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Abstract  
 
The aldo-keto reductase 1C3 (AKR1C3) isoform plays a vital role in the biosynthesis of 
androgens and is considered an attractive target in prostate cancer (PCa). No AKR1C3-
targeted agent has to date been approved for clinical use. Flufenamic acid and indomethacine 
are non-steroidal anti-inflammatory drugs known to inhibit AKR1C3 in a non-selective 
manner as COX off-target effects are also observed. Recently, we employed a scaffold 
hopping approach to design a new class of potent and selective AKR1C3 inhibitors based on 
a N-substituted hydroxylated triazole pharmacophore. Following a similar strategy, we 
designed a new series focused around an acidic hydroxybenzoisoxazole moiety, which was 
rationalised to mimic the benzoic acid role in the flufenamic scaffold. Through iterative 
rounds of drug design, synthesis and biological evaluation, several compounds were 
discovered to target AKR1C3 in a selective manner. The most promising compound of the 
series (6) was found to be highly selective (up to 450-fold) for AKR1C3 over the 1C2 
isoform with minimal COX1 and COX2 off-target effects. Other inhibitors were obtained 
modulating the best example of hydroxylated triazoles we previously presented. In cell-based 
assays, the most promising compounds of both series reduced the cell proliferation, prostate 
specific antigen (PSA) and testosterone production in AKR1C3-expressing 22RV1 prostate 
cancer cells and showed synergistic effect when assayed in combination with abiraterone and 
enzalutamide. Structure determination of AKR1C3 co-crystallised with one representative 
compound from each of the two series clearly identified both compounds in the 
androstenedione binding site, hence supporting the biochemical data. 
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1. Introduction  
 

AKR1C3, or HSD17B5, is a soluble enzyme member of the aldo-ketoreductase family, 
which is highly expressed in testes and extragonadal tissues such as basal cells of the 
prostate, adrenals and liver.[1] It catalyses the NADPH dependent reduction of 
androstenedione (AD) to testosterone and, compared to other HSD17B isoforms, is the most 
abundant isoform with elevated levels found in agressive PCa, such as castration-resistant 
prostate cancer (CRPC).[2] AKR1C3 may provide a mechanism to divert traces of androgens 
that remain after androgen deprivation therapy (ADT) to the potent androgen receptor (AR) 
ligand 5α-dihydrotesterone (DHT).[3] Besides evidence that AR mutations, splice variants 
and increased copy number represent putative mechanisms of resistance to therapy,[4-7] 
AKR1C3 has also been discovered to play a role in resistance to pharmacological[6] and 
radiation[8] therapy. Potential clinical use of AKR1C3 inhibitors has been demonstrated as in 
the case of indomethacin, a potent but unselective AKR1C3 inhibitor able to circumvent 
resistance to both abiraterone (ABI) [9] and enzalutamide (ENZA) [10] (Figure 1). Although 
few recent studies indicate controversial observations about the in vivo effectiveness of 
AKR1C3-based therapies,[11-13] other studies advocate for AKR1C3 as a therapeutic target 
in PCa.[2, 4] Even if several lead compounds have emerged from AKR1C3-targeting 
medicinal chemistry programs,[14-17], no agent has been approved yet for clinical use.[18]  

In order to understand the clinical potential of targeting AKR1C3, it is desirable to develop 
more potent, selective and drug-like AKR1C3 inhibitors. Amongst NSAIDs, flufenamic acid 
(FLU, Figure 1) inhibits AKR1C3 in a non-selective manner, as it suffers from 
cyclooxygenase (COX) off-target effects.[19, 20] The COX active site consists of a narrow 
long hydrophobic channel that ends with a charged arginine residue (Arg120), which 
provides a suitable pocket for a ligand that contains a carboxylate group.[21] The carboxylic 
acid moiety of all the fenamate inhibitors forms a salt bridge with Arg120, with the two 
carboxylate oxygen atoms of fenamates within the proximity of 1.45 Å and 1.60 Å from one 
of the guanidine nitrogens of the arginine. This binding mode affects the ionic bond 
enthalpies and impacts on the overall inhibitory effect.[21] Removal of this carboxylic acid 
moiety in fenamate derivatives concurs with reduction of COX1 activity as demonstrated by 
us in a recent report on the design of new AKR1C3 inhibitors.[22] We successfully applied a 
scaffold hopping strategy based on the replacement of the FLU benzoate moiety with three 
hydroxyazoles (hydroxyfurazan, hydroxythiadiazole and a series of N-substituted hydroxyl-
1,2,3-triazoles). Through the design of these new ligands we showed that hydroxyazoles are 
valid bioisosters of the carboxylic acid function. Depending on their acidic properties, they 
can be deprotonated to various degrees at physiological pH.[23-26] Inside the series, we 
demonstrated how the replacement of the benzoic acid of FLU with a 4-hydroxy-N1-
substituted triazolecarbonylic moiety enables a bioisosteric scaffold-hopping replacement for 
AKR1C3 activity with no associated COX effect. Moreover, regiosubstitution of nitrogen 
atoms of the hydroxytriazole ring allowed the possibility to perform a structural 
refinement,[27] which enabled an opportunity to improve AKR1C3 binding while reduce 
AKR1C2 and COX1/2 off-target binding.  
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Figure 1. Chemical structures of some known AKR1C3 inhibitors. 
 
Hydroxytriazole 1[22] (Figure 1), the most active compound of our previous study, was 

used as starting point to design two triazoles 2 and 3 (Figure 2) bearing two p- and m-
methoxy or one p-trifluoromethoxy substituents, respectively. In analogy to 1, the rationale 
was to project its 4-methoxybenzyl moiety into the unexplored SP2 sub-pocket of AKR1C3 
and thereby establishing, as the docking studies suggested, π-π staking and T-shape π-π 
staking with Trp227 (partial overlapping) and Trp86[22]; the new substitutions in the phenyl 
ring provided an opportunity to reinforce the binding by establishing interactions with the 
polar Ser129 present in this pocket [22]. In the following, a conformational restriction 
approach was employed to improve the potency and the selectivity of FLU, resulting in the 
design of a small, but focused library of 3-hydroxybenzoxazole-based compounds in which 
the carboxylic acid substituent was fused with the benzene ring, in order to constrain one of 
FLU conformations (compounds 4 - 8, Figure 2). We report here on synthetic strategies, 
biochemical and cell-based studies of the new compounds alone or in combination with ABI 
and ENZA. In addition, to demonstrate selective AKR1C3 inhibition with impact on 
testosterone and PSA synthesis, we also show the binding mode of compound 1 and the most 
potent 3-hydroxybenzoxazole (compound 6) by high-resolution crystal structures of 
AKR1C3 complexed with each of these two compounds.   
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Figure 2. Chemical structures of AKR1C3 inhibitors studied in this work. 

 
2. Result and discussion 
 
2.1 Chemistry. 
 
The methodology used for the synthesis of the two triazole derivatives 2 and 3 is described in 
Scheme 1. The common intermediate 9 was regioselectively alkylated by the appropriate 
benzylhalide using the procedure previously described.[23] The building block 9 is 
susceptible to alkylation directed towards positions N(b) and N(c) of the triazole ring, leading 
in each case to a mixture of two isomeric products(10 - 12 and 11 - 13, respectively). The 
isomeric mixtures were chromatographically resolved and the N(c) esters 10 and 12 were 
hydrolysed to the corresponding carboxylic acids 14 and 15. The latter two compounds were 
converted into the corresponding acyl chlorides and allowed to react with 3-
(trifluoromethyl)aniline to afford amides 16 and 17, which were subsequently deprotected 
through catalytic hydrogenation to obtain the desired target compounds 2 and 3. 
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Scheme 1: a) Cs2CO3, CH3CN, rt; b) 1) NaOH, EtOH, rt; 2) 2M HCl; c) (CO)2Cl2, dry DMF, 
dry THF, rt; d) 3-(trifluoromethyl)aniline, dry pyridine, dry THF, rt; e) H2, Pd/C, dry THF, rt.  
 
The methodology used for the synthesis of the 4-anilino-1,2-benzoxazol-3-ols derivatives 4 
and 6 - 8, described in Scheme 2, follows a described procedure for substituted 1,2-
benzoxazol-3-ols.[28] Commercially available 2-bromo-6-fluorobenzoic acid was treated 
with (CO)2Cl2 and dry DMF in dry THF to generate acyl chloride 18, which was coupled 
with N-[(2,4,6-trimethoxyphenyl)methyl]hydroxylamine 19 to afford N-hydroxybenzamide 
20. Cyclisation of compound 20 in basic condition yielded the 1,2-benzisoxazol-3-one 
derivative 21, where the nitrogen atom of the ring is protected with the 2,4,6-
trimethoxybenzyl (Tmob) group. Starting from intermediate 21, four substituted anilines 
were used to perform Buchwald-Hartwig coupling in which halogenated rings were coupled 
with aniline derivatives in the presence of a palladium catalyst and a base. Compound 21 was 
treated with the appropriate aniline, Pd(OAc)2, (±)-2,2-Bis(diphenylphosphino)-1,1-
binaphthalene (BINAP) and Cs2CO3 in dry toluene at reflux for 5 hours, affording 
compounds 22 - 25. After coupling, the target compounds 4 and 6 - 8 were obtained from 22 
- 25 by deprotection of Tmob through treatment with trifluoroacetic acid (TFA) and 
triisopropylsilane in dry DCM.  
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Scheme 2: a) (CO)2Cl2, dry DMF, dry THF, rt; b) Et3N, dry THF, rt; c) K2CO3, dry DMF, 
reflux; d) substituted aniline, Cs2CO3, BINAP, Pd(OAc)2, dry toluene, reflux; e) TFA, (i-
Pr)3SiH, dry DCM, rt.  
 
Unfortunately, the Buchwald-Hartwig coupling conditions failed when applied to affording 
compound 5 from the appropriate 5-bromo isomer of 21. This behaviour is probably due to a 
low reactivity of the bromide group in position 5 of the Tmob protected 1,2-benzisoxazol-3-
one. To avoid such problem, a second synthetic route was devised to obtain 5 by changing 
the sequence order of the reactions (Scheme 3). The Buchwald-Hartwig coupling between the 
3-trifluoromethylaniline was performed as the first reaction with the methyl 5-bromo-2-
fluorobenzoate 26. Before coupling intermediate 27 with 19, it was necessary to Boc protect 
the aniline nitrogen in order to reduce its electron donor properties and thereby activate the 
para-positioned fluorine to nucleophilic substitutions. The treatment of 27 with Boc2O in dry 
THF afforded the Boc protected 28, which was hydrolysed to afford carboxylic acid 29. This 
latter was coupled with 19 in the presence of DCC as activating agent to afford 30. 
Importantly, when 30 was placed in presence of the basic conditions (K2CO3, DMF), it 
cyclised to afford compound 31. This result was not observed when the analogue of 30 
without Boc protection was treated in the same condition. Finally, the target compound 5 was 
obtained from 31 by treatment with TFA and triisopropylsilane in order to remove both Boc 
and Tmob protective groups.  
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Scheme 3: a) 3-(trifluoromethyl)aniline, Cs2CO3, Pd(OAc)2, BINAP, dry toluene, reflux; b) 
Boc2O, DMAP, dry THF, rt; c) KOH, EtOH, rt; d) 19, DCC, DMAP, dry DCM, rt; e) K2CO3, 
dry DMF, reflux; f) TFA, (i-Pr)3SiH, dry DCM, rt. 
 
