Bridging Vinylidene Complexes of RhMn and Evidence for Migratory Insertions To Give Terminal Vinyl Groups

Li-Sheng Wang and Martin Cowie*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received November 23, 1994[®]

The reaction of the heterobinuclear complex $[RhMn(CO)_4(dppm)_2]$ (1) $(dppm = Ph_2PCH_2)$ PPh₂) with 3-butyn-2-one at -40 °C yields the alkyne-bridged product [RhMn(CO)₄(μ -HC₂C- $(O)Me(dppm)_2$ (3), which undergoes a 1,2-hydrogen shift, yielding two isomers of the vinylidene-bridged species $[RhMn(CO)_4(\mu-CC(H)C(O)Me)(dppm)_2]$ (4) as the temperature is raised. Compound 4 undergoes facile CO loss to give $[RhMn(CO)_3(\mu-\eta^1:\eta^2-CC(H)C(O)Me) (dppm)_2$ (5) in which the ketonic moiety of the bridging vinylidene group coordinates to Mn, filling the open coordination site left vacant by the departing CO. Protonation of the alkyne- or vinylidene-bridged species 3-5 yields a series of vinyl complexes. Addition of methyl triflate to 4 and 5 yields the respective methyl-substituted vinyl complexes, analogous to the protonation products. In the alkylation of 5 at low temperature an intermediate, $[RhMn(CH_3)(CO)_3(\mu-\eta^1:\eta^2-CC(H)C(O)Me)(dppm)_2][SO_3CF_3]$ (12), having a vinylidene bridge and a methyl group terminally bound to Rh, is obtained. The rearrangement of 12 to a vinyl complex upon warming presents evidence for a migratory insertion involving these groups. The structure of 5 was determined by X-ray crystallography. This compound crystallizes in the monoclinic space group $P2_1/n$ (nonstandard setting of $P2_1/c$ [No. 14]) with a = 14.489(1) Å, b = 15.754(2) Å, c = 24.104(2) Å, $\beta = 91.41(1)$ Å, V = 5500(1) Å³, and Z = 14.489(1) Å, b = 15.754(2) Å, c = 24.104(2) Å, $\beta = 91.41(1)$ Å, V = 5500(1) Å³, and Z = 14.489(1) Å 4. On the basis of 3980 observations the structure has refined to R = 0.058 and $R_w = 0.063$.

Introduction

The coordination and activation of alkynes at two metal centers and subsequent transformations involving these substrates have attracted considerable attention.¹ Our recent interest in such chemistry has been aimed at transformations in which vinyl²⁻⁵ and vinylidene ligands⁶⁻⁸ are generated. Vinyl complexes can be prepared from the insertion of alkynes into metalhydrogen bonds, a fundamental process in organometallic chemistry,⁹ or they can be generated from the related vinylidene complexes (vide infra).¹⁰ Recent interest in vinyl complexes stems from a proposal suggesting the intermediacy of surface-vinyl species in Fischer-Tropsch chemistry.¹¹ Vinylidene complexes can be prepared from 1-alkynes via a 1,2-hydrogen shift

^{*} Abstract published in Advance ACS Abstracts, March 15, 1995.
(1) See, for example: (a) Hoffman, D. M.; Hoffmann, R.; Fisel, C. R. J. Am. Chem. Soc. 1982, 104, 3858 and references therein. (b) Dickson, R. S.; Gatehouse, B. M.; Nesbit, M. C.; Pain, G. N. J. Organomet. Chem. 1981, 215, 97. (c) Johnson, K. A.; Gladfelter, W. L. Organometallics 1992, 11, 2534. (d) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, C. F. J. Chem. Soc. 1982, Taylor, 1987. (a) Knox, S. A. R. J. G. E. J. Chem. Soc., Dalton Trans. 1982, 1297. (e) Knox, S. A. R. J. Organomet. Chem. 1990, 400, 255. (f) Knox, S. A. R. Pure Appl. Chem. 1984, 56, 81. (g) Casey, C. P.; Meszaros, M. W.; Fagan, P. J.; Bly, R. K.; Marder, S. R.; Austin, E. A. J. Am. Chem. Soc. 1986, 108, 4043. (h) Casey, C. P.; Fagan, P. J. J. Am. Chem. Soc. 1982, 104, 4950. (i)
 Casey, C. P.; Audett, J. D. Chem. Rev. 1986, 86, 339 and references
 therein. (j) Takats, J. J. Cluster Sci. 1992, 3, 479. (k) Dickson, R. S. Polyhedron 1991, 10, 1995.

 (2) Vaartstra, B. A.; Cowie, M. Organometallics 1990, 9, 1594.
 (3) Jenkins, J. A.; Cowie, M. Organometallics 1992, 11, 2767 and references therein.

- (4) Sterenberg, B. T.; Hilts, R. W.; Moro, G.; McDonald, R.; Cowie, M. J. Am. Chem. Soc. 1995, 117, 245.
 - (5) Wang, L. S.; Cowie, M. Can. J. Chem., in press.
 - (6) Xiao, J.; Cowie, M. Organometallics 1993, 12, 463
 - (7) Antwi-Nsiah, F.; Cowie, M. Manuscript in preparation.
 - (8) Wang, L. S.; Cowie, M. Organometallics, in press.
- (9) (a) Otsuka, S.; Nakamura, A. Adv. Organomet. Chem. 1976, 14, 245. (b) Nakamura, A.; Otsuka, S. J. Mol. Catal. 1975/76, 1, 285.
 (10) Bruce, M. I. Chem. Rev. 1991, 91, 197.

occurring at the metals.^{10,12} It has been suggested that, like vinyl groups, the vinylidene units may also play a key role in Fischer-Tropsch chemistry,¹³ as well as in alkyne polymerization¹⁴ and in C-C bond formation in the condensation of alkynes with a number of substrates.¹⁵⁻²³

The similarity of the vinylidene unit to the isoelectronic carbonyl ligand has been noted,¹² and evidence suggests that a vinylidene group can be an even better π acceptor than CO.¹⁵ Like the CO ligand, the vinylidene group can function as a terminal group bound to one metal or can bridge two or more metals.¹⁰ Furthermore, like CO, the vinylidene bridge can be symmetric¹⁰ or side-on-bound, 24,25 in which case it is σ -bound to one metal and π -bound to another.

In spite of the carbonyl-vinylidene analogy and the suggested role of vinylidene units in C-C bond-forming

- (11) Maitlis, P. M. Pure Appl. Chem. 1989, 61, 1747.
 (12) Werner, H. Angew. Chem., Int. Ed. Engl. 1990, 29, 1077.
 (13) McCandlish, L. E. J. Catal. 1983, 83, 362.
 (14) Alta, H. G.; Engelhardt, H. E.; Rausch, M. D.; Kool, L. B. J. Organomet. Chem. 1987, 329, 61.
- (15) Kolobova, N. E.; Antonova, A. B.; Khitrova, O. M.; Antipin, M.
 Yu.; Struchkov, Yu. T. J. Organomet. Chem. 1977, 137, 69.
 (16) Moran, G.; Green, M.; Orpen, A. G. J. Organomet. Chem. 1983,
- 250, C15.
- (17) Casey, C. P.; Miles, W. H.; Fagan, P. J.; Haller, K. J. Organometallics 1985, 4, 559
- (18) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J. Am. Chem. Soc. 1985, 107, 6739.
- (19) Berry, D. H.; Eisenberg, R. Organometallics 1987, 6, 1796. (20) Gamble, A. S.; Birdwhistell, K. R.; Templeton, J. L. Organo-metallics 1988, 7, 1046.
- (21) Etienne, M.; Guerchais, J. E. J. Chem. Soc., Dalton Trans. 1989, 2187.
- (22) Trost, B. M.; Dyker, G.; Kulawiec, R. J. J. Am. Chem. Soc. 1990, 112.7809.

(23) Selnau, H. E.; Merola, J. S. J. Am. Chem. Soc. 1991, 113, 4008. (24) Doherty, N. M.; Elschenbroich, C.; Kneuper, H.-J.; Knox, S. A.

R. J. Chem. Soc., Chem. Commun. 1985, 170. (25) Mercer, R. J.; Green, M.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1986, 567

© 1995 American Chemical Society

reactions, the migratory insertion of a hydrocarbyl ligand and vinylidene unit had until recently^{26,27} not been clearly demonstrated, although evidence for these insertions had been obtained.²⁸⁻³⁰ In fact, it has been noted²⁶ that complexes containing both a hydrocarbyl and a vinylidene unit are conspicuously lacking. This is surprising when it is recalled that migratory insertions involving CO and other unsaturated substrates are well documented and occupy a position of fundamental importance in the formation of C-C bonds.³¹ Although little is known about the migratory-insertion reactions involving terminal vinylidenes, even less is known about the less studied bridging vinylidene unit.

Among the reactions typical of vinylidenes are nucleophilic attack at the α -carbon or electrophilic attack at the β -carbon.³² While protonation usually occurs at the β -carbon, generating a carbyne moiety,¹⁰ metal basicity can dominate in square-planar iridium(I) complexes to give hydrido-vinylidene complexes via protonation at the metal.^{29,33} On the assumption that binuclear complexes containing a bridging vinylidene adjacent to a Rh(I) center could also have Rh as the most basic site, we have investigated the protonation and alkylation (using CH_3^+) reactions of such species in hopes of obtaining hydrido-vinylidene and alkylvinylidene complexes, which could be induced to undergo migratory insertions yielding vinyl complexes. The results of this study are reported herein.

Experimental Section

General Procedures. Purified argon and carbon monoxide were obtained from Linde. The 99% carbon-13-enriched carbon monoxide was purchased from Isotec Inc. All gases were used as received. Diethyl ether, hexane, and tetrahydrofuran were dried over Na/benzophenone ketyl, and methylene chloride was dried over P2O5. All solvents were distilled under argon before use. The perdeuterated methylene chloride was dried over molecular sieves and deoxygenated by repeated freeze-pump-thaw cycles. The compounds tetrafluoroboric acid-diethyl etherate, triflic acid, trifluoroacetic acid, 3-butyn-2-one, and methyl triflate were used as received from Aldrich. Hydrated rhodium trichloride was received from Johnson Matthey, and Mn₂(CO)₁₀ from Strem Chemicals Inc. Compounds $[RhMn(CO)_4(dppm)_2]$ (1)³⁴ and $[RhMn(CO)_4(\mu-H) (dppm)_2$][BF₄] (2)³⁵ (dppm = Ph₂PCH₂PPh₂) were prepared by the reported procedures. Reactions were routinely carried out under Schlenk conditions.

All routine NMR experiments were conducted on a Bruker AM-400 spectrometer, whereas the ¹³C{³¹P} NMR experiments were run on a Bruker AM-200 spectrometer. For all NMR experiments CD_2Cl_2 (except ²H experiments for which CH_2 -Cl₂ was used) was used as solvent. IR spectra were recorded

on either a Nicolet 7199 Fourier transform interferometer or a Perkin-Elmer 883 spectrophotometer as solids (Nujol mull or CH₂Cl₂ cast) or CH₂Cl₂ solutions. Elemental analyses were performed by the microanalytical service within the department. The spectral data for all compounds are given in Tables 1 and 2. All compounds were moderately air sensitive in solution and so were routinely handled under dinitrogen or argon.

