ethyl cellulose (EC), polystyrene (PS), 

poly(ether-ketone-ketone) (PPEK), poly(cyclohexene carbonate) (PCHC) and 

IMPES-C , respectively (see Fig. S3, Supplementary Information). The results in 

Table S1 demonstrate that the weighted quenching constant ���
 ��  of Ir1 

incorporated into EC is higher than those of others. This is contributed to the large 

permeability coefficient of EC, providing good permeability to oxygen [25, 46]. In 

addition, it is known that the OSP contents strongly affect the quenching efficiency, 

the sensitivity and linearity as well as the response time of an oxygen sensor [17, 47]. 

The detailed oxygen sensing properties of Ir1/EC with different Ir1 loadings are 

presented in Table S2. It is found that the optimum weight content of Ir1 

immobilized in EC is 0.5 wt%, which is consistent with the previous result [48]. The 

reason for this might be that at this content the polymer matrix protects the OSPs 

from potential interference and avoids self-quenching efficiently in this sensor 

system. Additionally, the thickness of the oxygen sensing film at the optimum weight 

content has been characterized by a QUANTA 450 scanning electron microscopy 

(SEM). The SEM micrograph shows that the thickness of the oxygen sensing film is 

ca. 4.7 µm (Fig. 4). 
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Here Fig. 4. (A) The transparent quartz plate (r = 7.0 mm) whose inner surface is covered with 
the oxygen sensing film. (B) SEM micrograph of the oxygen sensing film. (C) The diagram of 
the sensing layer.  

 

3.4. Photostability of oxygen sensing films 

An ideal oxygen sensor should possess high photostability to construct robust 

oxygen sensing systems, which is critical to long-term sensing reliability. The 

following study was conducted to identify the sensor’s photostability for Ir(III) 

complexes immobilized on EC against continuous irradiation with a 254 nm UV 

lamp under air atmosphere. After 90 min of irradiation, the emission intensity of the 

sensing films reduced in different degrees (Fig. 5). The photostabilities of Ir1-Ir4 

are obviously higher than that of the reference complex Ir(ppy)2(acac). In fact, 55%, 

58%, 52% and 43% decreases in intensity of Ir1-Ir4 are observed compared to 79% 

for Ir(ppy)2(acac). The photostabilities of these Ir(III) complexes are varied due to 

the differences in their chemical structures. It is clear that the diphenylamino group 

has a distinct positive effect on the photostability. Furthermore, the substituent at the 

pyridyl ring also affects the photostability of the Ir(III) complexes. It is observed that 

the complex Ir4 with a strong electron-withdrawing -CF3 group on the 5-position of 

the pyridyl ring is more photostable than other Ir(III) complexes. The experimental 

data are in good agreement with related results previously reported by our group [43, 

48]. 

 

Here Fig. 5. Photo-degradation histograms for the Ir(III) complexes/EC films under continuous 
illumination for 90 min at ambient atmospheric conditions. 

 

Here Table 2. Some of Ir(III) complexes used as oxygen sensing probes. 

 

3.5. Oxygen sensing properties 
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In general, an oxygen sensor with the ratio of I0/I100 (I0 and I100 represent the 

detected luminescence intensities from a film exposed to 100% nitrogen and 100% 

oxygen, respectively) more than 3.0 is suitable for oxygen sensing [49]. The I0/I100 

values of previous reported sensors with Ir(III) complexes immobilized in polymer 

matrix are shown in Table 2 and the data can be used to evaluate the O2 sensitivity. 

To compare the O2-sensing properties of the complexes quantitatively, the 

O2-sensing data of Ir1-Ir4 and Ir(ppy)2(acac) (see Fig. S4, Supplementary 

Information) are fitted to the two-site model, and the results are summarized in Table 

S3. Ir1-Ir4 exhibit better oxygen sensitivity compared to Ir(ppy)2(acac). The I0/I100 

values of these Ir(III) complexes immobilized in EC film are 16.2, 16.4, 15.2, 14.1 

and 5.8, respectively (Table 2). It is clear that the Ir2 immobilized in EC exhibits the 

highest sensitivity to O2 (Fig. 6) at a		���
 �� value up to 0.02698 Torr-1 (1 Torr = 