2.2 AKR1C3 and AKR1C2 inhibitor screening. 
 
Selective targeting of AKR1C3 over 1C2 is considered critical to effective PCa therapy.[29] 
Not only does the two isoforms share 86 % sequence similarity, but AKR1C2 is also 
involved in DHT inactivation and hence its inhibition is undesirable. Accordingly, the 
inhibitory potencies of compounds 2 - 8 were determined for both AKR1C2 and AKR1C3 
and compared with 1 and FLU as controls. To understand their selectivity the ratio of IC50 
was used as indicator of AKR1C2 and AKR1C3 inhibition (a high ratio shows high 
selectivity for AKR1C3, Table 1). The inhibitory activity was obtained using recombinant 
purified enzymes with oxidation of S-tetralol in the presence of NADP+. Although the 
triazole derivatives 1 - 3 presented IC50 values in the similar range as FLU (IC50 0.44 µM), 
they presented greater than 240-290 fold selectivity for AKR1C3 over AKR1C2. The 
trifluoromethoxy substituent in the para position of the benzylic moiety appeared to be 
responsible for increasing activity, as 3 retained potent AKR1C3 inhibition with an IC50 
value of 0.19 µM and 289-fold selectivity for AKR1C3 over AKR1C2. The inhibitory effect 
of the 1,2-benzoxazoles series on AKR1C3 and C2 enzymes confirms the hypothesis that the 
conformational restriction approach to FLU is able to retain potency and improve selectivity 
of the over the lead compound (Table 1). Noteworthy, both 4 and FLU are equipotent in 
regard to AKR1C3 inhibition (IC50 are 0.55 and 0.44, respectively), but the former is 8-fold 
more selective in targeting AKR1C3 over AKR1C2. As expected, the shifting of the aniline 
moiety to position 5 of the 1,2-benzoxazole to mimic the meta-FLU’s conformation led to 
reduced potency but greater AKR1C3 selectivity.[20] Indeed, compound 5 displayed an IC50 
value of 3.48 µM against the AKR1C3 isoform but exhibited 19-fold selectivity for AKR1C3 
over AKR1C2 (AKR1C2 IC50 = 67 µM). The data support the 3-hydroxy-1,2-benzoxazole as 
a promising new scaffold for the design of potent and selective AKR1C3 inhibitors.  
In attempt to improve the potency and selectivity of compound 4, modulation of substitution 
of the aniline moiety was performed. The modulation of FLU derivative by the introduction 
of a second substituent in the aniline substructure is known[20] to improve  potency and 
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selectivity. Applying a similar strategy, the introduction of a second m-trifluoromethyl 
substituent (compound 6) doubled the activity and improved drastically the selectivity for 
AKR1C3 over AKR1C2 enzyme. Specifically, compound 6 displayed an IC50 value of 0.26 
µM against AKR1C3 and 456-fold selectivity for AKR1C3 over AKR1C2 (IC50 119 µM). 
This result indicates that the introduction of a second meta substituent in the phenyl ring of 
compound 4 did not have a remarkable effect on the inhibitory potency for AKR1C3, but 
decreased the affinity for AKR1C2 significantly. 
Subsequently, (bio)isosteric replacements of the trifluoromethyl substituent of 4 were 
performed. Between the possible isostere options, we chose the nitro and pentafluorosulfanyl 
groups as they retained the activity in the FLU modulations.[20, 30] While the replacement 
of the meta-trifluoromethyl substituent with the nitro group was a successful bioisosteric 
modulation in the FLU scaffold,[20] when applied to our new 1,2-benzoxazole scaffold 
(compound 7) it was detrimental for potency as well as for the selectivity. The IC50 values of 
compound 7 were 1.41 µM and 5.70 µM for AKR1C3 and AKR1C2 respectively, showing 
that 7 is 2,5-fold less active that its m-trifluoromethyl analogue 4 and 1.3-fold less selective. 
On the contrary, the replacement of the m-trifluoromethyl substituent of 4 with the 
pentafluorosulfanyl (SF5) moiety (compound 8) was very successful. The SF5 group, a 
bioisoster of the CF3 and OCF3 groups, has been gaining greater attention and increased 
reported usage in the literature.[31] While SF5-bearing building blocks are typically >5x 
economically more expensive than the analogous CF3 compounds, they are particularly 
attractive to medicinal chemists due to their reported effects on slowing the rates of 
metabolism.[32] The SF5 group is a large, very electronegative and lipophilic group. It is also 
more resistant to acid hydrolysis than either CF3 or OCF3.[31] FLU analogues bearing the 
SF5 moiety in meta and para positions have been reported to retain comparable AKR1C3 
inhibition activity and selectivity when compared with FLU.[30] Applying this bioisosteric 
replacement on the 1,2-benzoxazole scaffold, it was evident that the SF5 derivative 8 gained 
increase in AKR1C3 potency and selectivity (AKR1C3 vs AKR1C2) to afford a novel 
analogue that performed similar to compound 4. 
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Table 1. Inhibitory effect of compounds 1-8 and FLU against AKR1C3 and AKR1C2 
recombinant purified enzymes. 
 

Compound Structure 
AKR1C3 
IC 50 ± SE  

(µM)   

AKR1C2 
IC 50 ± SE 

(µM)   

Ratio 
IC 50 value 
(1C2:1C3) 

FLU 

 

NHF3C OH

O

 
 

0.44 ± 0.023 a 0.53 ± 0.032 a 1.2 

1 
N

NN

O

NHF3C

O

OH

 

0.31 ± 0.005 a 73.23 ± 8.67 a 236 

2 
N

NN

O

NHF3C

O

OH

O

 

0.40 ± 0.059 108.13 ± 7.42 270 

3 
N

NN

O

NHF3C

O CF3

OH

 

0.19  ± 0.020 54.87 ± 5.01 289 

4 

 

NH

N

OH

O

F3C

 

0.55 ± 0.03 4.38 ± 0.49 8 

5 

 
F3C

N

OH
NH

O  
 

3.48 ± 0.48 66.95 ± 10.67 19 

6 NH

N

OH

CF3

O

F3C

 

0.26 ± 0.03 118.55 ± 4.86 456 

7 
O2N NH

N

OH

O  

1.41 ± 0.16 5.70 ± 0.30 4 

8 
F5S NH

N

OH

O  

0.31 ± 0.033 4.29 ± 0.144 14 

a Data from ref.[22] 
 
2.3. COX inhibition. 
 
The compounds were also evaluated against COX1 and COX2 to ensure no off-target effects. 
Compounds 2 - 8 were assayed for their inhibitor effect on COX1 and COX2 using ovine 
COX1 (oCOX1) and human COX2 (hCOX2). Notably, compounds 2 - 8 did not display 
significant inhibitory activity on any of the two COX isoforms at the highest concentration 
evaluated (100 µM) (Table 2). 
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Table 2. Inhibitory effect of compounds 1-8 and FLU against COX1 and COX2.  
 

Compound 
oCOX1 

IC 50 ± SE 
(µM)  

hCOX2 
IC 50 ± SE (µM) 

Ratio 
IC 50 value 

(COX1:AKR1C3)  

FLU 14 ± 1a > 100a 

(18 % ± 2) a, b 
32 

1 
>100a 

(0)a, b 
>100a 

(12 % ± 4)a, b 
> 322 

2 
> 100 
(0)b 

> 100 
(0.87 % ± 0.87)b 

> 250 

 
3  

> 100 
(0)b 

> 100 
(0)b 

> 526 

4 
> 100 

(29 % ± 1)b 
> 100 

(13 % ± 4)b 
> 182 

5 
> 100 

(29 % ± 3)b 
> 100 
(0)b 

> 29 

6 
> 100 

(2.1 % ± 2.1)b 
> 100 
(0)b 

> 385 

7 
> 100 
(0)b 

> 100 
(0.37 % ± 0.37)b 

> 71 

8 
> 100 
(0)b 

> 100 
(4.3 % ± 2.3)b 

> 323 

a Data from ref. [22] 
b % of inhibition ± SE at 100 µM. 
 
2.4 Inhibition of cell proliferation and PSA expression 
 
The effects of the compounds on cell proliferation were evaluated using the AKR1C3-
expressing 22RV1 PCa cell line. Prior to chemosensitivity screening, AKR1C3 protein was 
confirmed using western blot (Figure 3A). The antiproliferative activity of the compounds 
was initially performed using the sulforhodamine B (SRB) assay and the IC50 values are 
reported in Figure 3B. All derivatives evaluated, except 7, exhibited a more pronounced 
antiproliferative effect than FLU. Triazole 3 (IC50 31.28 µM) and 1,2-benzoxazole 6 (IC50 
26.70 µM) were shown to be over 4-fold more potent than FLU (IC50 115 µM, Figure 3B). 
Since the SRB assay does not distinguish between cytotoxic and cytostatic effects, a colony-
growing inhibition investigation was also carried out. In this assay, colonies were observed 
and counted before and after treatment with selected compounds (triazole derivatives 1 - 3 
and 1,2-benzoxazole derivative 6, Figure 3C-E). 22RV1 cells were incubated for 72 h in the 
presence of these compounds and the number of viable and dead cells was measured with 
NucleCounter. The percentage of live cells was significantly reduced in a dose-dependent 
manner with all tested compounds. Interestingly, when the data for dead cells were analysed 
(Figure 3D) it was evident that the decrease in cell viability correlated with cell death only 
for analogues 1 and 6, while compounds 2 and 3 exhibited a more cytostatic than cytotoxic 
effect (Figure 3D and 3E). 
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Figure 3. Inhibition of cell proliferation. (A) Confirmation of AKR1C3 expression in 
22RV1 cells by western blot. (B) IC50 values of antiproliferative activity using the SRB assay 
and cLogP calculated by QikProp.[33] Direct count of live (C) and dead (D) cells by 
NucleoCounter N100 after incubation for 72 h with compounds, 1-3 and 6 at different 
concentrations. Each column represent the percentage of cells versus control (mean value). 
Percentage of cell death (mean value) (E).  Standard errors were lower than 10%. a) The 
result is in agreement with our previous study[22]; b) % of inhibition ± SE at 100 µM. 
 