Preparation of Compounds. (a) $[RhMn(CO)_4(\mu -$ HC=CC(O)Me)(dppm)₂] (3). At -78 °C 10 µL of 3-butyn-2-one (128 μ mol) was added to a CD₂Cl₂ solution of [RhMn- $(CO)_4(dppm)_2$] (1) (10 mg, 10 μ mol in 0.5 mL) in an NMR tube. The compound was characterized by NMR experiments at -40°C.

(b) $[RhMn(CO)_3(\mu-C=CHC(O)Me)(\mu-CO)(dppm)_2]$ (4a) and 4b). To a CH_2Cl_2 solution of compound 1 (50 mg, 48 μ mol in 5 mL) was added 8 μ L of 3-butyn-2-one (102 μ mol). The solution was stirred under CO for 1 h, causing the color to change from light yellow to red. The solvent was reduced under a rapid flow of CO. The residue was recrystallized from CH_2Cl_2/Et_2O under a CO atmosphere and washed with 5 mL of Et_2O , yielding a red solid (86%). Anal. Calcd for RhMnP₄C₅₈O₅H₄₈: C, 62.93; H, 4.34. Found: C, 62.02; H, 4.61.

(c) [RhMn(CO)₃(μ - η^{1} : η^{2} -C=CHC(O)Me)(dppm)₂] (5). To a suspension of compound 1 (50 mg, 48 μ mol in 5 mL of THF) was added 8 μ L of 3-butyn-2-one (102 μ mol), and the mixture was refluxed for 1 h. Removal of the solvent in vacuo and recrystallization from THF/hexane gave a red-brown crystalline solid (yield 90%). Anal. Calcd for RhMnP₄C₅₇O₄H₄₈: C, 63.45; H, 4.45. Found: C, 63.46; H, 4.64.

(d) [RhMn(trans-CH=CHC(O)Me)(CO)₂(µ-CO)₂(dppm)₂]- $[SO_3CF_3]$ (6a). To a CH₂Cl₂ solution of isomers 4a and 4b (50 mg, 45 μ mol in 5 mL under CO) was added 4.0 μ L of CF₃- SO_3H (1 equiv) followed by stirring for 0.5 h. The color changed from red to light yellow. Removal of the solvent and recrystallization from CH_2Cl_2/Et_2O gave a yellow solid (70%). Satisfactory elemental analyses could not be obtained owing to sample decomposition.

(e) $[RhMn(trans-CH=CHC(O)Me)(CO)_2(\mu-CO)_2(dppm)_2]$ - $[\mathbf{BF}_4]$ (6b). To a CH_2Cl_2 solution of isomers 4a and 4b (50 mg, 45 μmol in 5 mL under CO) was added 7.8 μL of HBF4 Et_2O (85%, 1 equiv). The color changed from red to light yellow immediately. The solution was stirred for 0.5 h, followed by removal of the solvent and recrystallization from CH₂Cl₂/Et₂O to give a yellow solid (74%).

(f) $[RhMn(CO)_3(\mu$ -CCH=C(OH)Me)(μ -CO)(dppm)₂][BF₄] (7). To a CD_2Cl_2 solution of compound 1 (15 mg, 15 μ mol in 0.5 mL in an NMR tube) under CO (10 psi) was added 3 μ L of 3-butyn-2-one (38 μ mol). The color changed from light yellow to red. The NMR tube was left for 3 h; then to this solution was added 3 μ L of HBF₄·Me₂O (25 μ mol) at -78 °C. The compound was characterized by variable-temperature NMR experiments.

(g) [RhMn(cis-CH=CHC(O)Me)(CO)₂(μ -CO)₂(dppm)₂]-[SO₃CF₃] (8a). A 50 mg amount of [RhMn(η^2 -CHCHC(O)Me)- $(CO)_2(\mu$ -CO)(dppm)_2][SO_3CF_3] (9a) (41 μ mol) was dissolved in 5 mL of CH_2Cl_2 and stirred overnight under CO (10 psi). Removal of the solvent and recrystallization from CH2Cl2/Et2O gave an orange solid (86%). Satisfactory elemental analyses could not be obtained owing to sample decomposition.

(h) $[RhMn(cis-CD=CHC(O)Me)(CO)_2(\mu-CO)_2(dppm)_2]$ - $[CO_2CF_3]$ (8b). To a CD₂Cl₂ solution of compound 5 (10 mg, 9 μ mol in 0.5 mL) in an NMR tube was added 4 μ L of CF₃- CO_2D (52 μ mol). The color changed from deep red-orange to orange immediately. The solution was put under CO (10 psi) for 12 h, followed by characterization by NMR.

(i) $[RhMn(cis-CH=CDC(O)Me)(CO)_2(\mu-CO)_2(dppm)_2]$ - $[CO_2CF_3]$ (8c). To a CD_2Cl_2 solution of compound 1 (15 mg, 15 μ mol in 0.5 mL) in an NMR tube was added 50 μ L of 3-butyn-2-one (639 μ mol, excess) at -78 °C. After 1 h, a yellow suspension appeared. The ${}^{31}P$ NMR spectrum was run at -40°C and showed the presence of only compound 3. A 15 μ L

⁽²⁶⁾ Fryzuk, M. D.; Huang, L.; McManus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. Organometallics 1992, 11, 2979.

⁽²⁷⁾ Wiechemann, R.; Steinert, P.; Schäfer, M.; Werner, H. J. Am. Chem. Soc. 1993, 115, 9864.

⁽²⁸⁾ Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1985, 68.
 (29) Höhn, A.; Werner, H. J. Organomet. Chem. 1990, 382, 255.

 ⁽³⁰⁾ Proulx, G.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 9802.
 (31) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. (d) John M., J. High M., Comparison of Cognotransition Metal Chemistry;
University Science Books: Mill Valley, CA, 1987.
(32) Kostic, N. M.; Fenske, R. F. Organometallics 1982, 1, 974.
(33) Höhn, A.; Werner, H. Angew. Chem., Int. Ed. Engl. 1986, 8,

^{737.}

⁽³⁴⁾ Antonelli, D. M.; Cowie, M. Organometallics 1990, 9, 1818. (35) Wang, L.-S.; McDonald, R.; Cowie, M. Inorg. Chem. 1994, 33, 3735.