133.322 Pa), which is about 3.4 times higher than that of Ir(ppy)2(acac) (0.00792 

Torr–1). The reason for this might be that the long-lived excited states of Ir1-Ir4 

promote the quenching pathway. This means that, per encounter with an O2 

molecule, Ir1-Ir4 are more likely to be quenched than Ir(ppy)2(acac). This may be 

due to the unique properties of the diphenylamino substituent, which breaks the 

molecular planarity of cyclometalating ligands and reduces the aggregation tendency 

of Ir(III) complexes. In addition, introducing substituents (-H, -CH3, -F, -CF3) into 

the pyridyl moiety of the cyclometalating ligands has relatively little influence on the 

sensitivity of the sensors (Fig. 6). Therefore, the diphenylamino group at the 

4-position of phenyl ring of ppy is crucial to enhance the oxygen sensitivity. 
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Furthermore, an operational stability test was conducted by reading the luminescence 

intensity signals while oxygenated and deoxygenated gases were switched for 4000 s 

(shown in Fig. S5, Supplementary Information). All of the oxygen sensing films 

demonstrated good operational stability during the whole process. Additionally, fast 

response and recovery times were obtained. The response times of the Ir1-Ir4 

immobilized in EC are ca. 4.0 s for switching from nitrogen to oxygen, and ca. 5.0 s 

for switching from oxygen to nitrogen. These bis-cyclometalated Ir(III) complexes 

with excellent oxygen-sensing properties and stability are potential candidates for 

online continuous monitoring of oxygen concentrations. 

 

Here Fig. 6. Stern-Volmer plots for oxygen sensing films of Ir(III) complexes immobilized in 
EC (intensity ratios I0/I versus O2 partial pressure). 

 

4. Conclusions 

In summary, a series of cyclometalated Ir(III) complexes bearing a bulky 

electron-donating diphenylamino substituent (Ir1-Ir4) have been synthesized 

and fully characterized. The results demonstrate that the diphenylamino group 

is an attractive substituent for tuning the photophysical and electrochemical 

properties of the corresponding Ir(III) complexes. The emission bands of 

Ir1-Ir4 are red-shifted and phosphorescence lifetimes are prolonged relative to 

the unsubstituted reference Ir(ppy)2(acac). Immobilized in ethyl cellulose, 

Ir1-Ir4 impart favorable oxygen sensitivity and good photostability against 
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irradiation. Especially, Ir4 with a trifluoromethyl group at the 5-position of the 

pyridyl ring exhibits the highest photostability. These results might provide 

new insights into the chemical modification of cyclometalated Ir(III) 

complexes, leading to the design of oxygen sensitive probes with high 

performances. 
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Table 1 Photophysical and electrochemical data of the Ir(III) complexes. 

Complexes λabs
 a (nm) λem

 b 

(nm) Фp
 c τ

 d  

(µs) 
���
�����	e  

(V) 
Eg

 f  

[eV] 
HOMO g 

(eV) 
LUMO g 

(eV)h 
CIE 
(x,y) 

Ir(ppy)2(acac)h 260 (0.36), 340 (0.08), 412 (0.04), 460 (0.02) 518 0.34 1.55 0.71 2.54 -5.11 -2.57 0.25,0.67 

Ir1 257 (0.55), 302 (0.51), 369 (0.46), 396 (0.42), 447 (0.10) 532 0.18 3.84 0.63 2.47 -5.03 -2.56 0.31,0.66 

Ir2 258 (0.53), 304 (0.51), 361 (0.47), 445 (0.10) 530 0.29 3.90 0.58 2.49 -4.98 -2.49 0.30,0.66 

Ir3 256 (0.71), 299 (0.69), 317 (0.70), 364 (0.63), 450 (0.13) 536 0.21 3.89 0.68 2.43 -5.08 -2.65 0.33,0.64 

Ir4 249 (0.45), 278 (0.43), 293 (0.41), 419 (0.48), 472 (0.14) 558 0.30 3.46 0.77 2.36 -5.17 -2.81 0.42,0.57 
a Measured in CH2Cl2 at a concentration of 10-5 M and extinction coefficients (105 M-1cm-1) are shown in parentheses. b The emission maximumin in degassed CH2Cl2 
solution. c The quantum yields (Фp) in degassed CH2Cl2 solution were measured with [Ir(ppy)2(acac)] (Фp= 0.34) as a standard (λex= 400 nm). d Measured in degassed 
CH2Cl2 at a sample concentration of 10−5 M. e 0.1 M [Bu4N]PF6 in CH2Cl2, scan rate 100 mV s−1, measured using saturated calomel electrode (SCE) as the standard. f 

Eg were calculated from the intersection of the normalized absorption and the emission spectra. g EHOMO (eV) = -e(4.4 +	
�

�
��), ELUMO (eV)= EHOMO + Eg. 

h Reference 
48. All measured at ambient temperature. 
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Table 2 Some of Ir(III) complexes used as oxygen sensing probes. 