In addition, the effect of the compounds on PSA expression were evaluated using western 
blot and ELISA assays. Viable cells were lysed from treated 22RV cells described above and 
western blots were performed. Figure 4A reveal that the PSA expression in the cell extracts 
was reduced in a dose-dependent manner in cultures treated with compounds 2 and 3. High 
doses of 6 also reduced PSA levels in the cell extracts, whereas only very low effects were 
observed for 1. However, the differences were much more marked when the secretion of PSA 
in culture supernatants were measured using ELISA. All compounds resulted in a significant 
dose-dependent reduction of PSA secretion in treated cells (Figure 4B). 
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Figure 4. Inhibition of PSA expression. Western blot analysis performed on cell extracts 
(A) and ELISA assay performed on cell supernatants (secreted PSA) (B) of cultures treated 
with 1 - 3 and 6 at three different concentrations. Standard errors for ELISA were lower of 10 
%.  
 
To explore further the effect of the novel compounds in the steroidogenic pathway, 
compounds 3 and 6 were investigated for their ability to inhibit testosterone production. After 
24 h incubation, androstenedione (AD) was added to each cell with or without compounds 3 
and 6 at three concentrations (0.2, 2 and 20 µM). The cell culture media was collected 24 h 
after treating the cells and both compounds had an effect on the synthesis of testosterone. 
Compound 3 exerted a dose-dependent effect, whereas 6 had an initial effect at low dose (0.2 
µM) but no improved effect at higher doses was observed (Figure 5). Even if compounds 3 
and 6 possess similar AKR1C3 inhibitory activity, AKR1C3/1C2 and AKR1C3/COX 
selectivity ratios, their effects on PSA and testosterone production indicate subtle differences. 
This result may be related to a number of other key players in the AR dependent and 
independent pathways of PCa. 
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Figure 5. Inhibition of testosterone production. Evaluation of the inhibitory effect of 
compound 3 and 6 in AD treated 22RV1 cells.  
 
In order to evaluate a possible synergistic effect, compounds 3 and 6 were explored in 
combination treatments with ABI and ENZA. 22RV1 cells were treated for 72 h with both 
compounds at 20 µM with or without 10 µM ABI (Figure 6A). The same experiment was 
carried out by treating cells with or without 20 µM ENZA (Figure 6B). At these 
concentrations, ABI and ENZA had limited effects on cell growth. When compound 3 or 6 
were added together with either ABI or ENZA, the cell viability was reduced by 
approximately 10-25% compared with either drug alone, indicating a synergistic effect. The 
22RV1 cell line was proved to have relative levels of resistance to both ABI and ENZA,[10-
12] hence the outcome of the combination experiments are encouraging and indicate the 
potential of using an AKR1C3 inhibitor to intervene the steroidogenic pathway and effect 
PSA and testosterone production. 
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Figure 6. Effect of the co-treatment of compounds 3 and 6 with ABI (A) or ENZA (B) on 
22RV1 cell proliferation using the SRB assay. Cells were treated with 20 µM of compounds 
3 and 6 with or without 10 µM ABI or 20 µM ENZA for 72 h. Cell growth is expressed as % 
T/C (mean OD of treated cells/mean OD of control cells X 100). 
 
2.5 Analysis of the binding mode of compounds 1 and 6 co-crystallised in complex with 
AKR1C3. 
 
To support experimental data, co-crystallisation of AKR1C3 in complexes with compound 6 
was carried out. Furthermore, we also determined the crystal structures of AKR1C3 in 
complexes with compound 1, whose binding mode was speculated by us in previously 
reported docking studies[22]. The structures were determined by molecular replacement and 
have been refined to 1.88 Å (1, PDB ID: 6F2U) and to 1.30 Å (6, PDB ID: 6F78). X-ray data 
collection and refinement statistics are summarised in Table S16. As reported 
previously[34], the AKR1C3 ligand-binding pocket is composed by five compartments: 
an oxyanion site (OS) formed by the cofactor NADP+

 and the catalytic residues Tyr55 
and His117, a steroid channel (SC) (Tyr24, Leu54, Ser129, Trp227) and three subpockets 
SP1(Ser118, Asn167, Phe306, Phe311, Tyr319), SP2 (Trp86, Leu122, Ser129,  Phe311) 
and SP3(Tyr24, Glu192, Ser221, Tyr305). Here, the AKR1C3 inhibitors could be clearly 
identified in the electron density maps in the androstenedione binding site (Figure S17). 
Compound 6 was found able to establish key interactions inside the OS, involving the 
hydroxyl group via a double H-bond with Tyr55 and His177, at 2.6 Å and 2.8 Å respectively 
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(Fig. 7). On the other end, the 3,5-trifluoromethylphenyl moiety binds into the SP1 site, 
placing one trifluoromethyl towards SP1 and the other close to the Phe311 of SP2.  
In regard to the analysis of compound 1, we found an experimental binding mode that is 
detached to the one previously docking hypotheses.[22] While the hydroxyl group present in 
the triazole ring binds into the OS with Tyr55 and His117, producing two H-bond 
interactions, as predicted by docking, the 4-methoxybenzyl moiety is unexpected found 
rotated by around 180 degree respect the docking pose, showing a preferred orientation 
toward SP3 deeply inside the binding pocket. More precisely, this group is located between 
Phe306 and NADP, making a parallel displacing π-π and T-shape π-π interaction 
respectively. However, the modulations herein used on benzyl motif in compounds 1, 2, 3 
affected the activity modestly, that indicates an extended SAR analysis is required to better 
understand which substitution on 4-methoxybenzyl are beneficial for the activity. Finally, the 
trifluoromethylphenyl projects into the SP1 pocket, enabling the trifluoromethyl to bind 
deeply within the cavity. Crystallographic data of AKR1C isoforms show that SP1 pocket in 
C3 is larger and less discriminating than in C2, this differences should be behind compounds 
selectivity toward the two isoforms. In order to understand the role of SP1 shape in 
compound 1 selectivity, a docking study on AKR1C2 was performed. Compound 1 shows a 
divergent binding mode inside C2 isoform (Figure S18), because the smaller SP1 force the 
inhibitor to place mCF3-phenyl toward the SC, shifting the molecule that became unable to 
maintain H-bond interaction inside OS, which is required for AKR1C activity.  
The crystallographic data of compounds 1 and 6 well demonstrate the ability of both 
bioisosteric approaches to effectively mimic carboxylic group into OS. The two co-
crystallized compounds demonstrate to have the same contacts as the reference FLU inside 
SP1 and SP3, moreover compound 1 express a promising additional interaction through the 
4-methoxybenzyl moiety that could be a key point to develop more potent and selective 
AKR1C3 inhibitors. 
 

 
Figure 7.  AKR1C3 co-crystallized with compounds 1 in gray (PDB id: 6F2U, A) and 6 in 
purple (PDB id: 6F78, B). NADP+ is represented in orange. Nitrogen, fluorine, oxygen and 
sulphur atoms are depicted in blue, green, red and yellow, respectively. Molecular graphics 
and analyses were performed with the UCSF Chimera package.[35]  

 
3. Conclusions 
 
This study has focused on a new generation of AKR1C3 inhibitors designed by application of 
a scaffold hopping approach to replace the benzoic acid moiety of FLU with hydroxylated 
azoles. The best compound of the first series, the 4-trifluoromethoxybenzyl substituted 
analogue 3, was found to selectively inhibit AKR1C3 activity without any significant 
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AKR1C2 and COX1/2 off-target effects. Although the triazole derivative 3 presented IC50 
values in the similar range as FLU, it presented greater than 280-fold selectivity for AKR1C3 
over AKR1C2.  
The data obtained from the second series support the 3-hydroxy-1,2-benzoxazole as a 
promising new scaffold for the design of potent and selective AKR1C3 inhibitors. 
Specifically, compound 6 displayed a submicromolar activity against AKR1C3 and 456-fold 
selectivity for AKR1C3 over AKR1C2. Compound 3 and 6 were also able to inhibit the cell 
proliferation of AKR1C3-expressing 22RV1 CRPC cells as well as the PSA expression in a 
dose-dependent manner. Both compounds showed an effect on the testosterone production, 
but only compound 3 exerted a dose-dependent effect. These results probably show the 
complexity in studying the steroidogenic pathway and its multiple parallel outcomes linked to 
AR dependent and independent pathways. To better clarify this aspect, the effect of 3 and 6 
on the AR dependent pathway will be the subject of further investigations. In addition, the 
inhibition of AKR1C3 activity by compound 3 and 6 were shown to be synergistic in 
combination with either ENZA and ABI treatment. Taken together, the novel chemical 
scaffolds here reported provide a promising starting point for the design of more potent 
AKR1C3 inhibitors with clinical potential use in order to intervene the steroidogenic pathway 
and reduce both PSA and testosterone production. The crystal structures of the most 
interesting AKR1C3 inhibitors 1 and 6 will facilitate further optimisation of these lead 
compounds, aiming to discover new compounds with more drug-like properties and optimal 
pharmacokinetic characteristics.  
 
4. Experimental section 
 
4.1 Chemistry  
 
4.1.1 General methods 
 
All chemical reagents were obtained from commercial sources (Sigma Aldrich, Alfa Aesar) 
and used without further purification. Culture media were obtained from Sigma‑Aldrich. 
Analytical grade solvents (acetonitrile, diisopropyl ether, diethyl ether, dichloromethane 
[DCM], dimethylformamide [DMF], ethanol 99.8 % v/v, ethyl acetate, methanol [MeOH], 
petroleum ether b.p. 40 - 60°C [petroleum ether]) were used without further purification. 
When needed, solvents were dried on 4 Å molecular sieves. Tetrahydrofuran (THF) was 
distilled immediately prior to use from Na and benzophenone under N2. Thin layer 
chromatography (TLC) on silica gel was carried out on 5 x 20 cm plates with 0.25 mm layer 
thickness to monitor the process of reactions. Anhydrous MgSO4 was used as a drying agent 
for the organic phases. Purification of compounds was achieved with flash column 
chromatography on silica gel (Merck Kieselgel 60, 230-400 mesh ASTM) using the eluents 
indicated or by CombiFlash Rf 200 (Teledyne Isco) with 5–200 mL/min, 200 psi (with 
automatic injection valve) using RediSep Rf Silica columns (Teledyne Isco) with the eluents 
indicated. Purity was checked using two analytical methods. HPLC analyses were performed 
on an UHPLC chromatographic system (Perkin Elmer, Flexar). The analytical column was an 
UHPLC Acquity CSH Fluoro-Phenyl (2.1x100 mm, 1.7 µm particle size) (Waters). 
Compounds were dissolved in acetonitrile and injected through a 20 µl loop. The mobile 
phase consisted of acetonitrile / water with 0.1 % trifluoroacetic acid (ratio between 60 / 40 
and 40 / 60, depending on the compound’s retention factor). UHPLC analysis were run at 
flow rates of 0.5 mL/min, and the column effluent was monitored at 215 and 254 nm, 
referenced against a 360 nm wavelength. Purity of the synthetic intermediates varied between 
90 % and 99 % purity. The biological experiments were employed on compounds with a 
purity of at least 95%. Melting points (m.p.) were measured on a capillary apparatus (Büchi 
540) by placing the sample at a temperature 10° C below the m.p. and applying a heating rate 
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of 1° C min-1. All compounds were routinely checked by 1H- and 13C-NMR and mass 
spectrometry. 1H- and 13C-NMR spectra were performed on a Bruker Avance 300 instrument. 
For coupling patterns, the following abbreviations are used: br = broad, s = singlet, d = 
doublet, dd = doublet of doublets, t = triplet, q = quartet, quint = quintuplet, m = multiplet. 
Chemical shifts (δ) are given in parts per million (ppm). Accordingly with Zarantonello et 
al.,[36] the 13C NMR spectra of the compounds 8 and 25 are characterized by the presence of 
the C-SF5 signals as a quintet of doublets due to the coupling (2JCF 15 - 18 Hz) with the 
equatorial four fluorine atoms and with the axial one. The same feature is detected for the 
carbon atoms in ortho position with respect to the SF5 group (the 2JCF and the 3JCF coupling 
constants values with the axial fluorine atom are not reported having a value smaller than 1 
Hz). According to Ferraris et al.,[28] that reported 1H spectra of similar N-hydroxy-
benzamides, 1H- and 13C-NMR spectra of compounds 20 and 30 showed the presence of the 
two amide rotamers in the analyzed solutions. 1H- and 13C-NMR spectra of final compounds 
2 – 8 are shown in supplementary. MS spectra were performed on Finnigan-Mat TSQ-700 
(70 eV, direct inlet for chemical ionization [CI]) or Waters Micromass ZQ equipped with 
ESCi source for electrospray ionization mass spectra (ESI). HRMS spectra of final 
compounds (compounds 2 – 8) were recorded on LTQ Orbitrap XL plus (Thermo Fisher 
Scientific, Waltham, MA USA) equipped with an ESI ionization source, with positive or 
negative ions (Spray capillary voltage: 3000 V (+), 2500 V (-)). Compound 9[23] was 
prepared following already described procedure. IR spectra of final compounds (compounds 
2 – 8) were recorded on FT-IR (PerkinElmer SPECTRUM BXII, KBr dispersions) using a 
diffuse reflectance apparatus DRIFT ACCY (see supplementary to visualize the spectra). 
 