			NMR ^a	
compd	IR, cm ^{-1 a}	$\delta ({}^{31}P{}^{1}H)$	δ (¹ H)	δ (¹³ C)
RhMn(CO) ₄ (µ-HC=CC(O)Me)- (dppm) ₂ (3)		56.7 (m), ^e 15.7 (dm, ${}^{1}J_{RhP} = 157 \text{ Hz}$)	9.99 (b, 1H, HC=C), e 3.87 (b, 2H, PCH ₂ P), 2.85 (b, 2H, PCH ₂ P), 0.55 (c, 2H, PCH ₂ P),	228.3 (b, 1CO), 221.3 (b, 1CO), 220.5 (b, 1CO), 195.6 (dt, ${}^{1}J_{RbC} = 58$ Hz, ${}^{2}J_{P(Rh)C} = 12$ Hz, 1CO)
RhMn(CO) ₃ (μ-CCHC(O)Me)- (μ-CO)(dppm) ₂ (4a)		67.7 (m), ε 35.2 (dm, ¹ J _{RhP} = 170 Hz)	0.59 (s, 3H, CH ₃) 6.59 (t, 1H _{β} , ⁴ J _{P(Rb,CCH} = 12 HZ), ^{<i>e</i>} 2.98 (m, 2H, PCH ₂ P), 2.19 (m, 2H, PCH ₂ P), 1.55 (s, 3H, CH ₃)	244.9 (dt, ${}^{1}J_{RhC} = 15$ Hz, ${}^{2}J_{P(Mn)C} = 21$ Hz, 1CO), ϵ 229.5 (t, ${}^{2}J_{P(Mn)C} = 13$ Hz, 1CO), 223.4 (t, ${}^{2}J_{P(Mn)C} = 18$ Hz, 1CO), 206.2 (dt, ${}^{1}J_{RhC} = 59$ Hz, ${}^{2}J_{P(Mn)C} = 20$ Hz, 1CO)
RhMn(CO) ₃ (μ-CCHC(O)Me)- (μ-CO)(dppm) ₂ (4b)	1964 (w), ^d 1907 (st), 1857 (vs), 1788 (m), 1597 (st); 2002 (sh), ^c 1946 (vs), 1887 (st), 1801 (m), 1600 (w)	64.1 (m), ^d 23.1 (dm, ¹ J _{RhP} = 163 Hz)	8.09 (t, 1H _{β} , ⁴ J _{P(Rh)CCH} = 7 H ₂), ^d 3.28 (m, 2H, PCH ₂ P), 2.46 (m, 2H, PCH ₂ P), 0.62 (s, 3H, CH ₃)	242.0 (dt, ${}^{1}J_{RhC} = 10$ Hz, ${}^{2}J_{P(Ma)C} = 18$ Hz, 1CO), ^d 226.6 (t, ${}^{2}J_{P(Mn)C} =$ 17 Hz, 1CO), 223.8 (t, ${}^{2}J_{R(Mn)C} = 20$ Hz, 1CO), 207.6 (dt, ${}^{1}J_{RhC} = 56$ Hz, ${}^{2}J_{P(Rh)C} = 20$ Hz, 1CO), 193.8 (s, 1C, C(O)CH ₃), 146.8 (s, 1C ₀), 137.4 (dtt, ${}^{1}J_{RhC} = 4$ Hz, ${}^{2}J_{P(M)C} = 19$ Hz, ${}^{2}J_{P(M)C} =$ 4 Hz, 1C ₀), 22.0 (c, 1C, CH)
RhMn(CO) ₃ (μ-η ¹ :η ² -CCHC(O)Me)- (dppm) ₂ (5)	1937 (st), ^b 1876 (vs), 1790 (m); 1942 (st), ^c 1893 (vs), 1808 (m)	73.1 (m), ^d 29.6 (dm, ¹ J _{RhP} = 175 Hz)	3.08 (m, 2H, PCH ₂ P), ^d 2.68 (m, 2H, PCH ₂ P), 0.99 (t, 3H, CH ₃ , ⁵ J _{P(Mn)OCCH} = 2 Hz)	230.1 (r, ${}^{2}J_{P(Mn)C} = 14$ Hz, 1CO), ^d 228.7 (r, ${}^{2}J_{P(Mn)C} = 20$ Hz, 1CO), 206.2 (dt, ${}^{1}J_{RhC} = 57$ Hz, ${}^{2}J_{P(Rn)C} = 15$ Hz, 1CO), 190.8 (s, 1C, C(O)CH ₃), 140.1 (s, 1C _{\u03c6}), 138.3 (tt, ${}^{2}J_{P(Mn)C} = 14.4$ Hz, ${}^{2}J_{P(Rn)C} = 4$ Hz, 1C _{\u03c6}), 23.8 (s, 1C, CH ₃)
[RhMn(<i>trans</i> -CH=CHC(O)Me)(CO) ₂ - (μ-CO) ₂ (dppm) ₂][SO ₃ CF ₃] (6a)	2036 (st), ^b 1974 (vs), 1845 (w), 1815 (st), 1654 (m); 2026 (vs), ^c 1984 (st), 1838 (sh), 1809 (st), 1654 (m)	58.8 (m), ^d 24.3 (dm, ¹ J _{RhP} = 134 Hz)	7.99 (dt, $1H_{\alpha}$, ${}^{3}J_{HCCH} = 17 \text{ Hz}$, ${}^{3}J_{P(Rh)CH} = 7 \text{ Hz}$), 4 5.32 (d, $1H_{\beta}$, ${}^{3}J_{HCCH} = 17 \text{ Hz}$), 3.16 (m, 4H, PCH ₂ P), 1.05 (s. 3H CH ₂)	244.1 (dt, ${}^{1}J_{\text{RbC}} = 22$ Hz, ${}^{2}J_{\text{P(Mn)C}} = 11$ Hz, 2CO), ^d 217.4 (t, ${}^{2}J_{\text{P(Mn)C}} =$ 17 Hz, 2CO)
[RhMn(<i>trans</i> -CH=CHC(O)Me)(CO) ₂ - (μ-CO) ₂ (dppm) ₂][BF ₄] (6 b)	2026 (vs), ^c 1982 (st), 1830 (sh), 1807 (st) 1652 (m)	58.8 (m), ^d 24.3 (dm, ¹ J _{RhP} = 134 Hz)		244.1 (dt, ${}^{1}J_{RhP} = 21$ Hz, ${}^{2}J_{P(Mn)C} = 12$ Hz, 2CO), 217.4 (t, ${}^{2}J_{P(Mn)C} =$ 16 Hz, 2CO)
[RhMn(CO) ₃ (μ-CCHC(OH)Me)- (μ-CO)(dppm) ₂][BF ₄] (7)		61.3 (m), ^h 23.6 (m)	9.30 (b, 1H, OH), $(2, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	236.0 (dt, ${}^{1}J_{RhC} = 20$ Hz, ${}^{2}J_{P(Mn)C} = 16$ Hz, 1CO), ^h 227.4 (t, ${}^{2}J_{P(Mn)C} = 18$ Hz, 1CO) 220.9 (t, ${}^{2}J_{P(Mn)C} = 20$ Hz, 1CO), 206.8 (dt, ${}^{1}J_{RhC} = 56$ Hz, 2.1 - 100 - 10
[RhMn(<i>cis</i> -CH=CHC(O)Me)(CO) ₂ - (μ-CO) ₂ (dppm) ₂][SO ₃ CF ₃] (8a)	2015 (st), ^b 1972 (st), 1857 (m), 1751 (m), 1617 (w); 2014 (vs), ^c 1966 (st), 1859 (st), 1736 (st), 1613 (w)	58.0 (m), ^d 25.3 (dm, ¹ J _{RhP} = 124 Hz)	9.20 (ddt, 1H _a , ${}^{3}J_{HCCH} = 7.5$ Hz, ${}^{2}J_{RhCH} = 5$ Hz, ${}^{3}J_{P(Rh)CH} = 6$ Hz), ^d 6.42 (dd, 1H _β , ${}^{3}J_{HCCH} = 7.5$ Hz, ${}^{3}J_{RhCCC} = 2.5$ Hz), 3.34 (m, 2H, PCH ₂ P), 3.15 (m, 2H, PCH ₂ P), ${}^{1}Q_{2}$ (c, 2H) M(c)	² $P_{P(Mn)C} = 19$ Hz, 1CO) 259.8 (dqui, ${}^{J}_{RhC} = 41$ Hz, ${}^{2}_{JP(Rh)C} = {}^{2}_{JP(Mn)C} = 9$ Hz, 1CO), 231.9 (dt, ${}^{1}_{JRhC} = 12$ Hz, ${}^{2}_{JP(Mn)C} = 13$ Hz, 1CO), 219.7 (t, ${}^{2}_{JP(Mn)C} = 22$ Hz, 1CO), 218.0 (t, ${}^{2}_{JP(Mn)C} = 15$ Hz, 1CO)
[RhMn(cis-CD=CHC(O)Me)(CO) ₂ - (µ-CO) ₂ (dppm) ₂][CO ₂ CF ₃] (8b)		57.6 (m), ^d 25.1 (dm, ${}^{1}J_{RhP} = 126 \text{ Hz}$)	1.03 (S, 5H, Me) 6.42 (d, 1H _β , ³ J _{RhCCH} = 2.5 Hz), ^d 3.35 (m, 2H, PCH ₂ P), 3.13 (m, 2H, PCH ₂ P), 1.03 (c, 3H, CH.)	
[RhMn(cis-CH=CDC(O)Me)(CO) ₂ - (μ-CO) ₂ (dppm) ₂][CO ₂ CF ₃] (8c)		57.8 (m), ^{<i>d</i>} 25.2 (dm, ${}^{1}J_{RhP} = 126 \text{ Hz}$)	1.05 (s, 5h, CH ₃) 9.20 (m, 1H _{α}), ^{<i>d</i>} 3.35 (m, 2H, PCH ₂ P), 3.13 (m, 2H, PCH ₂ P), 1.04 (s, 3H, CH ₂)	
$[RhMn(\eta^{2}\text{-}CH=CHC(O)Me)(CO)_{3} + (dppm)_{2}][SO_{3}CF_{3}] (9a)$	1981 (vs), ^b 1934 (st), 1820 (st); 1987 (st), ^c 1939 (st), 1818 (m)	67.1 (m), ^d 25.7 (dm, ¹ J _{RhP} = 107 Hz)	8.04 (dt, ${}^{3}J_{\text{PCM}} = 10 \text{ Hz},$ ${}^{3}J_{\text{P(Mn)CH}} = 2.5 \text{ Hz},$ ${}^{1}H_{\beta}{},{}^{2}.324 \text{ (m, 2H, }$ ${}^{\text{PCH}_{2}\text{P}}$), 2.94 (m, 2H, ${}^{\text{PCH}_{2}\text{P}}$), 0.98 (t, 3H, CH ₃ , ${}^{5}J_{\text{P(Mn)OCCH}} = 3 \text{ Hz}$	228.8 (t, ${}^{2}J_{P(Mn)C} = 23$ Hz, 1CO), ⁴ 225.0 (t, ${}^{2}J_{P(Mn)C} = 17$ Hz, 1CO), 186.7 (dt, ${}^{1}J_{RhC} = 80$ Hz, ${}^{2}J_{P(Rh)C} = 18$ Hz, 1CO)

Table 1 (Continued)

			NMR ^a	
compd	$\mathbf{IR}, \mathbf{cm}^{-1} a$	$\delta ({}^{31}P{}^{1}H{})$	δ (¹ H)	δ (¹³ C) *
$[RhMn(\eta^{2}-CD=CHC(O)Me)(CO)_{3}-(dppm)_{2}][CO_{2}CF_{3}] (9b)$		67.0 (m,), ^d 25.6 (dm, ${}^{1}J_{RhP} = 107 \text{ Hz}$)	7.91 (t, ${}^{3}J_{P(Mn)CH} = 2.5 \text{ Hz},$ ${}^{1H_{\beta}},{}^{d}$ 3.24 (m, 2H, PCH ₂ P), 2.83 (m, 2H, PCH ₂ P), 0.92 (t, ${}^{5}J_{P(Mn)OCCH} =$ 3 Hz, 3H, CH ₃)	
[RhMn(CH ₂ =CC(O)Me)(CO) ₂ (µ-CO) ₂ - (dppm) ₂][SO ₃ CF ₃] (10)		57.7 (m), ^{<i>d</i>} 22.4 (dm, ${}^{1}J_{RhP} = 134 \text{ Hz}$)	5.89 (dt, ${}^{3}J_{\text{PRhCCH}} = 3$ Hz, ${}^{4}J_{\text{PRhCCH}} = 2$ Hz, 1H, CH ₂ =C), d 5.42 (t, ${}^{4}J_{\text{PRhCCH}} = 2$ Hz, 1H, CH ₂ =C), 3.22 (m, 2H, PCH ₂ P), 3.10 (m, 2H, PCH ₂ P), 1.20 (s, 3H, CH ₃)	249.7 (dm, ${}^{1}J_{RhC} = 32$ Hz, 1CO), ^d 237.8 (dt, ${}^{1}J_{RhC} = 13$ Hz, ${}^{2}J_{P(Mn)C} = 15$ Hz, 1CO), 218.5 (t, ${}^{2}J_{P(Mn)C} = 19$ Hz, 1CO), 217.4 (t, ${}^{2}J_{P(Mn)C} = 18$ Hz, 1CO)
[RhMn(Z-C(Me)=CHC(O)Me)(CO) ₂ - (μ-CO) ₂ (dppm) ₂][SO ₃ CF ₃] (11)	2006 (st), ^b 1953 (st), 1864 (m), 1728 (m), 1605 (w); 2016 (st), ^c 1957 (st), 1869 (st), 1723 (m), 1603 (w)	58.1 (m), ^d 20.0 (dm, ${}^{1}J_{RhP} = 125 \text{ Hz}$)	6.30 (s, 1H, H _β), ^d 3.30 (m, 2H, PCH ₂ P), 3.15 (m, 2H, PCH ₂ P), 1.57 (s, 3H, CH ₃), 1.41 (s, 3H, CH ₃)	260.7 (dtt, ${}^{1}J_{RhC} = 45 \text{ Hz},$ ${}^{2}J_{P(Rh)C} = {}^{2}J_{P(Mn)C} =$ 8 Hz, 1CO, ^d 230.1 (dt, ${}^{1}J_{RhC} = 5 \text{ Hz},$ ${}^{2}J_{P(Mn)C} = 15 \text{ Hz}, 1CO),$ 220.0 (t, ${}^{2}J_{P(Mn)C} = 17 \text{ Hz}, 1CO),$ 218.9 (t ${}^{2}J_{mex} = 20 \text{ Hz}, 1CO),$
$[RhMn(Me)(CO)_{3}(\mu \cdot \eta^{1}; \eta^{2} - C = CHC(O)Me) - (dppm)_{2}][SO_{3}CF_{3}] (12)$		62.9 (m), ^e 26.0 (dm, ${}^{1}J_{RhP} = 101 \text{ Hz}$)	3.40 (b, 2H, PCH ₂ P), e 2.89 (b, 2H, PCH ₂ P), 1.43 (b, 3H, CH ₃), 0.04 (b, 3H, CH ₃)	227.6 (t, ${}^{2}J_{P(Mn)C} = 17$ Hz, 1CO), 227.6 (t, ${}^{2}J_{P(Mn)C} = 13$ Hz, 1CO), 225.8 (t, ${}^{2}J_{P(Mn)C} = 13$ Hz, 1CO), 193.2 (dt, ${}^{1}J_{RnC} = 47$ Hz, ${}^{2}J_{P(Rh)C} = 16$ Hz, 1CO); 26.0 (s, 1C, CH ₃), ⁱ 20.4 (m, 2C, PCH ₂ P), 9.0 (db ${}^{1}J_{NC} = 27$ Hz, 1C, CH ₃)
$[RhMn(\eta^{2}-MeC=CHC(O)Me)(CO)_{3}-(dppm)_{2}][SO_{3}CF_{3}] (13)$		57.7 (m), ^{<i>i</i>} 29.1 (dm, ${}^{1}J_{RhP} = 127 \text{ Hz}$)	6.04 (b, $1H_{\beta}$), ^{<i>i</i>} 3.70 (b, 2H, PCH ₂ P), 3.44 (b, 2H, PCH ₂ P), 1.44 (b, 3H, CH ₃), 0.72 (b, 3H, CH ₃),	231.0 (t, ${}^{2}J_{P(Mn)C} = 27$ Hz, 1CO), 229.7 (t, ${}^{2}J_{P(Mn)C} = 15$ Hz, 1CO), 192.4 (dt, ${}^{1}J_{RhC} = 49$ Hz, ${}^{2}J_{P(Rh)C} = 14$ Hz, 1CO); 29.6 (s, 1C, CH ₃), 29.1 (s, 1C, CH ₃), 28.5 (m, 2C, PCH ₂ P)
$[RhMn(CO)_{3}(\mu-\eta^{1}:\eta^{1}-MeC=CHC(O)Me)-(dppm)_{2}][SO_{3}CF_{3}] (14)$	1993 (st), ^b 1979 (st), 1910 (st), 1846 (st); 1992 (st), ^c 1926 (st), 1862 (vs)	58.2 (m), ^d 24.2 (dm, ${}^{1}J_{RhP} = 128 \text{ Hz}$)	6.77 (s, $1H_{\beta}$), 9.17 (m, 2H, PCH ₂ P), 2.43 (m, 2H, PCH ₂ P), 1.97 (t, 3H, CH ₃ , ${}^{5}J_{P(Mn)OCCH} = 3$ Hz), 1.27 (s, 3H, CH ₃)	231.3 (t, ${}^{2}J_{P(Mn)C} = 20$ Hz, 1CO), 222.2 (t, ${}^{2}J_{P(Mn)C} = 19$ Hz, 1CO), 190.4 (dt, ${}^{1}J_{RhC} = 77$ Hz, ${}^{2}J_{P(Rh)C} = 15$ Hz, 1CO), 202.1 (s, 1C, C(O)CH ₃), 138.7 (m, 1C _a), 36.0 (s, 1C, CH ₃), 25.7 (s, 1C, CH ₃)