Probe Support for immobilization λex/em (nm) I0/I100 References 

[Ir(ppy)2(CN)2] nBuPTP 340/510 - Chem Mater 2005;17:4765–73. 

Ir(CS-Me)2(acac) Polystyrene 475/566 - Anal Chem 2007;79:7501–9. 

N-833 Polystyrene 402/529 1.3 Talanta 2007;71:242–50. 

N-926 Polystyrene 400/526 2.4 Talanta 2007;71:242–50. 

Ir(ppy-NPh2)3 Ethyl cellulose 405/524 - Chem Mater 2009;21,2173–5. 

N969 AlOOH 350/490 47.6 Talanta 2010;82:620–6. 

N969 Polystyrene 385/585 5.0 Talanta 2010;82:620–6. 

Ir(mebtp)3 FIB 296/595 7.41 Sens Actuators B 2010;145:278–84. 

dye 3 AP200/19 335/470 - Chem Mater 2012;24:2330−8. 

Ir(piq)2(acac) ORMOSILs - - Analyst 2013;138:1819–27. 

Lx4 Ethyl cellulose - 5.7 J Mater Chem C 2015;3:8010-7. 

Ir(ppy)2(acac) Ethyl cellulose 400/517 5.8 This work 

Ir1 Ethyl cellulose 400/528 16.2 This work 

Ir2 Ethyl cellulose 400/528 16.4 This work 

Ir3 Ethyl cellulose 400/534 15.2 This work 

Ir4 Ethyl cellulose 400/557 14.1 This work 
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List of Scheme and Figures: 
 

Scheme 1. Synthesis of bis-cyclometalated Ir(III) complexes for this study. (i) 

Pd(OAc)2, K2CO3, EtOH/H2O 3:1(v/v), 80 ºC, in air, 30-60 min. (ii) IrCl3·3H2O, 

EtOCH2CH2OH/H2O 3:1(v/v), 110 ºC, N2, 24 h. (iii) Hacac, K2CO3, 

EtOCH2CH2OH, 120 ºC, N2, 24 h. 

 

Fig. 1. Absorption (up) and emission spectra (down, λex= 400 nm) of Ir1-Ir4 and 

Ir(ppy)2(acac) in CH2Cl2 solution at room temperature. 

 

Fig. 2. Phosphorescence decay profiles of Ir1-Ir4 and Ir(ppy)2(acac) in CH2Cl2 

solution at room temperature. 

 

Fig. 3. Illustration of simplified mechanism for oxygen sensing. 

 

Fig. 4. (A) The transparent quartz plate (r = 7.0 mm) whose inner surface is covered 

with the oxygen sensing film. (B) SEM micrograph of the oxygen sensing film. (C) 

The diagram of the sensing layer.  

 

Fig. 5. Photo-degradation histograms for the Ir(III) complexes/EC films under 

continuous illumination for 90 min at ambient atmospheric conditions. 

 

Fig. 6. Stern-Volmer plots for oxygen sensing films of Ir(III) complexes immobilized 

in EC (intensity ratios I0/I versus O2 partial pressure). 
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h. (iii) Hacac, K2CO3, EtOCH2CH2OH, 120 ºC, N2, 24 h. 

 

 

 

Fig. 1. Absorption (up) and emission spectra (down, λex= 400 nm) of Ir1-Ir4 and Ir(ppy)2(acac) in CH2Cl2 solution 
at room temperature. 

 
Fig. 2. Phosphorescence decay profiles of Ir1-Ir4 and Ir(ppy)2(acac) in CH2Cl2 solution at room temperature. 
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Fig. 3. Illustration of simplified mechanism for oxygen sensing. 

 
 

 
 

Fig. 4. (A) The transparent quartz plate (r = 7.0 mm) whose inner surface is covered with the oxygen sensing film. 
(B) SEM micrograph of the oxygen sensing film. (C) The diagram of the sensing layer. 

  

 
 

 

Fig. 5. Photo-degradation histograms for the Ir(III) complexes/EC films under continuous illumination for 90 min 
at ambient atmospheric conditions. 
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Fig. 6. Stern-Volmer plots for oxygen sensing films of Ir(III) complexes immobilized in EC (intensity ratios I0/I 
versus O2 partial pressure). 
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Research highlights 

 

1) A series of NPh2-modified Ir(III) complexes Ir1-Ir4 have been synthesized. 

2) The luminescent lifetimes of Ir1-Ir4 are prolonged due to the diphenylamino 

group. 

3) The photostabilities of Ir1-Ir4 are enhanced efficiently over Ir(ppy)2(acac). 

4) Ir1-Ir4 demonstrated excellent oxygen sensitivity with I0/I100 > 14. 