4.1.2. Ethyl 4-(benzyloxy)-1-[(3,4-dimethoxyphenyl)methyl]-1H-1,2,3-triazole-5-carboxylate 
(10) and ethyl 5-(benzyloxy)-2-[(4-methoxyphenyl)methyl]-2H-1,2,3-triazole-4-carboxylate 
(11). Cesium carbonate (3.29 g, 10.1 mmol) and 1-(chloromethyl)-3,4-dimethoxybenzene 
(1.88 g, 10.1 mmol) were added to a solution of 9 (1.00 g, 4.04 mmol) in dry DMF (20 mL). 
The resulting mixture was stirred at room temperature overnight. When the reaction was 
complete, the mixture was diluted with water (20 mL) and the pH adjusted to 7 with 0.5 N 
HCl. The solution was concentrated to half of its volume under reduced pressure, extracted 
with EtOAc (3 x 30 mL). The combined organic layer was washed with brine, dried over 
MgSO4 and concentrated under reduced pressure to afford a colorless oil. The latter showed 
two spots on TLC (eluent: petroleum ether /EtOAc 80/20 v/v) relative to two substituted 
triazole isomers. The two isomers were separated using flash chromatography (eluent: 
petroleum ether / EtOAc 80/20 v/v). First eluted isomer, 10, white solid (m.p. 80.6 – 81.7°C). 
Yield 31 %. 1H-NMR (300 MHz, CDCl3): δ 1.34 (3H, t, J = 7.1 Hz), 3.83 (3H, s), 3.85 (3H, 
s), 4.33 (2H, q, J = 7.1 Hz), 5.52 (2H, s), 5.75 (2H, s), 6.79 (1H, d, J = 8.2 Hz), 6.90 – 6.95 
(2H, m), 7.28 – 7.39 (3H, m), 7.46 – 7.49 (2H, m); 13C-NMR (75 MHz, CDCl3): δ 14.3, 54.4, 
56.0, 61.3, 71.6,  110.7, 111.0, 111.3, 121.0, 127.6, 127.7, 128.2, 128.5, 136.5, 149.1, 149.2, 
158.8, 161.3. MS (ESI) 398 [M + H]+.  
Second eluted isomer, 11, white solid (m.p. 95.8 – 97.6°C). Yield 41 %. 1H-NMR (300 MHz, 
CDCl3): δ 1.38 (3H, t, J = 7.1 Hz), 3.82 (3H, s), 3.87 (3H, s), 4.40 (2H, q, J = 7.1 Hz), 5.33 
(2H, s), 5.38 (2H, s), 6.80 – 6.94 (3H, m), 7.29 – 7.38 (3H, m), 7.41 – 7.46 (2H, m); 13C-
NMR (75 MHz, CDCl3): δ 14.5, 56.01, 56.03, 59.6, 61.2, 72.3,  111.1, 111.3, 121.1, 124.1, 
126.9, 127.8, 128.2, 128.5, 136.1, 149.2, 149.4, 160.6, 161.0. MS (ESI) 398 [M + H]+.  
 
4.1.3. Ethyl 4-(benzyloxy)-1-(4-methoxybenzyl)-1H-1,2,3-triazole-5-carboxylate (12) and 
ethyl 5-(benzyloxy)-2-(4-methoxybenzyl)-2H-1,2,3-triazole-4-carboxylate (13). Cesium 
carbonate (2.37 g, 7.28 mmol) and 1-(bromomethyl)-4-(trifluoromethoxy)benzene (1.65 g, 
6.48 mmol) were added to a solution of 9 (0.90 g, 3.64 mmol) in acetonitrile (20 mL). The 
resulting mixture was stirred at room temperature overnight. When the reaction was 
complete, the mixture was diluted with water (20 mL) and the pH adjusted to 7 with 0.5 N 
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HCl. The solution was concentrated to half of its volume under reduced pressure, extracted 
with EtOAc (3 x 30 mL). The combined organic layer was washed with brine, dried over 
MgSO4 and concentrated under reduced pressure to afford a colorless oil. The latter showed 
two spots on TLC (eluent: petroleum ether /EtOAc 85/15 v/v) relative to two substituted 
triazole isomers. The two isomers were separated using flash chromatography (eluent: 
petroleum ether / EtOAc 85/15 v/v). First eluted isomer, 12, white solid (m.p. 100.0 - 102.1 
°C). Yield 33 %. 1H-NMR (300 MHz, CDCl3): δ 1.33 (t, J = 7.1 Hz, 3H), 4.32 (q, J = 7.1 Hz, 
2H), 5.53 (s, 2H), 5.81 (s, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.32 - 7.40 (m, 5H), 7.48 (d, J = 7.2 
Hz, 2H). 13C-NMR (75 MHz, CDCl3): δ 14.2, 53.8, 61.5, 71.7, 110.8, 120.5 (q, J = 257.5 
Hz), 121.3 (q, J = 0.9 Hz), 127.7, 128.2, 128.6, 129.8, 133.8, 136.4, 149.2 (q, J = 1.8 Hz), 
158.7, 161.3. MS (ESI) 422 [M + H]+. 
Second eluted isomer, 13, white solid (m.p. 29.3 - 30.5 °C). Yield 45 %. 1H-NMR (300 MHz, 
CDCl3): δ 1.38 (t, J = 7.1 Hz, 3H), 4.40 (q, J = 7.1 Hz, 2H), 5.34 (s, 2H), 5.44 (s, 2H), 7.17 
(d, J = 8.6 Hz, 2H), 7.28 - 7.38 (m, 5H), 7.44 (d, J = 7.9, 2H). 13C-NMR (75 MHz, CDCl3): δ  
14.5, 58.8, 61.3, 72.4, 120.5 (q, J = 257.6 Hz), 121.3 (q, J = 0.9 Hz), 124.5, 127.9, 128.3, 
128.5, 129.7, 133.1, 136.0, 149.4 (q, J = 1.8 Hz), 160.4, 161.1. MS (ESI) 422 [M + H]+. 
 
4.1.4. 4-(Benzyloxy)-1-[(3,4-dimethoxyphenyl)methyl]-1H-1,2,3-triazole-5-carboxylic acid 
(14). 6M NaOH (0.1 mL) was added to a solution of 10 (0.10 mmol) in ethanol (25 mL) and 
the reaction mixture was stirred overnight. The resulting solution was neutralized with 2M 
HCl and concentrated under reduced pressure to half of its volume. 2M HCl was added until 
pH 1-2, observing precipitation of a white solid. The solid was isolated by filtration and 
washed with water to give carboxylic acid 14 (m.p. 141.3 – 142.9° C). Yield 92 %. 1H-NMR 
(300 MHz, DMSO-d6): δ  3.70 (s, 3H), 3.71 (s, 3H), 5.43 (s, 2H), 5.72 (s, 2H), 6.72 (dd, J = 
8.2 Hz and J = 1.2 Hz, 1H), 6.89 - 6.91 (m, 2H), 7.30 - 7.47 (m, 5H), 13.69 (broad s, 1H). 
13C-NMR (75 MHz, DMSO-d6): δ  53.5, 55.4, 55.5, 71.0, 111.0, 111.6, 111.8, 120.0, 127.97, 
128.04, 128.1 128.4, 136.5, 148.6, 148.7, 159.2, 160.4. MS (ESI) 370 [M + H]+.  
 
4.1.5. 4-(Benzyloxy)-1-[[4-(trifluoromethoxy)phenyl]methyl]-1H-1,2,3-triazole-5-carboxylic 
acid (15). This product was synthetized following the same procedure of 14, starting from 12. 
White solid (m.p. 179.8 °C - 181.0 °C). Yield 93 %. 1H-NMR (300 MHz, DMSO-d6): δ  5.44 
(s, 2H), 5.84 (s, 2H), 7.28 - 7.48 (m, 9H). 13C-NMR (75 MHz, DMSO-d6): δ  52.9, 71.2, 
111.3, 120.12 (q, J = 256.3 Hz), 121.4 (q, J = 0.9 Hz), 128.1, 128.2, 128.5, 129.5, 135.3, 
136.4, 148.0, 159.1, 160.5. MS (ESI) 416 [M + Na]+. 
 