^{*a*} Abbreviations used: IR, w ~ weak, m = medium, st = strong, vs = very strong; NMR, s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, m = multiplet, b = broad, or any combination. ^{*b*} Nujol mull. ^{*c*} CH₂Cl₂ solution. ^{*d*} 22 °C. ^{*c*} -40 °C. ^{*f*} -60 °C. ^{*s*} -70 °C. ^{*h*} -80 °C. ^{*i*} -20 °C. ^{*j*} 0 °C.

amount of CF₃CO₂D (195 μ mol, excess) was added, causing the solution to turn clear yellow. The NMR spectroscopic characterization was carried out at both -40 °C and room temperature. For the ²H NMR spectrum 0.5 mL of CH₂Cl₂ was used as solvent instead of CD₂Cl₂.

(j) [RhMn(η^2 -CH=CHC(O)Me)(CO)₂(μ -CO)(dppm)₂][SO₃-CF₃] (9a). To a CH₂Cl₂ solution of compound 5 (50 mg, 46 μ mol in 5 mL) was added 4.1 μ L of CF₃SO₃H (1 equiv). The color changed to orange from deep red-orange immediately. Removal of the solvent and recrystallization from CH₂Cl₂/Et₂O gave an orange compound (96%). Anal. Calcd for RhMnSP₄F₃O₇C₅₈H₄₉: C, 56.68; H, 3.99. Found: C, 56.34; H, 3.85.

(k) [RhMn(η^2 -CD-CHC(O)Me)(CO)₂(μ -CO)(dppm)₂][CO₂-CF₃] (9b). To a CD₂Cl₂ solution of compound 5 (10 mg, 9 μ mol in 0.5 mL) in an NMR tube was added 4 μ L of CF₃CO₂D (52 μ mol). The color changed from deep red-orange to orange immediately. Characterization was by NMR. To obtain the ²H NMR spectrum 0.5 mL of CH₂Cl₂ was used as solvent instead of CD₂Cl₂.

(1) [RhMn(C(C(O)Me)=CH₂)(CO)₂(μ -CO)₂(dppm)₂][SO₃-CF₃] (10). To a CH₂Cl₂ solution of [RhMn(μ -H)(CO)₄(dppm)₂]-[SO₃CF₃] (2) (50 mg, 42 μ mol in 5 mL) was added 100 μ L of 3-butyn-2-one (1279 μ mol), and the solution was stirred for 5 days. Recrystallization from CH₂Cl₂/Et₂O gave a yellow mixture (86%) which contained [RhMn(*trans*-CH=CHC(O)-Me)(CO)₂(μ -CO)₂(dppm)₂][SO₃CF₃] (6a) and [RhMn(C(C(O)- Me)= CH_2)(CO)₂(μ -CO)₂(dppm)₂][SO₃CF₃] (10) in a 1:1 ratio, as characterized by NMR experiments.

(m)[RhMn(Z-C(Me)=CHC(O)Me)(CO)₂(μ -CO)₂(dppm)₂]-[SO₃CF₃] (11). To a CH₂Cl₂ solution of isomers 4a and 4b (50 mg, 45 μ mol in 5 mL under CO) was added 5.0 μ L of CF₃-SO₃CH₃ (1 equiv) followed by stirring for 1 h. Removal of the solvent in vacuo and recrystallization from CH₂Cl₂/Et₂O gave a yellow solid (72%). Anal. Calcd for RhMnP₄SF₃C₆₀H₅₁O₈: C, 56.69; H, 4.02. Found: C, 56.66; H, 3.82.

(n) [RhMn(CH₃)(CO)₃(μ - η^{1} : η^{2} -CCHC(O)Me)(dppm)₂][SO₃-CF₃] (12). To a CD₂Cl₂ solution of [RhMn(CO)₃(μ - η^{1} : η^{2} -CCHC-(O)Me)(dppm)₂] (5) (10 mg, 9 μ mol in 0.5 mL) in an NMR tube was added 2 μ L of CF₃SO₃CH₃ (17 μ mol) at -78 °C, causing the solution to turn from maroon to red. The compound was characterized by NMR experiments at -40 °C.

(o) [RhMn(CO)₃(η^2 -MeC=CHC(O)Me)(dppm)₂][SO₃CF₃] (13). To a CD₂Cl₂ solution of [RhMn(CO)₃(μ - η^1 : η^2 -CCHC(O)-Me)(dppm)₂] (5) (10 mg, 9 μ mol in 0.5 mL) in an NMR tube was added 2 μ L of CF₃SO₃CH₃ (17 μ mol) at -78 °C. The solution turned black after the solution was warmed up to -20 °C. The compound was characterized by NMR experiments at -20 °C.

(p) [RhMn(CO)₃(μ - η^{1} : η^{1} -MeC=CHC(O)Me)(dppm)₂][SO₃-CF₃] (14). To a CH₂Cl₂ solution of compound 5 (50 mg, 46 μ mol in 5 mL) was added 5.2 μ L of CF₃SO₃CH₃ (1 equiv) followed by stirring for 1 h. Removal of the solvent in vacuo and recrystallization from CH₂Cl₂/Et₂O gave a red crystalline

formula	C ₆₀ H ₅₄ MnO ₅ P ₄ Rh
formula wt	1136.84
space group	$P2_1/n$ (a non standard
	setting of $P2_1/c$ [No. 14])
unit cell params	
a (Å)	14.489(1)
b (Å)	15.754(2)
c (Å)	24.104(2)
β (deg)	91.41(1)
$V(Å^3)$	5500(1)
Z	4
D_{calcd} (g cm ⁻³)	1.373
μ (cm ⁻¹)	6.756
diffractometer	Enraf-Nonius CAD4
temp (°C)	23
radiation $(\lambda (Å))$	graphite-monochromated
	Μο Κα (0.710 69)
cryst-detector distance (mm)	173
scan type	$\theta/2\theta$
scan rate (deg min ⁻¹)	1.73-6.71
scan width (deg)	$0.80 \pm 0.344 \tan \theta$
max 2θ (deg)	50.0
total unique rflns	9709 $(\pm h + k + l)$
total obs (NO)	$3980 \ (F_0^2 \ge 3.0\sigma(F_0^2))$
range of abs cor factors	0.7792-1.1061
final no. of param varied (NV)	404
R^a	0.058
R_{w}^{b}	0.063
error in obs of unit wt (GOF) ^c	1.615

 ${}^{a}R = \sum |F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2}]^{1/2}. {}^{c} \text{ GOF}$ = $[\sum w(|F_{o}| - |F_{c}|)^{2} / (\text{NO} - \text{NV})]^{1/2}.$

solid (84%). Anal. Calcd for $RhMnSP_4F_3O_7C_{59}H_{51}$: C, 57.00; H, 4.11. Found: C, 56.82; H, 4.25.

Reactions. (a) **Reaction of Compound 12 with CO.** A 50 mg amount of compound 5 (46 μ mol) was dissolved in 10 mL of CH₂Cl₂ at -78 °C to which 10 μ L of CF₃SO₃CH₃ (85 μ mol) was added, followed by stirring at -78 °C for 1 h. The color changed to red from maroon. The solution was partially evacuated and put under CO (10 psi). The sample was left in the acetone-dry ice bath overnight and allowed to slowly warm to room temperature. A yellow powder was obtained after recrystallization from Et₂O/CH₂Cl₂ (80% yield). It was shown to be compound 11 by ³¹P and ¹H NMR spectra.

(b) Reaction of Compound 13 with CO. To a CD_2Cl_2 solution of compound 5 (10 mg, 9 μ mol in 0.5 mL) in an NMR tube was added 2 μ L of CF₃SO₃CH₃ (17 μ mol) at -78 °C. The ³¹P and ¹H NMR spectra showed the formation of compound 13 at -20 °C (black solution). To the solution was added 1 mL of CO by syringe. The sample was left in the acetonedry ice bath overnight and allowed to slowly warm to room temperature. The ³¹P and ¹H NMR spectra showed the presence of only compound 11.

X-ray Data Collection. Red crystals of $[RhMn(CO)_3(\mu-\eta^1: \eta^2-C=C(H)C(O)CH_3)(dppm)_2](CH_3)_2CO$ (5-(CH₃)₂CO) were grown by diffusion of Et₂O into an acetone solution of the complex. Several of these were mounted and flame sealed in glass capillaries under an atmosphere of the solvent vapor to minimize solvent loss. Data were collected on an Enraf-Nonius CAD4 diffractometer using Mo K α radiation. Unit cell parameters were obtained from a least-squares refinement of the setting angles of 25 reflections in the range 20.0° < 2 θ < 23.8°. The monoclinic diffraction symmetry and the systematic absences (h0l, $h + l \neq 2n$; 0k0, $k \neq 2n$) defined the space group as $P2_1/n$ (a nonstandard setting of $P2_1/c$ [No. 14]).

Intensity data were collected at 22 °C by using the $\theta/2\theta$ scan technique, covering reflections having indices of the form $\pm h, +k, +l$ to a maximum of $2\theta = 50^{\circ}$. Of the 10 259 data collected, 9709 were unique, and of these, 3980 were observed $(I \geq 3\sigma(I))$. Backgrounds were scanned for 25% of the scan width on either side of the scan. Three reflections were chosen as intensity standards and were remeasured after every 120

min of X-ray exposure. The intensities of these standards dropped by ca~7.5% over the duration of data collection, so a linear correction was applied to the data. The data were processed in the usual way, with a value of 0.04 for p employed to downweight intense reflections.^{36,37} Absorption corrections were applied to the data according to the method of Walker and Stuart.³⁸ See Table 2 for crystal data and additional information on X-ray data collection.

Structure Solution and Refinement. The structure of $RhMn(CO)_{3}(\mu-\eta^{1}:\eta^{2}-C=C(H)C(O)CH_{3})(dppm)_{2}](CH_{3})_{2}CO was$ solved in space group $P2_1/n$ using standard Patterson and Fourier techniques. Full-matrix, least-squares refinements minimized the function $\sum w(|F_{o}| - |F_{c}|)^{2}$, where the weighting factor $w = 4F_o^2/\sigma^2(F_o)^2$. Atomic scattering factors³⁹ and anomalous dispersion terms⁴⁰ were taken from the usual tabulations. All hydrogen atoms were observed but were generated at idealized calculated positions by assuming a C-H bond length of 0.95 Å and the appropriate sp^2 or sp^3 geometry, except for the acetone hydrogens, which were not included. All hydrogens within the complex molecule were included in calculations with fixed, isotropic thermal parameters 20% greater than those of the attached atoms. Their positions were recalculated after every few cycles of refinement. In the final cycles of refinement the vinylidene hydrogen atom was allowed to refine and was shown to be well-behaved. There was no evidence of secondary extinction; therefore no correction was applied.

The final model with 404 parameters varied converged to R = 0.058 and $R_w = 0.063$. In the final difference Fourier map the highest residuals $(0.47-0.65 \text{ e/Å}^3)$ were found in the vicinities of Rh and the phenyl groups. The atomic coordinates and thermal parameters for selected atoms of compound **5** are given in Table 3, and selected bond lengths and angles are given in Table 4.

Results and Discussion

(a) Vinylidene Complexes. As a continuation of our studies into the reactivities of alkynes at two metal centers we have investigated reactions of [RhMn(CO)₄- $(dppm)_2$ (1) with terminal alkynes, with the goal of inducing alkyne-to-vinylidene transformations. Those alkynes not having strongly electron-withdrawing substituents, such as acetylene, phenylacetylene, and propyne, do not react with 1, even when present in a large excess for extended periods of time. However, 3-butyn-2-one, having an electron-withdrawing C(O)Me substituent, reacts readily with 1, even at -40 °C. The first species observed at this temperature is the alkynebridged product, $[RhMn(CO)_4(\mu-HC=CC(O)Me)(dppm)_2]$ (3). All the NMR spectroscopic data $({}^{1}H, {}^{13}C, {}^{31}P)$ are very similar to those of $[RhMn(CO)_4(\mu - RC_2R)(dppm)_2]$ $(R = CO_2Me, CF_3)$, which have recently been characterized;⁵ therefore $\mathbf{3}$ is assigned an analogous structure, having a conventional alkyne bridge as shown in Scheme 1. The ¹³C{¹H} NMR spectrum of 3 shows three terminal carbonyls on Mn (δ 220–228) and one on Rh $(\delta$ 195.6), with only the last one showing Rh-coupling

(41) Werner, H.; Alonso, F. J. G.; Otto, H.; Peters, K.; von Schnering, H. G. Chem. Ber. 1988, 121, 1565.

⁽³⁶⁾ Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 204.(37) Programs used were those of the Enraf-Nonius Structure

⁽³⁷⁾ Programs used were those of the Enraf-Nonius Structure Determination Package by B. A. Frenz, in addition to local programs by R. G. Ball.

⁽³⁸⁾ Walker, N.; Stuart, D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, 39, 158.

^{(39) (}a) Cromer, D. T.; Waber, J. T. International Tables for Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A. (b) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. **1965**, 42, 3175.

⁽⁴⁰⁾ Cromer, D. T.; Liberman, D. J. Chem. Phys. 1970, 53, 1891.

atom ^a	x	у	Z	B, Å ^{2 b}
Rh	0.12279(5)	0.22450(5)	-0.08839(3)	2.89(2)*
Mn	0.1503(1)	0.34558(9)	-0.18423(6)	2.63(4)*
P (1)	0.2693(2)	0.1729(2)	-0.0932(1)	2.86(7)*
P (2)	0.3022(2)	0.3075(2)	-0.1827(1)	2.87(7)*
P(3)	-0.0338(2)	0.2241(2)	-0.1021(1)	3.17(7)*
P(4)	-0.0064(2)	0.3598(2)	-0.1923(1)	3.15(7)*
O (1)	0.1179(5)	0.2338(5)	0.0366(3)	5.9(2)*
O(2)	0.1604(5)	0.4233(4)	-0.0739(3)	4.3(2)*
O(3)	0.1902(5)	0.5187(4)	-0.2235(3)	5.4(2)*
O(4)	0.1438(4)	0.2967(4)	-0.2637(2)	3.5(2)*
C (1)	0.1205(7)	0.2327(6)	-0.0105(4)	3.6(3)*
C(2)	0.1547(6)	0.3825(6)	-0.1156(4)	3.5(3)*
C(3)	0.1741(7)	0.4495(6)	-0.2095(4)	3.5(3)*
C(4)	0.1251(6)	0.2231(6)	-0.1701(3)	2.6(2)*
C(5)	0.1166(7)	0.1732(6)	-0.2162(4)	3.8(3)*
C(6)	0.1272(6)	0.2185(7)	-0.2660(4)	3.8(3)*
C (7)	0.1203(8)	0.1777(8)	-0.3230(4)	5.7(4)*
C(8)	0.3251(6)	0.1983(6)	-0.1590(4)	2.7(3)*
C(9)	-0.0728(7)	0.2671(6)	-0.1701(4)	3.7(3)*
H(5)	0.098(6)	0.110(6)	-0.207(4)	2.8(24)

^a Phenyl carbons and solvent atoms are given in the supplementary material. ^b Anisotropically refined atoms are marked with an asterisk (*). Displacement parameters for the anisotropically refined atoms are given in the form of the equivalent isotropic Gaussian displacement parameter, B_{eq} , defined as $\frac{4}{3}[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + ab(\cos \gamma)\beta_{12} + ac(\cos \beta)\beta_{13} + bc(\cos \alpha)\beta_{23}]$.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for 5

Distances				
Rh-P(1)	2.278(2)	Mn-C(4)	1.995(8)	
Rh-P(3)	2.285(2)	O(1) - C(1)	1.138(8)	
Rh-C(1)	1.883(9)	O(2) - C(2)	1.196(9)	
Rh-C(4)	1.971(7)	O(3) - C(3)	1.167(9)	
Mn - P(2)	2.282(2)	O(4) - C(6)	1.26(1)	
Mn - P(4)	2.284(3)	C(4) - C(5)	1.36(1)	
Mn-O(4)	2.065(5)	C(5) - C(6)	1.41(1)	
Mn-C(2)	1.752(9)	C(5) - H(5)	1.05(8)	
Mn-C(3)	1.783(9)	C(6) - C(7)	1.52(1)	
Angles				
P(1) - Rh - P(3)	156.17(9)	O(4) - Mn - C(4)	78.1(3)	
P(1)-Rh-C(1)	96.6(3)	C(2) - Mn - C(3)	90.9(4)	
P(1)-Rh-C(4)	84.7(2)	C(2)-Mn-C(4)	99.4 (3)	
P(3)-Rh-C(1)	95.9(3)	C(3) - Mn - C(4)	169.8(4)	
P(3)-Rh-C(4)	84.0(2)	Mn - O(4) - C(6)	114.3(6)	
C(1) - Rh - C(4)	176.7(4)	Rh-C(1)-O(1)	176.8(9)	
P(2)-Mn-P(4)	169.6(1)	Mn - C(2) - O(2)	166.6(7)	
P(2) - Mn - O(4)	86.5(2)	Mn - C(3) - O(3)	176.9(8)	
P(2)-Mn-C(2)	93.4(3)	Rh-C(4)-Mn	99.6(4)	
P(2) - Mn - C(3)	93.0(3)	Rh-C(4)-C(5)	144.8(7)	
P(2)-Mn-C(4)	85.6(2)	Mn - C(4) - C(5)	115.6(6)	
P(4)-Mn-O(4)	86.3(2)	C(4) - C(5) - C(6)	113.1(8)	
P(4)-Mn-C(2)	93.5(3)	C(4) - C(5) - H(5)	113(4)	
P(4)-Mn-C(3)	94.7(3)	C(6) - C(5) - H(5)	134(4)	
P(4)-Mn-C(4)	85.6(2)	O(4) - C(6) - C(5)	118.9(8)	
O(4) - Mn - C(2)	177.4(3)	O(4) - C(6) - C(7)	117.7(9)	
O(4) - Mn - C(3)	91.7(3)	C(5) - C(6) - C(7)	123.4(9)	