4.1.6. 4-(Benzyloxy)-1-[(3,4-dimethoxyphenyl)methyl]-N-[3-(trifluoromethyl)phenyl]-1H-
1,2,3-triazole-5-carboxamide (16). Dry DMF (30 µL) and oxalyl chloride (2.40 mmol, 206 
µL) were added to a cooled (0°C) solution of 14 (1.00 mmol, 369 mg) in dry THF (20 mL). 
The reaction was stirred for 3 hours at room temperature under nitrogen atmosphere. The 
solvent was evaporated under reduced pressure and the residue was dissolved in dry THF 
(this process was repeated for three times). The resulting acyl chloride was dissolved in dry 
THF (20 mL) and used without any further purification in the next step. Dry pyridine (242 
µL, 3.00 mmol) and 3-trifluoromethylaniline (177 mg, 1.10 mmol) were added to the 
described solution. The reaction mixture was stirred for 12 hours at room temperature under 
nitrogen atmosphere. 0.5 M HCl (20 mL) was added to the resulting mixture, which was 
concentrated under reduced pressure to half of its volume. The resulting suspension was 
acidified with 0.5 M HCl to pH 2 and extracted with ethyl acetate (3 × 40 mL). The organic 
phases were collected, washed with brine, dried with Na2SO4, and the solvent was 
evaporated. The crude product was purified using flash chromatography (gradient of 
petroleum ether /ethyl acetate 80/20 v/v � 0/100 v/v) to obtain the amide 16 as a white solid 
(150.5 - 151.4 °C). Yield 61%. 1H-NMR (300 MHz, CDCl3): δ 3.84 (s, 3H), 3.86 (s, 3H), 
5.60 (s, 2H), 5.89 (s, 2H), 6.81 (d, J = 8.8 Hz, 1H), 7.04 – 7.12 (m, 2H), 7.35 – 7.62 (m, 8H), 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 

7.70 (s, 1H), 8.75 (s, 1H). 13C-NMR (75 MHz, CDCl3): δ  54.4, 55.98, 56.02, 73.4, 111.1, 
111.9, 112.4, 116.6 (q, J = 4.2 Hz), 121.3 (q, J = 3.4 Hz), 121.6, 122.9 (q, J = 1.3 Hz), 125.6 
(q, J = 250.2 Hz), 127.6, 128.6, 129.1, 129.3, 129.8, 131.4 (q, J = 32.5 Hz), 135.3, 138.0, 
149.0, 149.3, 155.6, 158.6. MS (ESI) 513 [M + H]+. 
 
4.1.7. 4-(Benzyloxy)-1-[[4-(trifluoromethoxy)phenyl]methyl]-N-[3-(trifluoromethyl)phenyl]-
1H-1,2,3-triazole-5-carboxamide (17). This product was synthetized following the same 
procedure of 16, starting from 15. White solid (m.p. 136.5 - 137.1 °C). Yield 69 %. 1H-NMR 
(300 MHz, CDCl3): δ 5.62 (s, 2H), 5.96 (s, 2H), 7.18 (d, J = 8.1 Hz, 2H), 7.31 – 7.66 (m, 
11H), 8.75 (s, 1H).  13C-NMR (75 MHz, CDCl3): δ  53.7, 73.5, 112.5, 116.7 (q, J = 3.9 Hz), 
120.5 (q, J = 257.4 Hz), 121.3 (q, J = 0.9 Hz), 121.4 (q, J = 3.8 Hz), 122.9 (q, J = 1.4 Hz), 
126.9 (q, J = 266.5 Hz) 128.6, 129.1, 129.4, 129.9, 130.3, 131.7 (q, J = 32.7 Hz), 133.7, 
135.2, 137.8, 149.4 (q, J = 1.9 Hz), 155.5, 158.6. MS (ESI) 537 [M + H]+. 
 
4.1.8. 1-[(3,4-Dimethoxyphenyl)methyl]-4-hydroxy-N-[3-(trifluoromethyl)phenyl]-1H-1,2,3-
triazole-5-carboxamide (2). Compound 16 (0.20 mmol, 102 mg) was dissolved in dry THF 
(10 mL) and hydrogenated in presence of Pd/C (5% w/w) for 1 hour at atmospheric pressure. 
The reaction mixture was filtered off through a short layer of celite and the solvent was 
evaporated under reduced pressure yielding the desired compound. White solid (m.p. 215.1 - 
216.8 °C). Yield 90 %. 1H-NMR (300 MHz, DMSO-d6): δ 3.68 (s, 3H), 3.70 (s, 3H), 5.74 (s, 
2H), 6.80 (dd, J = 8.3, 1.8 Hz, 1H), 6.87 – 6.99 (m, 2H), 7.47 (d, J = 7.8 Hz, 1H), 7.59 (t, J = 
7.9 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 8.16 (s, 1H), 9.98 (s, 1H).  13C-NMR (75 MHz, 
DMSO-d6): δ  53.5, 55.3, 55.5, 111.2, 111.7, 111.8, 116.1 (q, J = 4.1 Hz), 120.4, 120.5 (q, J 
= 4.6 Hz), 123.7 (q, J = 1.1 Hz), 124.1 (q, J = 272.4 Hz), 128.0, 129.6 (q, J = 31.6 Hz), 
130.20, 138.8, 148.6, 148.7, 156.7, 158.5. MS (ESI) 445 [M + Na]+. ESI-HRMS (m/z) [M + 
H]+ calcd. for C19H17F3N4O4 423.1275, obsd. 423.1271. IR (KBr) ν (cm-1): 2960, 1691, 1640, 
1519, 1449, 1340, 1120.  
 
4.1.9. 4-Hydroxy-1-[[4-(trifluoromethoxy)phenyl]methyl]-N-[3-(trifluoromethyl)phenyl]-1H-
1,2,3-triazole-5-carboxamide (3). This product was synthetized following the same procedure 
of 2, starting from 17. White solid (m.p. 197.8°C - 198.7 °C). Yield 98 %. 1H-NMR (300 
MHz, DMSO-d6): δ 5.87 (s, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.46 (d, J 
= 7.8 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.82 (d, J = 8.3 Hz, 1H), 8.11 (s, 1H), 9.83 (s, 1H). 
13C-NMR (75 MHz, DMSO-d6): δ  52.8, 11.3, 116.2 (q, J = 4.1 Hz), 120.0 (q, J = 256.5 Hz), 
120.5 (q, J = 3.9 Hz), 121.2 (q, J = 0.8 Hz), 123.8 (q, J = 1.3 Hz), 124.0 (q, J = 272.4 Hz), 
129.5 (q, J = 31.7 Hz), 129.7, 130.0, 135.1, 138.5, 148.0, (q, J = 1.8 Hz), 156.4, 158.2. MS 
(ESI) 447 [M + H]+. ESI-HRMS (m/z) [M + H]+ calcd. for C18H12F6N4O3 447.0886, obsd. 
447.0888. IR (KBr) ν (cm-1): 3113, 3036, 1679, 1635, 1575, 1454, 1336, 1278, 1129. 
 
4.1.10. 2-Bromo-6-fluoro-N-hydroxy-N-[(2,4,6-trimethoxyphenyl)methyl]benzamide (20). 
Dry DMF (30 µL) and 2M oxalyl chloride in DCM (18.3 mmol, 9.13 mL) were added to a 
cooled (0 °C) solution of 2-bromo-6-fluorobenzoic acid (1.60 g, 7.31 mmol) in dry THF (40 
mL). The reaction was stirred for 1 hour at room temperature under nitrogen atmosphere, 
then the solvent was evaporated under reduced pressure and the residue was dissolved in dry 
THF (this process was repeated for three times). The resulting acyl chloride 18 was dissolved 
in dry THF (40 mL) and used without any further purification in the next step. Et3N (3 mL) 
and N-[(2,4,6-trimethoxyphenyl)methyl]hydroxylamine 19 (1.56 g, 7.31 mmol) were added 
to the described solution. The reaction mixture was stirred for 2 hours at room temperature 
under nitrogen atmosphere, then the solvent was evaporated under reduced pressure. The 
resulting crude material was diluted with DCM, washed with water and brine, dried with 
Na2SO4, and the solvent was evaporated. The crude product was purified through flash 
chromatography (gradient of petroleum ether /ethyl acetate from 90/10 v/v to 70/30 v/v) to 
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yield the title compound as a yellow solid (m.p. 164.7 - 165.9 °C). Yield 55 %. 1H-NMR 
(300 MHz, DMSO-d6): δ 3.65 (s, 3H, major rotamer), 3.75 (s, 6H major and 3H minor 
rotamers), 3.78 (s, 6H, minor rotamer), 4.30 (d, J = 13.7 Hz, 2H minor rotamer), 4.54 (d, J = 
13.7 Hz, 2H minor rotamer), 4.75 (d, J = 13.5 Hz, 2H, major rotamer), 4.87 (d, J = 13.5 Hz, 
2H, major rotamer), 6.16 (s, 1H minor rotamer), 6.23 (s, 1H, major rotamer), 7.21– 7.57 (m, 
3H), 9.47 (s, 1H, major rotamer), 9.62 (s, 1H, minor rotamer). MS (ESI) 414 [M + H]+. 
 
4.1.11. 4-Bromo-2-[(2,4,6-trimethoxyphenyl)methyl]-1,2-benzoxazol-3(2H)-one (21). K2CO3 
(0.805 g, 6.28 mmol) was added to a solution of 20 (1.30 g, 3.14 mmol) in DMF (25 mL) and 
the mixture was stirred at 120 °C for 30 minutes. The reaction mixture was cooled to room 
temperature and concentrated under reduced pressure. The resulting solid was partitioned 
between water (50 mL) and diethyl ether (50 mL), the organic layer was separated and the 
aqueous layer was extracted with diethyl ether (2 x 50 mL). The combined organic layer was 
washed with brine, dried over MgSO4 and concentrated under reduced pressure to obtain 21 
as a pale yellow solid (m.p. 127.3 - 130.0 °C). Yield 70 %. 1H-NMR (300 MHz, DMSO-d6): 
δ 3.74 (s, 6H), 3.78 (s, 3H), 5.04 (s, 2H), 6.25 (s, 2H), 7.39-7.57 (m, 3H). 13C-NMR (75 
MHz, DMSO-d6): δ 38.6, 55.3, 55.9, 90.8, 101.8, 109.8, 114.3, 116.9, 127.4, 134.8, 159.5, 
159.8, 160.4, 161.4. MS (ESI) 394 [M + H]+. 
 
4.1.12. General procedure for the preparation of substituted 2-[(2,4,6-
trimethoxyphenyl)methyl]-1,2-benzoxazol-3(2H)-ones 22-25: the appropriate aniline (1 - 1.4 
eq), Cs2CO3 (0.179 g, 5.50 mmol), palladium(II) acetate (0.004 g, 0.019 mmol) and BINAP 
(0.021 g, 0.031mmol) were added to a solution of 21 (0.200 g, 0.507 mmol) in dry toluene 
under inert atmosphere. The reaction mixture was stirred at 110°C for 3-5 hours, then it was 
allowed to reach room temperature and the solvent was evaporated. The residue was 
partitioned between ethyl acetate (30 mL) and HCl 2M (30 mL). The organic layer was 
separated and the aqueous layer was extracted with ethyl acetate (2 x 30 mL). The combined 
organic layer was washed with brine, dried over MgSO4 and concentrated under reduced 
pressure. 
 
4.1.12.1. 4-[3-(Trifluoromethyl)anilino]-2-[(2,4,6-trimethoxyphenyl)methyl]-1,2-benzoxazol-
3(2H)-one (22). 1 Eq of 3-(trifluoromethyl)aniline was used. The crude product was purified 
by flash chromatography (petroleum ether/ethyl acetate 80:20 v/v) to give the title compound 
as a white solid (m.p. 121.3 – 124.5 °C). Yield 73 %. 1H-NMR (300 MHz, DMSO-d6): δ 3.76 
(s, 6H), 3.79 (s, 3H), 5.00 (s, 2H), 6.26 (s, 2H), 6.72 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 8.0 Hz, 
1H), 7.34 (d, J = 7.3 Hz, 1H), 7.44 (t, J = 8.1 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.68 – 7.59 
(m, 2H), 8.62 (s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 38.4, 55.3, 55.9, 90.8, 100.3, 102.1, 
103.2, 106.3, 116.0, 122.3, 123.0, 126.1 (q, J = 272.7 Hz), 130.1 (q, J = 31.1 Hz), 130.4, 
135.2, 141.4, 141.7, 159.6, 160.9, 161.4, 162.6. MS (ESI) 497 [M + Na]+. 
 
4.1.12.2. 4-[3,5-Bis(trifluoromethyl)anilino]-2-[(2,4,6-trimethoxyphenyl)methyl]-1,2-
benzoxazol-3(2H)-one (23). 1 Eq of 3,5-bis(trifluoromethyl)aniline was used. Flash 
chromatography eluent: petroleum ether/ethyl acetate 80:20 v/v. Pale yellow solid (m.p. 
125.5 - 128.0 °C). Yield 41 %. 1H-NMR (300 MHz, DMSO-d6): δ 3.76 (s, 6H), 3.78 (s, 3H), 
5.01 (s, 2H), 6.21 (s, 2H), 6.77 (d, J = 8.3 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 7.47 (s and t, J = 
8.1 Hz, 2H), 7.85 (s, 2H), 8.98 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6 and CDCl3): δ 39.3, 
50.1, 55.6, 90.5, 101.8, 102.0, 104.5, 107.6, 118.1 (q, J = 4.2 Hz), 125.1, 131.4 (q, J = 32.6 
Hz), 134.7 (q, J = 0.9 Hz), 141.8 (q, J = 270.0 Hz), 145.2, 149.9, 159.5, 160.8, 161.4, 161.9. 
MS (ESI) 543 [M + H]+. 
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4.1.12.3. 4-(3-Nitroanilino)-2-[(2,4,6-trimethoxyphenyl)methyl]-1,2-benzoxazol-3(2H)-one 
(24). 1.4 Eq of 3-nitroaniline was used. The crude material was purified by two subsequent 
flash chromatography separations (first eluent: petroleum ether/ethyl acetate from 80:20 to 
60:40 v/v; second eluent: DCM/ethyl acetate 95:5 v/v). Yellow solid (m.p. 122.2 - 125.0 °C). 
Yield 81 %. 1H-NMR (300 MHz, CDCl3): δ 3.83 (s, 3H), 3.84 (s, 6H), 5.18 (s, 2H), 6.15 (s, 
2H), 6.58 (d, J = 8.3 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.3 Hz, 1H), 7.60 – 7.42 
(m, 2H), 7.87 (d, J = 7.5 Hz, 1H), 8.20 (s, 1H), 8.50 (br s, 1H). 13C-NMR (75 MHz, CDCl3): 
δ 38.6, 55.5, 56.1, 90.6, 100.6, 103.0, 103.6, 104.9, 113.8, 117.3, 125.8, 130.3, 134.7, 141.7, 
142.1, 149.2, 160.1, 161.0, 161.8, 169.1. MS (ESI) 474 [M + Na]+. 
 
4.1.12.4. 4-[3-(Pentafluorosulfanyl)anilino]-2-[(2,4,6-trimethoxyphenyl)methyl]-1,2-
benzoxazol-3(2H)-one (25). 1.2 Eq of 3-(pentafluorosulfanyl)aniline was used. Flash 
chromatography eluent: petroleum ether/ethyl acetate 80:20 v/v. Yellow solid (m.p. 123.4-
125.2°C). Yield 79 %. 1H-NMR (300 MHz, CDCl3): δ 3.82 (s, 3H), 3.84 (s, 6H), 5.17 (s, 
2H), 6.15 (s, 2H), 6.53 (d, J = 8.3 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 7.32 (t, J = 8.2 Hz, 1H), 
7.49 – 7.36 (m, 3H), 7.70 (s, 1H), 8.39 (br s, 1H). 13C-NMR (75 MHz, CDCl3): δ 38.6, 55.5, 
56.1, 90.6, 100.1, 103.1, 103.3, 104.3, 118.0 (quint, 2J CF = 5.0 Hz), 120.3 (quint, 3J CF = 4.8 
Hz), 123.3, 129.6, 134.7, 140.4 (quint, 3J CF = 18.5 Hz) 141.1, 142.3, 160.1, 161.1, 161.8, 
163.0. MS (ESI) 533 [M + H]+. 
 
4.1.13. General procedure for the preparation of substituted 1,2-benzoxazol-3-ols 4, 6, 7, 8: 
Triisopropylsilane (0.044 g, 0.276 mmol) and TFA (1.5 mL) were added to a solution of the 
correspondent 2-[(2,4,6-trimethoxyphenyl)methyl]-1,2-benzoxazol-3(2H)-one (22-25, 0.256 
mmol) in DCM (7.5 mL) and the mixture was stirred for 2 h. The reaction mixture was 
quenched with water, the organic layer was separated and the aqueous layer was extracted 
with DCM. The combined organic layer was washed with brine, dried over MgSO4 and 
concentrated under reduced pressure. 
 
4.1.13.1. 4-[3-(Trifluoromethyl)anilino]-1,2-benzoxazol-3-ol (4). White solid (m.p. 148.6 – 
149.2 °C, from hexane). Yield 82 %. 1H-NMR (300 MHz, DMSO-d6): δ 7.06 – 6.84 (t and s, 
2H), 7.25 (d, J = 6.4 Hz, 1H), 7.43 (t, J = 8.1 Hz, 1H), 7.61 – 7.48 (m, 3H), 8.30 (s, 1H), 
12.55 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 102.0, 104.8, 108.1, 114.8 (q, J = 3.2 
Hz), 117.4 (q, J = 3.6 Hz), 121.8, 124.2 (q, J = 272.3 Hz), 130.0 (q, J = 31.4 Hz), 130.3, 
132.5, 138.7, 143.1, 164.8, 165.4. ESI-HRMS (m/z) [M + H]+ calcd. for C14H10F3N2O2 
295.0689, obsd. 295.0685. IR (KBr) ν (cm-1): 3413, 3364, 1656, 1626, 1536, 1333, 1112.  
 
4.1.13.2. 4-[3,5-Bis(trifluoromethyl)anilino]-1,2-benzoxazol-3-ol (6). Pale pink solid (m.p. 
215.3 - 220.1°C, from hexane). Yield 71 %. 1H-NMR (300 MHz, DMSO-d6): δ 7.07 (d, J = 
7.8 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H), 7.47 (s, 1H), 7.51 (t, J = 8.1 Hz, 1H), 7.69 (s, 2H), 8.84 
(s, 1H), 12.52 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 104.1, 106.3, 111.0, 112.48 (q, J 
= 3.7 Hz), 116.51 (q, J = 2.6 Hz), 123.39 (q, J = 273.0 Hz), 131.10 (q, J = 32.5 Hz), 132.4, 
136.7, 145.3, 164.9, 165.0. ESI-HRMS (m/z) [M + H]+ calcd. for C15H9F6N2O2 363.0563, 
obsd. 363.0560. IR (KBr) ν (cm-1): 3413, 3373, 1668, 1618, 1531, 1383, 1284, 1123.  
 
4.1.13.3. 4-(3-Nitroanilino)-1,2-benzoxazol-3-ol (7). Yellow solid (m.p. 216.1 - 221.0 °C, 
from acetonitrile). Yield 50 %. 1H-NMR (300 MHz, DMSO-d6): δ 6.97-7.11 (m, 2H), 7.47 (t, 
J = 8.3 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 
7.99 – 8.01 (m, 1H), 8.56 (s, 1H), 12.55 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 102.9, 
105.5, 109.4, 111.7, 115.1, 123.9, 130.4, 138.0, 144.1, 146.8, 148.6, 164.9, 165.2. ESI-
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HRMS (m/z) [M + H]+ calcd. for C13H10N3O4 272.0666, obsd. 272.0664. IR (KBr) ν (cm-1): 
3390, 3352, 3094, 1660, 1623, 1534, 1349, 1060.  
 
4.1.13.4. 4-[3-(Pentafluoro-sulfanyl)anilino]-1,2-benzoxazol-3-ol (8). White solid (m.p. 
174.3 - 177.6°C, from diisopropyl ether). Yield 44 %. 1H-NMR (300 MHz, DMSO-d6): δ 
6.95 (d, J = 7.8 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 7.56 - 7.32 (m, 4H), 7.71 (s, 1H), 8.42 (s, 
1H), 12.48 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 102.4, 105.1, 108.5, 115.56 (quint, J 
= 5.7 Hz), 117.89 (quint, J = 5.3 Hz), 121.4, 130.0, 132.5, 138.4, 143.4, 153.73 (quint, J = 
14.3 Hz), 164.9, 165.3. ESI-HRMS (m/z) [M + H]+ calcd. for C13H10F5N2O2S 353.0378, 
obsd. 353.0374. IR (KBr) ν (cm-1): 3413, 3364, 2975, 1664, 1623, 1604, 1528, 1364. 
 
4.1.14. Methyl 2-fluoro-5-[3-(trifluoromethyl)anilino]benzoate (27). 3-
(Trifluoromethyl)aniline (0.387 g, 2.40 mmol), Cs2CO3 (0.912 g, 2.80 mmol), palladium(II) 
acetate (22.5 mg, 0.100 mmol) and BINAP (0.100 g, 0.160 mmol) were added to a solution 
of methyl 5-bromo-2-fluorobenzoate 26 (0.466 g, 2.00 mmol) in dry toluene under inert 
atmosphere. The reaction mixture was stirred at 110 °C overnight, then it was allowed to 
reach room temperature and the solvent was evaporated. The residue was partitioned between 
ethyl acetate (100 mL) and 2M HCl (100 mL). The organic layer was separated and the 
aqueous layer was extracted with ethyl acetate (2 x 100 mL). The combined organic layer 
was washed with brine, dried over MgSO4 and concentrated under reduced pressure. The 
crude material was purified through flash chromatography (eluent: petroleum ether / ethyl 
acetate 90:10 v/v) to yield the title compound 27 as a white solid. M.p. 93.7 – 95.2 °C, from 
petroleum ether). Yield 71 %. 1H-NMR (300 MHz, DMSO-d6): δ 3.48 (s, 3H), 7.13 (d, J = 
7.6 Hz, 1H), 7.33 – 7.18 (m, 3H), 7.50 – 7.34 (m, 2H), 7.45 (t, J = 8.0 Hz, 1H), 7.57 (dd, J = 
6.1, 2.9 Hz, 1H), 8.70 (s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 52.4, 111.9 (q, J = 4.0 Hz), 
115.8 (q, J = 4.0 Hz), 118.1 (q, J = 23.7 Hz), 118.5 (q, J = 11.4 Hz), 119.1, 120.2 (q, J = 0.7 
Hz), 124.2 (q, J = 272.3 Hz), 124.4 (q, J = 8.4 Hz), 130.2 (q, J = 31.4 Hz), 130.5, 138.6 (q, J 
= 2.7 Hz), 144.3, 155.6 (q, J = 251.7 Hz), 164.0 (q, J = 3.8 Hz).  
 