(58 Hz). In the ¹H NMR spectrum the acetylenic hydrogen appears at δ 9.99, but shows no coupling to either Rh or the phosphorus nuclei. The absence of coupling involving this hydrogen makes it impossible to unambiguously determine whether the alkyne unit is bound as shown in Scheme 1, or whether it has the opposite orientation in which the C(O)Me moiety is adjacent to Mn. The orientation shown should be sterically favored, having the less encumbered end of the alkyne adjacent to the more crowded Mn(CO)₃P₂ end of the complex, but would be less favorable for the subsequent oxidative addition into the alkyne C-H bond, a presumed step in the conversion to vinylidenebridged species.^{12,29} Upon warming solutions of **3**, two new compounds, **4a** and **5**, start to appear at *ca*. -20 °C, while warming to ca. 0 °C results in the appearance of a third species, 4b. When ambient temperature is reached, compounds 4b and 5 are the major species. with 4a being present at only ca. 10% of the amount of 4b. Compounds 4a and 4b are isomers of the vinylidene-bridged species $[RhMn(CO)_4(\mu-CC(H)C(O)Me)-$ (dppm)₂], differing only in the orientations of the substituents on the vinylidene β -carbon. The major isomer (4b) shows four carbonyl resonances in the ¹³C- ${^{1}H}$ NMR; the high-field signal corresponds to a carbonyl which is terminally bound to Rh (${}^{1}J_{\text{Rh-C}} = 56$ Hz), the intermediate two are terminally bound to Mn, and the low-field carbonyl is bound primarily to Mn with a semibridging interaction with Rh (${}^{1}J_{\text{Rh-C}} = 10$ Hz). For this isomer the ¹³C resonances for the carbons within the vinylidene unit could be obtained using unenriched alkyne. The α -carbon appears at δ 137.4 and displays coupling to Rh (4 Hz) and to all phosphorus nuclei (one pair with 19 Hz coupling and one pair with 4 Hz coupling). Since overnight data acquisition on a 400 MHz instrument (for which we do not have appropriate heteronuclear decoupling capabilities) was necessary to observe these signals, no ³¹P-decoupling experiments could be carried out, so we do not know whether the larger coupling is to the Rh- or the Mnbound phosphorus nuclei. However, the surprisingly small coupling to Rh suggests that the $Rh-C_{\alpha}$ interaction may be weak, leading us to propose that coupling to the Rh-bound phosphines will also be weak. The chemical shift for C_{α} in our RhMn compounds appears to be anomalous compared to other bridging vinylidenes,¹⁰ in which these carbons typically resonate downfield from δ 230. Even the complex [Cp(PⁱPr₃)Rh- $(\mu$ -CO) $(\mu$ -CCH₂)Mn(CO)Cp],⁴¹ having the same metal combination as our compounds, has the C_{α} resonance at δ 279, in the typical region. However, in related vinylidene-bridged complexes of Rh and Ir, we routinely observe chemical shifts for C_{α} upfield of δ 150,^{5,7} with some even as high-field as δ 100. In addition compound 5, which also has a high-field shift for C_{α} , has been structurally characterized, confirming the vinylidene formulation (vide infra). The ¹³C signals for C_{β} , the ketonic carbonyl, and the methyl group appear at δ 146.8, 193.8, and 22.0, respectively, and ¹³C APT experiments support these assignments. The ¹H resonance for the methyl group of 4b appears as a singlet at δ 0.62, and the vinylidene hydrogen appears as a triplet at δ 8.09, displaying coupling to the Rh-bound phosphorus nuclei of 7 Hz, as shown by the appropriate heteronuclear decoupling experiments. The minor isomer (4a) has very similar spectroscopic properties to 4b, with the major difference being in the ¹H NMR resonance for the vinylidene hydrogen which appears at δ 6.59, again showing coupling (12 Hz) to the Rh-bound phosphorus nuclei. It appears that 4b is the thermodynamically favored isomer owing to steric considerations, with the more bulky C(O)Me substituent being directed away from the more crowded Mn center. In the IR spectrum the ketonic carbonyl stretch is observed at 1600 cm^{-1} .

The third species present (5) is shown (vide infra) to be a tricarbonyl species resulting from carbonyl loss from 4. With this is mind, an equilibrium mixture of only 4a and 4b (in *ca*. 10:90 molar ratio) can be prepared by allowing 3 to warm up in the presence of CO, and Scheme 1

conversely 5 results as the sole species by refluxing 4a and 4b in THF under an N₂ flush. Rearrangement of 4a to 4b is shown to be slow compared to CO attack on 5, the former appearing as the only species at -40 °C under CO with slow equilibration to the 10:90 mix of isomers as the temperature is raised to 20 °C. On the basis of the structure established for 5 (vide infra), the structure of isomer 4a, which is formed rapidly upon reaction of 5 with CO, can be assigned as shown, with rearrangement by rotation about the vinylidene unit, to give the thermodynamic product, being slow. Although rotation about the C=C bond in terminal vinylidenes is apparently facile,¹² a similar rotation in vinylidene-bridged complexed appears less common, but has been observed.^{7,42}

The ¹³C{¹H} NMR spectrum of **5** confirms the tricarbonyl formulation, displaying three equal intensity carbonyl resonances, with one bound terminally to Rh and two bound terminally to Mn. The C_{α} resonance of the bridging vinylidene unit appears at δ 138.3 and is coupled to all four phosphorus nuclei. Surprisingly no coupling to Rh is observed (although it should be recalled that this coupling in 4b was only 4 Hz). Resonances for C_{β} , the ketonic carbon, and the methyl carbon appear as singlets at δ 140.1, 190.8, ad 23.8, respectively. Again, ¹³C APT experiments support these assignments. The ¹H NMR spectrum is unexceptional, apart from the methyl resonance which shows 2 Hz coupling to the Mn-bound phosphorus nuclei; the vinylidene-proton resonance was not observed and is presumably obscured by phenyl resonances. It is also significant that no stretch for the ketone carbonyl was observed in the IR spectrum. This fact and the ³¹Pcoupling to the methyl protons in the ¹H NMR suggests that coordination of the ketonic oxygen to Mn occurs to occupy the coordination site vacated by CO in the transformation from 4a. This coordination mode has

Figure 1. A perspective view of $[RhMn(CO)_3(\mu-\eta^1:\eta^2-CC-(H)C(O)Me)(dppm)_2]$ (5) showing the numbering scheme. Thermal ellipsoids are shown at the 20% level except for hydrogens, which are shown artificially small or are omitted for phenyl groups. The numbering of the phenyl carbons starts at the ipso carbon and works sequentially around the ring.

previously been noted in related vinylidene-bridged compounds of manganese, 4^{3-45} and has been confirmed in the present study by the X-ray structure determination of **5**, as shown in Figure 1.

Compound 5 crystallizes with 1 equiv of acetone, which has the expected geometry and displays no unusual contacts with the complex molecule. The bridging diphosphines have the common trans geometry at both

⁽⁴²⁾ Afzol, D.; Lukehart, C. M. Organometallics 1987, 6, 546.

metal centers, and all parameters within these units are normal. At rhodium the geometry is square planar, having the vinylidene bridge opposite a carbonyl, whereas at Mn the geometry is distorted octahedral, having the carbonyls opposite the vinylidene unit and the dative bond from the ketonic carbonyl group. The major distortions from an idealized octahedral geometry result from the bite of the bidentate ligand, which gives rise to a C(4)-Mn-O(4) angle of 78.1(3)° within the fivemembered metallacycle. Within this metallacycle the bond lengths suggest delocalized bonding. Although no single parameter is substantially different from that expected for a localized bonding model, all differ in the direction expected for delocalization. Therefore, the C(4)-C(5) distance (1.36(1) Å) is slightly longer than that expected (1.34 A) when conjugated with a ketone group, the C(5)-C(6) distance (1.41(1) Å) is shorter than expected (1.464 Å) for a single bond between conjugated olefin and ketone moieties, and the C(6)-O(4) distance (1.26(1) Å) is also longer than expected for a C=O bond in this environment $(1.22 \text{ Å}).^{46}$ By contrast the C(6)-C(7) distance is exactly as expected for a $C(sp^2)-C(sp^3)$ bond in a ketone.⁴⁶ In addition all angles within the metallacycle are consistent with sp² hybridization of the carbon and oxygen atoms, keeping in mind the slight strain within the ring. The Mn-C(4) and Mn-O(4)distances are essentially as expected.^{41,43-45}

Although the lack of coupling of the vinylidene C_{α} nucleus to Rh, together with the smaller coupling of C_{α} to the Rh-bound phosphorus nuclei than to those on Mn, suggests a weaker interaction of the vinylidene unit with Rh, this does not manifest itself in the structural parameters. Therefore the Rh-C(4) distance is actually shorter than Mn-C(4) (1.971(7) vs 1.995(8) Å), in spite of an opposite prediction based on the covalent radii of the metals. The Rh-Mn separation (3.030(1) Å) is significantly longer than the single bond (2.667(1) Å)in $[Cp(P^{i}Pr_{3})Rh(\mu-CO)(\mu-CCH_{2})Mn(CO)Cp]$,⁴¹ consistent with the absence of a metal-metal bond. However, the Rh-C(4)-Mn angle of $99.6(4)^{\circ}$ is more acute than expected, and there seems to be no reason that the Rh-Mn distance could not expand to allow an undistorted sp^2 geometry at C(4). This suggests that the two metals are drawn together. Such a compression of the nominally nonbonded metal-metal separation has been noted in a related system, induced by a weak semibridging carbonyl interaction.³⁵ The carbonyl group C(2)O-(2) in 5 is bent away from Rh slightly, consistent with a semibridging interaction, giving a Mn-C(2)-O(2)angle of $166.6(7)^\circ$, but the long Rh-C(2) contact (2.618-(8) Å) suggests a weak interaction at best.

The vinylidene unit is not perpendicular to the Rh-Mn vector but is tilted substantially toward Mn, as shown by the Rh-C(4)-C(5) and Mn-C(4)-C(5) angles of 144.8(7)° and 115.6(6)°, respectively. Presumably this tilting occurs to accommodate coordination of the ketonic oxygen at the sixth site, giving Mn the octahedral geometry. This offers further support that Rh is being drawn in the direction of C(2) since movement in the opposite direction would give less distortion at C(4). A similar tilting of a bridging vinylidene unit has been observed in related complexes in which the vinylidene forms part of a five-membered metallacycle ring.41,43-45

In an attempt to detect the interconversion of compounds 4a and 4b, spin-saturation transfer experiments were attempted by irradiating the ³¹P resonance corresponding to the Mn-bound phosphines in 4b. No change in the resonances of **4a** was noted, presumably because exchange is too slow. However, when this experiment was carried out by irradiating the corresponding resonance $(\delta 73.1)$ of compound 5, a decrease in intensity of 80% was noted in the appropriate resonance (δ 67.7) of **4a**. This indicates that reversible CO loss from **4a** and concomitant coordination of the ketonic carbonyl is occurring readily in solution.

(b) Vinylidene Reactivity. (i) Protonation. Having isolated and characterized the vinylidene-bridged complexes 4 and 5, it was of interest to investigate their reactivities. In particular we were interested in the transformation of the vinylidene bridges to substituted vinyl moieties, either by protonation or alkylation. It was felt that the square planar Rh(I) center could be basic enough to react with electrophiles such as H⁺ and CH_3^+ , and that the resulting rhodium-hydride and rhodium-alkyl moieties might undergo migratory insertion with the bridging vinylidene units. Protonation of a mixture of 4a and 4b gives only one species at ambient temperature, the vinyl complex [RhMn(trans- $CH=C(H)C(O)Me)(CO)_2(\mu-CO)_2(dppm)_2][SO_3CF_3] (6a),$ as shown in Scheme 2. This product is analogous to the vinyl compounds $[RhMn(CR=C(H)R)(CO)_2(\mu-CO)_2 (dppm)_2$]⁺ (R = CO₂Me, CF₃) described earlier,⁵ in which the vinyl groups were terminally bound to Rh. The trans geometry for 6a (in which the C(O)Me group is opposite Rh) is as expected if the initial protonation were to occur at the vacant site on Rh, adjacent to the vinylidene unit in isomer 4b. Significantly no species corresponding to a cis arrangement of vinyl hydrogens is observed, even though both isomers 4a and 4b were initially present.