4.1.15. Methyl 5-[(tert-butoxycarbonyl)[3-(trifluoromethyl)phenyl]amino]-2-fluorobenzoate 
(28). Di-tert-butyl dicarbonate (0.818 g, 3.75 mmol) and 4-dimethylaminopyridine (0.458 g, 
3.75 mmol) were added to a solution of 27 (0.783, 2.50 mmol) in dry THF (30 mL). The 
reaction mixture was stirred at room temperature for 3 hour, then poured in phosphate buffer 
(pH 5). The resulting solution was extracted twice with diethyl ether and the combined 
organic layer was washed with brine, dried over MgSO4 and concentrated under reduced 
pressure. The crude material was purified through flash chromatography (eluent: petroleum 
ether / ethyl acetate 90:10 v/v) to yield the title compound as a colorless oil. Yield 70%. 1H-
NMR (300 MHz, DMSO-d6): δ 1.38 (s, 9H), 3.84 (s, 3H), 7.43 – 7.33 (m, 1H), 7.54 – 7.44 
(m, 1H), 7.66 – 7.53 (m, 3H), 7.72 (s, 1H), 7.77 (dd, J = 6.4, 2.8 Hz, 1H). 13C-NMR (75 
MHz, DMSO-d6): δ 27.7, 52.6, 81.5, 117.9 (q, J = 23.7 Hz), 118.6 (q, J = 11.7 Hz), 122.6 (q, 
J = 3.9 Hz), 123.7 (q, J = 3.5 Hz), 123.8 (q, J = 272.5 Hz), 129.6 (q, J = 31.9 Hz), 130.2, 
130.4 (q, J = 1.5 Hz), 130.8, 134.3 (q, J = 9.7 Hz), 138.3 (q, J = 3.5 Hz), 143.0, 152.4, 158.8 
(q, J = 257.7 Hz), 163.44 (q, J = 3.8 Hz). MS (ESI) 436 [M + Na]+. 
 
4.1.16. 5-[(Tert-butoxycarbonyl)[3-(trifluoromethyl)phenyl]amino]-2-fluorobenzoic acid 
(29). 0.2 M KOH (20 mL) was added to a solution of 28 (0.700 g, 1.70 mmol) in EtOH (25 
mL), and the reaction mixture was stirred at room temperature overnight. The mixture was 
concentrated to half of its volume and acidified with 2 M HCl until pH 2 was reached. The 
suspension was extracted with DCM (3x30 mL) and the combined organic layer was washed 
with brine, dried over MgSO4 and concentrated under reduced pressure. White solid (m.p. 
156.6 - 157.6° C). Yield 81%. 1H-NMR (300 MHz, DMSO-d6): δ 1.38 (s, 9H), 7.41 – 7.26 
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(m, 1H), 7.67 – 7.41 (m, 4H), 7.80 – 7.65 (m, 2H). 13C-NMR (75 MHz, DMSO-d6): δ 27.8, 
81.5, 117.8 (q, J = 24.6 Hz), 119.8 (q, J = 11.6 Hz), 122.6 (q, J = 4.3 Hz), 123.7 (q, J = 0.7 
Hz), 123.9 (q, J = 272.5 Hz), 129.6 (q, J = 31.9 Hz), 130.2, 130.6 (q, J = 1.8 Hz), 130.8, 
133.8 (q, J = 9.2 Hz), 138.2 (q, J = 3.4 Hz), 143.1, 152.5, 159.0 (q, J = 256.9 Hz), 164.5 (q, J 
= 3.5 Hz). MS (ESI) 422 [M + Na]+. 
 
4.1.17. 2-Fluoro-N-hydroxy-N-[(2,4,6-trimethoxyphenyl)methyl]-5-[(tert-butoxycarbonyl)[3-
(trifluoromethyl)phenyl]amino]benzamide (30). N,N'-Dicyclohexylcarbodiimide (0.310 g, 
1.50 mmol) was added to a solution od 15 (0.600 g, 1.50 mmol) in dry DCM. After 40 
minutes, N-hydroxy-1-(2,4,6-trimethoxyphenyl)methanamine (0.320, 1.50 mmol) and DMAP 
(0.018 g, 0.15 mmol) were added and the reaction mixture was stirred at room temperature 
overnight. The mixture was cooled to 0°C, filtered, and the solid washed with cold DCM. 
The filtrate was evaporated and the resulting crude purified through flash chromatography 
(eluent: DCM / ethyl acetate 90:10 v/v) to obtain a white solid (m.p. 169.6 - 171.5° C). Yield 
54%. 1H-NMR (300 MHz, DMSO-d6): δ 1.37 (s, 9H), 3.58 (s, 3H, major rotamer), 3.69 (s, 
6H, major and 3H minor rotamer), 3.77 (s, 6H, minor rotamer), 4.48 (s, 2H, minor rotamer), 
4.78 (s, 2H, major rotamer), 6.18 - 6.21 (m, 2H), 7.18 – 7.73 (m, 7H), 9.42 (br s, 1H). MS 
(ESI) 595 [M + H]+. 
 
4.1.18. 2-[(2,4,6-Trimethoxyphenyl)methyl]-5-[(tert-butoxycarbonyl)[3-
(trifluoromethyl)phenyl] amino]-1,2-benzoxazol-3(2H)-one (31). K2CO3 (55.3 mg, 0.400 
mmol) was added to a solution of 30 (119 mg, 0.200 mmol) in DMF (7 mL) and the mixture 
was stirred at 120 °C for 45 minutes. The reaction mixture was cooled to r.t. and concentrated 
under reduced pressure, the resulting solid was partitioned between water (30 mL) and 
diethyl ether (30 mL). The organic layer was separated and the aqueous layer was extracted 
with diethyl ether (2 x 30 mL). The combined organic layer was washed with brine, dried 
over MgSO4 and concentrated under reduced pressure. The crude product was purified 
through flash chromatography (eluent: DCM / ethyl acetate 95:5 v/v) to obtain to obtain 31 as 
a pale yellow solid (m.p. 169.0 – 170.3 °C). Yield 83 %. 1H-NMR (300 MHz, DMSO-d6): δ 
1.37 (s, 9H), 3.73 (s, 6H), 3.77 (s, 3H), 5.05 (s, 2H), 6.20 (s, 2H), 7.35 (d, J = 8.9 Hz, 1H), 
7.41 – 7.47 (m, 1H), 7.47 – 7.58 (m, 3H), 7.58 – 7.71 (m, 2H). 13C-NMR (75 MHz, DMSO-
d6): δ 27.7, 48.0, 55.2, 55.7, 81.2, 90.6, 99.0, 101.9, 110.8, 116.6, 121.4 (q, J = 273.4 Hz), 
122.9, 123.8, 129.7 (q, J = 32.3 Hz), 129.8, 133.3, 137.7, 138.2, 143.3, 152.6, 157.3, 159.4, 
160.6, 161.3. MS (ESI) 575 [M + H]+. 
 
4.1.19. 5-[3-(Trifluoromethyl)anilino]-1,2-benzoxazol-3-ol  (5). Triisopropylsilane (26 mg, 
0.162 mmol) and TFA (1.5 mL) were added to a solution of 31 (87 mg, 0.150 mmol) in DCM 
(7.5 mL) and the mixture was stirred for 2 h. The reaction mixture was quenched with water, 
the organic layer was separated and the aqueous layer was extracted twice with DCM. The 
combined organic layer was washed with brine, dried over Na2SO4 and concentrated under 
reduced pressure. Pale pink solid (m.p. 161.1 – 162.7° C, from hexane). Yield 63 %. 1H-
NMR (300 MHz, DMSO-d6): δ 7.08 (d, J = 7.6 Hz, 1H), 7.20 (s, 1H), 7.26 (d, J = 8.2 Hz, 
1H), 7.32 – 7.47 (m, 3H), 7.52 (d, J = 8.9 Hz, 1H), 8.60 (s, 1H), 12.20 (br s, 1H). 13C-NMR 
(75 MHz, DMSO-d6): δ 109.4, 111.1 (q, J = 3.9 Hz), 111.2, 115.1 (q, J = 3.8 Hz), 115.1, 
118.2, 124.4 (q, J = 272.3 Hz), 124.6, 130.2 (q, J = 31.2 Hz), 130.5, 137.7, 145.5, 159.2, 
165.2. MS (ESI) 293 [M - H]-. ESI-HRMS (m/z) [M + H]+ calcd. for C14H10F3N2O2 
295.0689, obsd. 295.0686. IR (KBr) ν (cm-1): 3411, 1611, 1561, 1537, 1463, 1341, 1108.  
 

4.2. Expression and purification of recombinant human AKR1C3 and AKR1C2 

Escherichia coli BL21  (DE) Codon Plus RP cells expressing recombinant AKR1C3 and 
AKR1C2 proteins were obtained as previously described.[22] AKR1C3 showed one mutation 
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His5Gln in comparison to the NCBI sequence, described in the literature as a single 
nucleotide polymorphism very common (refSNP: rs12529). Protein expression and 
purification were performed as previously described.[22] Briefly, bacteria cells were grown 
in YT2X media supplemented with ampicillin at 37°C and at OD600 nm = 0.6 the expression 
was induced by IPTG (0.5 mM) at 24°C for 2 h. Then, bacteria were centrifuge and lysed 
with four freeze-thaw cycles in presence of lysozyme and protease inhibitors. DNA was 
digested with benzonase (25 U) in presence of MgCl2 5 mM. The lysate  was centrifuged for 
30 min at 13,000 x g and the supernatant was collected. AKR1C3 and AKR1C2 were affinity 
purified via N-terminal GST-tag on glutathione (GT) sepharose (GE-Healthcare) and cleaved 
of by thrombin according to the manufacturer’s protocol. Expression and purification was 
monitored by SDS-PAGE.   
 

4.3 In vitro AKR1C3 and AKR1C2 inhibition assays 

The inhibition assays were performed on purified recombinant enzymes as previously 
described.[22] Briefly, the enzymatic reaction was fluorimetrically (exc/em; 340 nm/ 460 
nm) monitored by the measurement of NADPH production on a “Ensight” plate reader 
(Perkin Elmer) at 37°C. Assay mixture contained S-tetralol (in ETOH ), inhibitor (in ETOH), 
100 mM phosphate buffer, pH 7, 200 µM NADP+, and purified recombinant enzyme (30 µl) 
in a final  volume of 200 µl and 10 % ETOH were added in 96-well plate. The S-tetralol 
concentration used in the  AKR1C2 and AKR1C3 inhibition assay were 15 µM and 160 µM, 
respectively, the same as the Km described  for the respective isoforms under the same 
experimental conditions. Percent inhibition with respect to the controls containing the same 
amount of solvent, without inhibitor, was calculated from the initial velocities, obtained by 
linear regression of the progress curve, at different concentrations of inhibitor. The IC50 
values were obtained using PRISM 7.0, GraphPad Software. The values are the means of two 
separate experiments each carried out in triplicate. 
 
4.4 COX1 and COX2 inhibition assays  

References and selected compounds were tested for their ability to inhibit COX1 and COX2 
using a COX (ovine/human) Inhibitor Screening Assay Kit (Cayman Chemical Co., Ann 
Arbor, MI), following manufacturer’s instructions. The assay directly measured PGF2α by 
SnCl2 reduction of COX-derived PGH2 produced in the COX reaction. The prostanoid 
product was quantified via enzyme immunosorbent assay (ELISA); absorbance 
measurements were obtained on a PerkinElmer 2030 Multilabel Reader. IC50 values were 
obtained by linear regression using PRISM 7.0, GraphPad Software. Results were calculated 
as mean value ± standard error (SE) of at least three experiments. 
 
4.5 Tumor cell lines and cell culture 

22RV1 castration-resistant prostate cancer cells were used. Cells were routinely maintained 
as monolayers in RPMI supplemented with 10 % (v/v) fetal calf serum, 2 % (v/v) penicillin-
streptomycin and 0.03% L-glutamine. Cells were grown at 37°C in a humidified atmosphere 
containing 5 % CO2.  
 
4.6 Cell proliferation assay 

Cell growth inhibition was evaluated by sulforhodamine B colorimetric proliferation assay 
(SRB assay) modified by Vichai and Kirtikara, as previously described.[37, 38] 10.000  
cells/well  were seeded into 96-well plates in RPMI containing 10% charcoal stripped serum, 
and incubated for 24 hours. Then, various dilutions of inhibitors in ethanol were added in 
triplicate, and incubated for 72 h. Control cells were incubated with the same final 
concentration of ethanol (maximum concentration 1 % v/v).  For co-treatment experiments, 
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22RV1 cells were treated with ABI (10 µM) or ENZA (20 µM) with or without compounds 3 
and 6 (20 µM) for 72 h.  
The statistical analysis were performed with  PRISM 7.0, GraphPad Software. The values are 
the means of two separate experiments each carried out in triplicate. 
 
4.7. Viability/death cell determination  

22RV1 cell lines cultured as above were trypsinized at 72 h and counted by using the 
NucleoCounter® NC-200™ (ChemoMetech, Allerod,  Denmark) and the propidium iodine 
uptake to distinguish dead (uptake of propidium iodine without lysis of cells) and total cells 
(after lysis). The difference between total and dead cells is the number of live cells.[39] 
 
4.8 Western blot 

Protein extraction from both untreated and treated 22RV1 cells was conducted using a RIPA 
lysis buffer containing the Complete Protease Inhibitor Cocktail (Roche Molecular 
Biochemicals). The protein concentration was determined by use of a Bradford assay. Protein 
samples (20 µg) were denatured by Tris-Glycine SDS Sample Buffer (Biorad), aliquots of 
which were loaded into polyacrylamide gel wells alongside identical volumes of β-actin. 
Polyacrylamide gel electrophoresis (SDS-PAGE) was run at 120V for 2 hours. Proteins were 
transferred to nitrocellulose membrane (GE Healthcare Life Sciences) by electro-blotting at 
300 mA for 3 hours, then blocked using 5% dried milk powder in 0.05% Tris-buffered saline 
(TBS) + Tween 20. The membrane was incubated overnight at 4°C on a shaker with specific 
primary antibody diluted in 5% milk powder 0.05% TBS  + Tween 20. The following 
primary antibodies were used: mouse β-actin (1: 20:000, Sigma-Aldrich), mouse monoclonal 
anti-AKR1C3 (1:333, Sigma Aldrich), goat polyclonal PSA (C-19) (1:500, sc-7638 Santa 
Cruz Biotechnology). The membrane was washed with TBS and incubated with a HRP-
conjugated secondary antibody (Santa-Cruz Biotechnology) diluted 1:5000 in 5% dried milk 
powder with 0.05% TBS  + Tween 20 at room temperature. Ponceau Red Staining (Sigma-
Aldrich) was used to ensure samples were equally loaded in SDS-PAGE. Visualisation was 
achieved using a chemiluminescent substrate (Amersham ECL, GE Healthcare Life Sciences) 
and captured into Kodak film.  
 
4.9 Determination of PSA expression by Elisa 
 
22RV1 cell lines are cultured as above described. Supernatants were collected, centrifuged to 
eliminate cell debris and stored at -80 °C until to use when 100 µl were analyzed by a PSA 
(Total) Human ELISA Kit (Termofisher scientific (Life Technologies Italia, Monza Italy). 
PSA (ng/ml) were normalized for the cell number. The statistical analysis were performed 
with PRISM 7.0, GraphPad Software. Results are representative of one replicated experiment 
performed in triplicate. 
 
4.10 Inhibition of AKR1C3-Mediated production of testosterone in 22RV1 cells 
 
22RV1 cells were seeded into 96-well plates in RPMI media containing 10% charcoal 
stripped serum, at a density of 30,000 cells per well, and were incubated at 37 °C with 5% 
CO2 for 24 h. Compound 3 and Compound 6 were added to the wells at 4 different 
concentrations and incubated for 1 h. Equimolar (28 nM) concentration of androstenedione 
was then added to the wells. The plate was returned to the incubator for a further 24 h. Cell 
supernatant was removed for analysis of testosterone by ELISA following the manufacturer's 
guide (Testosterone ELISA kit was purchased from Cayman Chemical Company). The 
statistical analysis were performed with PRISM 7.0, GraphPad Software. The values are the 
means of two separate experiments each carried out in triplicate. 
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4.10 Protein expression, purification and crystallization  

Plasmid coding for human AKR1C3[22] was modified by removing the thrombin cleavage-
site  and adding the TEV (Tobacco Etch Virus) cleavage-site. The new plasmid construct was 
transformed into E. coli BL21 (DE) Codon Plus RP (Agilent Technologies).  
The cells were grown in LB media supplemented with ampicillin (100 µg/mL) and 
chloramphenicol (34 µg/mL) at 37 °C with continuous shaking at 200 rpm. At OD600nm = 
0.5 the expression was induced by IPTG (0.4 mM) and the temperature was lower to 22 °C 
for overnight. The cell pellet was resuspended in the binding buffer A (10 mM Na2HPO4, 1.8 
mM KH2PO4, 140 mM NaCl, 2.7 mM KCl pH 7.3) supplemented with DNase 1 (0.1 µg per 
gram of wet cells), lysozyme (0.1 mg/ml). The suspension was passed through the emulsiflex 
3 times at 12000 psi at 4 °C. The cell lysate was centrifuged at 40000 x g, 4 °C, 1 hour in 
JA25 rotor. The clarified lysate was loaded on to 5 ml GST TRAP column (GE healthcare) 
prequlibriated with the binding buffer. The loaded column was washed until no more protein 
was eluted. The protein was eluted using the elution buffer 50 mM Tris-HCl pH 8.0, 10 mM 
Glutathione reduced. The eluted fractions were pooled and subjected to overnight TEV 
protease digestion at 4 °C to remove GST tag. TEV protease was used in 1:100 dilution for 
the digestion. Next day, protein solution was loaded on to a 5 ml His TRAP column 
equilibriated with buffer Tris-HCl pH 8.0, NaCl 150 mM, DTT 1mM. The flowthrough 
containing cleaved AKR1C3 protein was collected and concentrated using Vivaspin 10 kDa 
cutoff. For final polishing step, size exclusion chromatography was performed using 
superdex 200 column (GE healthcare). The concentrated protein was applied to s 200 column 
with 10 mM potassium phosphate pH 7, 1 mM EDTA and 1 mM DTT.  Fractions were run 
on the SDS PAGE to check the purity. Pure fractions containing AKR1C3 were pooled and 
concentrated to 75 mg/ml.  
 
Co-crystals of AKR1C3 and inhibitors were obtained using hanging vapour diffusion 
method. Both NADP and inhibitor were added in final concentration of 2 mM to the protein 
solution (25 mg/ml) and incubated overnight at 4 °C. For crystallization, 3 µl the overnight 
incubated protein was mixed with the reservoir solution (100 mM MES pH 6.0, 12-25% PEG 
8000).[40] The crystallization plates were incubated both, at 4 °C and 20 °C. Crystals for 
both the inhibitors appeared in 100 mM MES pH 6.0, 25% PEG 8000. Crystals for compound 
1 appeared at 20 °C while that of 6 formed at 4 °C.  The crystals were cryoprotected using 
20% ethylene glycol in mother liquor prior to cryo-cooling. 
 
4.11 X-ray data collection, structure determination and refinement 
 
X-ray diffraction data of compound 6 was collected at ID23-1 while for compound 1 was 
collected at ID30A-3 beamlines of ESRF. X-ray diffraction spots were processed using XDS, 
pointless and Scala.[41] PDB id1ry09[40] was used as the molecular replacement template 
for the structure determination using Phaser of PHENIX suite.[42] Both structures were 
refined using PHENIX. Data collection and refinement statistics are summarised in Table 
S16. 
 
4.12 Docking 
 
The structures of compounds 1 were built in their dissociated forms using the 2D Sketcher 
tool implemented in Maestro GUI. Ligand docking was performed using Schrödinger GLIDE 
extra precision (XP) protocol.[43] or this purpose, the X-ray crystallographic structure of 
AKR1C2 was retrieved from RCSB Database (PDB code: 4JQA). Before docking, the crystal 
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structure of the protein underwent an optimization process using the Protein Preparation 
Wizard tool, implemented in Maestro™ GUI. Missing hydrogen atoms were added and bond 
orders were assigned. Then, DMS, non-structural water molecules and impurities (such as 
solvent molecules) were removed. Reorienting automatically optimized the hydrogen bond 
network: hydroxyl and thiol groups, amide groups of asparagine (Asn) and glutamine (Gln), 
and the imidazole ring in histidine (His). Moreover, the protonation states prediction of His—
aspartic acid (Asp), glutamic acid (Glu), and tautomeric states of His—were accomplished 
using PROPKA.™ A grid of 10 Å x 10 Å x 10 Å (x, y, and z) was created and centred on the 
co-crystalized ligand mefenamic acid.  
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1) New AKR1C3 inhibitors were obtained using hydroxybenzoisoxazoles scaffolds. 
2) X-ray was used for experimentally identify the binding mode in the AKR1C3 active site. 
3) Seven compounds were assayed for AKR1C3 selectivity and cell-based activities. 
4) Cpd 6 was found more then 460 time more selective on C3 compared to C2 AKR1 isoform 
 