At temperatures between -80 and -40 °C protonation of 4 yields an intermediate 7 in between 5% and 20% yield, transforming to 6, even at these low temperatures. Owing to the presence of 4a, 4b, and 6, together with impurities (ether, excess acid, etc.), not all the proton resonances of 7 could be identified. In the ¹H NMR spectrum, a low-field signal at δ 9.30, one of the dppm-methylene resonances at δ 2.62, and the methyl resonance at δ 0.81 were observed. The vinylhydrogen resonance and the second dppm-methylene resonance were not identified. Significantly, no evidence of a hydride resonance was observed. Compound 7 is assigned as the enol intermediate $[RhMn(CO)_3(\mu CC(H)=C(OH)Me)(\mu-CO)(dppm)_2][BF_4]$ on the basis of the broad low-field ¹H signal which appears to be typical for an enol proton.⁴⁷ Keto-enol tautomerism generally occurs via deprotonation and reprotonation at an alternative site.48 Whether the Rh center or the anion of the acid functions as the base is not known, although

⁽⁴³⁾ García Alonso, F. J.; Riera, V.; Ruiz, M. A.; Tiripicchio, A.; Tiripicchio Camellini, M. Organometallics **1992**, *11*, 370.

⁽⁴⁴⁾ Adams, R. D.; Chen, G.; Chen, L.; Yin, J. Organometallics 1993, 12, 2644.

⁽⁴⁵⁾ Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Batsanov, A. S.;

<sup>Struchkov, Yu. T. J. Organomet. Chem. 1985, 279, 419.
(46) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen,
A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, 51.</sup>

^{(47) (}a) Silverstein, R. M.; Bassler, G. C. Spectrometric Identification of Organic Compounds, 2nd ed.; John Wiley and Sons: New York, NY, 1981; Ch. 4. (b) Bergens, S. H.; Bosnich, B. J. Am. Chem. Soc. **1991**, 113, 958.

⁽⁴⁸⁾ Marsh, J. Advanced Organic Chemistry, 4th ed.; John Wiley and Sons: New York, NY, 1992; p 585.

Scheme 2

as noted, no high-field ¹H signals, which would indicate proton transfer to the metal, was observed. If we assume the involvement of a rhodium-hydride intermediate in the protonation of **4a** and **4b**, the observation of only one isomer of **6** can be rationalized by the transfer of the enol proton to Rh, followed by rapid migratory insertion of the resulting hydride and vinylidene groups; only the orientation in which the enol oxygen is adjacent to Rh will favor proton transfer to this metal. We suggest that both isomers **4a** and **4b** are protonated to yield the respective enols but that their interconversion is facile by rotation about $C_{\alpha}-C_{\beta}$ single bond, yielding **7** which can then yield the vinyl product **6**.

Protonation of the alkyne-bridged precursor (3) yields the vinyl species 8, in which the major difference to 6 is a cis arrangement of vinyl hydrogens in the new product. The ¹H NMR spectrum of 8 shows the vinyl protons at δ 9.20 (H_a) and 6.42 (H_b) with mutual coupling of 7.5 Hz, consistent with the cis arrangement shown in Scheme 2. Additional coupling of H_a to Rh (²J_{Rh-H} = 5 Hz) and to the Rh-bound phosphorus nuclei

of 6 Hz is also observed. In addition, the β -hydrogen also shows coupling to Rh of 2.5 Hz. Subtle differences in the ${}^{13}C{}^{1}H$ NMR spectrum, compared to 6, show a carbonyl resonance at δ 259.8 with relatively strong coupling to Rh (41 Hz) as well as equal coupling to all four phosphorus nuclei, indicating a conventionally bridged CO, another at δ 231.9 coupling weakly to Rh (12 Hz), and two other higher field resonances for the terminal carbonyls on Mn. The difference in the two bridged carbonyls of 8 may result from steric interactions, in which the mutually cis arrangement of the C(O)Me group and Rh forces one of the bridged carbonyls away from Rh. A similar affect was noted in related vinyl compounds of RhMn.⁵ Confirmation of the vinyl hydrogen assignments comes from reaction of 3 with CF_3CO_2D to give [RhMn(cis-CH=C(D)C(O)Me)- $(CO)_2(\mu - CO)_2(dppm)_2][CF_3CO_2]$; as expected the signal for the β -hydrogen is absent in the ¹H NMR spectrum, but appears in the ²H NMR. Similarly species 8 having deuterium incorporated into the α position can be prepared (vide infra) giving the expected NMR results. The generation of a *cis*-vinyl species 8 from the *cis*- Scheme 3

dimetalated olefinic precursor **3** is unexpected since rotation about the C=C bond has apparently occurred, such that the originally cis H_{α} and C(O)Me groups are now in a mutually trans arrangement. It is not clear how this occurs.

Protonation of the vinylidene species 5 yields the vinyl product [RhMn(η^2 -CH=C(H)C(O)Me)(CO)₃(dppm)₂][SO₃- CF_3 (9), in which the vinyl group chelates the Mn atom, binding through C_{α} and the ketone oxygen. Although no metal-hydride species was observed, 9 is the anticipated product of protonation of 5 at Rh followed by hydrogen transfer to C_{α} accompanied by cleavage of the $Rh-C_{\alpha}$ bond. As was observed in 5, which also has a five-membered metallacycle involving Mn, the methyl resonance in the ¹H NMR spectrum of 9 displays coupling to the Mn-bound ³¹P nuclei (${}^{5}J_{P-H} = 3$ Hz). The resonance for H_{α} is not observed, being obscured by phenyl resonances; however, H_{β} appears at δ 8.04, showing 10 Hz coupling to H_{α} and 2.5 Hz coupling to the phosphorus nuclei on Mn. The magnitude of $H_{\alpha}H_{\beta}$ coupling is in line with a cis arrangement, which is also required by the chelated structure. If the protonation is carried out using CF_3CO_2D , the product having deuterium in the α position is obtained, and this signal is observed in the ²H NMR spectrum at δ 7.66 (confirming the proposal that this resonance in the ¹H NMR spectrum is obscured by phenyl protons). As expected, no deuterium-hydrogen coupling is observed between the vinylic H and D atoms; H_{β} displays coupling (2.5 Hz) to only the ³¹P nuclei on Mn. Unlike all species in which the ketonic carbonyl is not coordinated, but like the precursor (5), the IR spectrum of 9 shows no ketonic carbonyl stretch. Compound 9 can be transformed to 8 under CO, so replacing the donor bond from the ketone oxygen by a carbonyl group is also accompanied by migration of the vinyl group from Mn to Rh with concomitant transfer of the CO from Rh to Mn. This was the route used to generate 8 having deuterium incorporation at the α position (vide supra).

It is significant that protonation of the vinylidenebridged species 4 and 5 has *not* yielded carbyne-bridged products as frequently occurs by attack of electrophiles at the β -carbon.¹⁰ Instead the products obtained are consistent with the intervention of a Rh-hydride intermediate (although no such intermediate was observed). The formation of vinyl products via protonation of vinylidene complexes parallels an earlier study by Werner,⁴⁹ in which no metal-hydride species were detected, and is an interesting contrast to other work by the Werner group in which metal-hydride species rearranged by 1,3-hydride transfer to give carbynes.^{29,33} Even though no metal-hydride species were observed in this part of our study, the formation of vinyl rather than carbyne products leads us to propose that they result from migratory insertion involving the vinylidene and hydride groups.

Vinyl species can also be generated by the insertion of alkynes into the metal-hydride bonds of [RhMn(CO)4- $(\mu$ -H)(dppm)₂][SO₃CF₃] (2).⁵ Therefore 2 reacts with 3-butyn-2-one to give two isomers of the vinyl compound $[RhMn(C_2H_2C(O)Me)(CO)_4(dppm)_2][SO_3CF_3]$ (6 and 10) in approximately equal proportions, as shown in Scheme 3. These isomers differ mainly in the stereochemistry of the vinyl C=C bond, depending on whether alkyne insertion yields the products having a geminal (10) or trans arrangement (6) of vinyl hydrogens. In isomer 6 the trans vinyl hydrogens resonate at δ 7.99 and 5.32 for H_{α} and H_{β} , respectively, in the ¹H NMR spectrum. The 17 Hz coupling between these protons is consistent with a trans arrangement, and in addition H_{α} shows additional coupling $({}^{3}J_{P(Rh)-H} = 7 \text{ Hz})$ to the two Rhbound phosphorus nuclei. The ¹³C{¹H} NMR spectrum for this isomer shows two carbonyl resonances, one corresponding to two bridging groups (δ 244.1, ${}^{1}J_{\rm Rh-C}$ = 22 Hz) and the other corresponding to two terminal groups (δ 217.4) bound to Mn. The slightly smaller Rh-C coupling observed for the bridging carbonyls (compared to that for the symmetrically bridged CO in 10) suggests asymmetric bridges for these groups, with stronger binding to Mn. In addition to the four carbonyl stretches (two terminal, two bridging) in the IR spectrum, the ketonic stretch is observed at 1654 cm^{-1} . For the other isomer (10) the geminal protons on the β -carbon of the vinyl group appear at δ 5.89 and 5.42 in the ¹H NMR spectrum. Both protons show coupling of 2 Hz to the Rh-bound phosphorus nuclei, and the lower-field signal also displays 3 Hz coupling to Rh. No coupling between the geminal protons is observed. Isomer 10 differs subtly from 6 in the natures of the carbonyl groups, displaying four carbonyl resonances in

(49) Wolf, J.; Werner, H. J. Organomet. Chem. 1987, 413.

the ¹³C{¹H} NMR spectrum. The lowest-field signal (δ 249.7) shows coupling of 32 Hz with Rh, suggesting a conventional, bridged geometry, whereas the signal at δ 237.8 displays coupling to Rh of only 13 Hz, indicating that it is semibridging. Again we suggest that this difference is steric in origin, in which the bulkier C(O)-Me group on the α -carbon forces the adjacent carbonyl away from Rh, weakening the Rh–CO interaction. This is compensated for by a stronger interaction between Rh and the other carbonyl, as reflected in the larger ¹J_{Rh–C} value for this carbonyl.

These subtle structural differences between 10 and 6 demonstrate how adjacent metal centers can "tune" the electron distributions within the complex to changes in ligand binding modes. In 10 one carbonyl is semibridging while the other is symmetrically bridging, having weak and strong interactions with Rh, respectively. In 6 the strengthening of the semibridging interaction with Rh is compensated for by a weakening of the other Rh-CO interaction such that both bridging carbonyls are asymmetrically bound. These changes in carbonyl binding modes, with each carbonyl being a oneelectron donor to each metal for the symmetrically or asymmetrically bridged CO's or a two-electron donor to Mn in the semibridging CO⁵⁰ are accompanied by a change in the nature of the Rh-Mn bond as shown in Scheme 3. Although such bonding descriptions are formalisms, they do demonstrate how the polarity of a metal-metal bond can change to compensate for changes in ligand binding.

(ii) Alkylation. Reaction of the vinylidene-bridged isomers 4a and 4b with methyl triflate yields [RhMn- $(MeC=C(H)C(O)Me)(CO)_2(\mu-CO)_2(dppm)_2][SO_3CF_3]$ (11) as the sole observed product over the temperature range from -80 to 22 °C. Unlike protonation, which yields a vinyl group in which the proton ends up on the α -carbon *cis* to the C(O)Me group, the methyl carbocation ends up trans to C(O)Me to give a product that is analogous to 8 rather than 6 (see Scheme 4). This analogy to 8 carries through to the binding of the bridging CO's, in

which one is semibridging while the other is conventionally bridging, presumably for the reasons discussed earlier. The ¹H NMR spectrum of 11 shows the methyl signals as singlets at δ 1.57 and 1.41 and the vinyl hydrogen at δ 6.30. The arrangement shown about the vinyl C=C bond is supported by proton NOE experiments which indicate that the vinyl proton has a positive NOE effect with both sets of methyl protons, whereas the two methyl groups show no NOE effect with each other. If 11 results from an undetected Rhmethyl intermediate followed by migratory insertion with the vinylidene group, it would appear that isomer 4a is the favored target, since this isomer would yield the appropriate stereochemistry at the double bond. Attack at Rh in this isomer, as opposed to the more predominant 4b, would appear to be steric in origin with the larger C(O)Me substituent blocking attack at Rh in the latter.

The tricarbonyl, vinylidene-bridged 5 also reacts with methyl triflate, but in this case a couple of key intermediates can be detected at low temperature. At -40°C the first intermediate observed, [RhMnCH₃(CO)₃(μ - $CC(H)C(O)Me(dppm)_2$ [SO₃CF₃] (12), is a metal-alkyl species having the methyl group bound to Rh as shown in Scheme 4. This is the first complex in this study in which an alkyl unit is adjacent to a vinylidene unit, and as suggested earlier,²⁶ such species are unusual. In the ¹H NMR spectrum of **12** the resonance for the Rh-bound methyl group is broad, obscuring the expected 2-3 Hz coupling to Rh. However, the ${}^{13}C{}^{1H}$ NMR study shows the broad methyl resonance at δ 9.0 with coupling of 27 Hz to Rh, clearly indicating a direct bond between the two. In addition, the $^{13}\mathrm{C}$ chemical shift for this methyl group is at higher field than the alkyne-bound methyl group, falling in the range observed for other Rh-methyl complexes.⁵¹ The methyl group of the C(O)-Me moiety appears as a broad singlet at δ 26.0 in the $^{13}C{^{1}H}$ NMR spectrum with no obvious coupling to the Mn-bound phosphines, as was noted in the related

⁽⁵¹⁾ Mann, B. E.; Taylor, B. F. ¹³C NMR Data for Organometallic Compounds; Academic Press: London, 1981; p 44.

Bridging Vinylidene Complexes of RhMn

metallacycles (5, 9). It is noteworthy that upon reaction with CH_3^+ the value of ${}^1J_{Rh-P}$ drops from 175 Hz in 5 to 101 Hz in 12, consistent with an increase in oxidation state from +1 to +3.⁵² An analogous drop (from 155 to 104 Hz) was previously observed upon protonation of [RhMn(CO)₄(μ -RC₂R)(dppm)₂] to give [RhMnH(CO)₄(μ -RC₂R)(dppm)₂]^{+,5} a product that is rather similar in formulation to 12, except having a bridging alkyne (R = CO₂Me, CF₃) rather than vinylidene unit.

Upon warming a solution of 12 to -20 °C, a transformation to $[RhMn(CO)_3(\eta^2-MeC=C(H)C(O)Me)(dppm)_2]$ - $[SO_3CF_3]$ (13) occurs in which migration of the methyl group from Rh to the vinylidene ligand occurs, apparently yielding the chelated vinyl complex. The ${}^{13}C{}^{1}H$ NMR spectrum shows two Mn-bound (& 231.0, 229.7) and one Rh-bound (δ 192.4, ${}^{1}J_{Rh-C} = 49$ Hz) carbonyls, in addition to singlets for the methyl groups at δ 29.6 and 29.1. The lack of coupling of these methyl groups to phosphorus or Rh and the downfield shift from that observed for the Rh-CH₃ group in 12 suggests that the methyl group now resides on the transformed vinyl moiety. Unfortunately, attempts to verify the geometry of the vinyl group in 13 by NOE experiments failed. The migratory insertion of the bridged vinylidene and methyl groups in 12 to give the vinyl moiety in 13 is unprecedented. This transformation can be regarded as reductive elimination from the Rh^{3+} center in 12 to give Rh^+ in 13, and is supported by the increase in the value of ${}^{1}J_{Rh-P}$ that is observed (to 127 Hz in 13). In the ¹H NMR spectrum, the methyl resonances appear as singlets at δ 1.44 and 0.72 and the vinyl proton appears at δ 6.04.

Under a CO atmosphere both 12 and 13 transform to 11. This product was well characterized and offers support for the formulation of 13. Furthermore, the transformation of 12 to 11 offers an additional example of migratory insertion of the bridging vinylidene group and the methyl group to give a substituted vinyl species. It may be that alkylation of 4 proceeds via intermediate 12, since compounds 4a and 5 were shown earlier to be in equilibrium. Alkylation to yield 12 would then be followed by attack of the CO initially lost from 4a.

At ambient temperature compound 13 is unstable. even in the absence of CO, and gives a new species, $[RhMn(CO)_{3}(\mu - \eta^{1}: \eta^{1}-MeC = C(H)C(O)Me)(dppm)_{2}][SO_{3} CF_3$ (14) in which the chelated vinyl moiety appears to adopt a bridging arrangement. In the ${}^{13}C{}^{1}H$ NMR spectrum the three carbonyl resonances are not unlike those of 13, apart from the larger ${}^{1}J_{Rh-C}$ value (77 Hz) for 14. The ketonic carbon is observed at δ 202.1, the vinyl C_{α} carbon is a complex multiplet at δ 138.7, and the methyl singlets appear at δ 36.0 and 25.7. Since the alkyne used was not isotopically enriched, overnight data acquisition was required, ruling out heteronuclear decoupling experiments. For this reason we were unable to resolve coupling of C_{α} to Rh. In the ¹H NMR spectrum one methyl group (δ 1.97) displays 3 Hz coupling to the Mn-bound phosphines, reminiscent of the coupling observed in 5 and 9 in which the ketone oxygen is coordinated to Mn. Although compound 13, containing the chelating vinyl ketone group, reacts with CO to displace the ketone oxygen and cause migration of the vinyl group to Rh, compound 14 is inert to CO.

ketone oxygen.

Organometallics, Vol. 14, No. 5, 1995 2385

Summary and Conclusions

Presumably in 13 the ketone oxygen is labile owing to

the strain within the five-membered metallacycle. Mi-

strain is much less, resulting in decreased lability of the

When reaction of $[RhMn(CO)_4(dppm)_2]$ (1) with the terminal alkyne 3-butyn-2-one is monitored at low temperature, the expected product having the alkyne coordinated in a bridging position, parallel to the metals, is observed. However, upon warming to ambient temperature this species undergoes a 1,2-hydrogen shift to give a vinylidene-bridged product, $[RhMn(CO)_4(\mu-CC (H)C(O)Me(dppm)_2$ (4). Compound 4 is observed as two isomers which are related by apparent rotation about the C=C bond of the bridging vinylidene unit. Transformation of one isomer to the other occurs readily at ambient temperature, requiring less than $\frac{1}{2}$ h to reach an equilibrium mixture. Loss of one carbonyl from the Mn center is facile, assisted by the formation of a donor bond from the ketone oxygen of the vinylidene group to yield [RhMn(CO)₃(μ - η^{1} : η^{2} -CC(H)C(O)Me)- $(dppm)_2$] (5).

Although protonation of a vinvlidene ligand generally occurs at the β -carbon, the C(O)Me substituent on this carbon appears to lower its nucleophilicity so bridging alkylidyne species are not obtained. In compound 4 the initial site of protonation appears to be at the ketone oxygen of the bridging vinylidene group, with subsequent proton transfer to the α -carbon. No metalhydride species was observed, so it is not clear whether such an intermediate was present. Protonation of the tricarbonyl species 5 again yields a vinyl product in which the vinyl group is chelating Mn, bound through the α -carbon and the ketone oxygen, and reaction of this product with CO results in replacement of the ketoneto-Mn dative interaction by a carbonyl group and also in migration of the vinyl group from Mn to Rh. The isomer observed has the two vinyl hydrogens in a mutually cis arrangement, in contrast to the protonation product of 4, in which the vinylic hydrogens are trans. These vinyl products are consistent with protonation at Rh at some stage in the reaction, followed by a migratory insertion of the vinylidene group.

The reaction of the vinylidene-bridged species 4 and 5 with methyl triflate yields the corresponding vinyl products in which the carbocation has again ended up on the α -carbon, again suggesting primary attack at Rh, followed by migration to the vinylidene groups. In the case of the tricarbonyl species 5, the unusual vinylidenebridged methyl complex $[RhMn(CH_3)(CO)_3(\mu-\eta^1:\eta^2-\eta^2)]$ $CC(H)C(O)Me(dppm)_2[SO_3CF_3]$ is observed at -40 °C and is shown to have the methyl group coordinated to Rh. Upon warming, this species undergoes a migratory insertion of the methyl and vinylidene ligands to give a tricarbonyl vinyl species in the absence of CO or a tetracarbonyl vinyl species in the presence of CO. These appear to be the only clearly defined examples involving the migratory insertion of a bridged vinylidene group; even examples involving terminal vinylidenes are not common.

It is significant that attack by the electrophiles H^+ and CH_3^+ on an equilibrium mixture of **4a** and **4b** yields

⁽⁵²⁾ Nixon, J. F.; Pidcock, A. Annu. Rev. NMR Spectrosc. 1969, 2, 345.

only one product in each case, and it is even more significant that these products differ in their geometries about the vinyl C=C bond. In both cases the observations can be rationalized by the intervention of a rhodium-hydride or a rhodium-alkyl intermediate with subsequent migratory insertion involving the vinylidene group. Protonation appears to occur initially at the ketonic oxygen to give an enol product for which only one isomer can give facile proton transfer to Rh giving the vinyl product observed. Alkylation of a 4a/4b mixture apparently occurs directly at Rh, with attack being favored in isomer 4a, in which there is better access to Rh. Again, subsequent migratory insertion of this product would yield the observed product. Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and the University of Alberta for financial support and Dr. R. McDonald of the departmental Structure Determination Laboratory for technical assistance.

Supplementary Material Available: Tables of positional and thermal parameters for the phenyl carbons and solvent atoms, anisotropic thermal parameters, idealized hydrogen parameters, and bond distances and angles for the dppm ligands and solvent molecule (6 pages). Ordering information is given on any current masthead page.

OM940895M