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Abstract: An efficient synthesis of b-phosphono malonates via
phospha-Michael addition of phosphorous nucleophiles to a,b-un-
saturated malonates in the presence of HClO4–SiO2 as a new and
recyclable catalyst is described.
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Phosphonates are fascinating and versatile compounds in
organic synthesis. They also have unique properties which
expand their applications as enzyme inhibitors, metabolic
probes,1 peptide mimetics,2 antibiotics, and pharmacolog-
ic agents3 besides their traditional roles as intermediates in
organic synthesis.4 Direct phosphorus–carbon bond for-
mation represents one of the most versatile and powerful
tools for the synthesis of phosphonates. Amongst these
methods, phospha-Michael addition, the addition of a
phosphorous nucleophile to an electron-deficient alkene,
has invoked considerable attention.5 This kind of phos-
phorus–carbon bond formation has been promoted by
bases,5,6 Brønsted/Lewis acids,7,8 microwaves,9 transition
metals10 and radical initiators such as AIBN.11 Although
these methods are valuable, they suffer from disadvantages
such as requiring high temperatures, long reaction times,
tedious workup protocols, using a large amount of unrecy-
clable catalyst or resulting in low yields. Hence, the devel-
opment of a new procedure with more efficiency for this
important transformation is still in demand.

Reusable solid-supported reagents have advantages such
as low toxicity, low cost and moisture and air tolerance.12

They have also shown better activity and selectivity than
the corresponding unsupported reagents.12b

Silica-supported perchloric acid (HClO4–SiO2)
13 has

recently received considerable attention as a recyclable
solid-supported catalyst for various organic transforma-
tions,14–20 including Knoevenagel condensations, Michael
additions, cyclodehydration,14 synthesis of 14-aryl-14H-
dibenzo[a,j]xanthenes,15 Friedländer synthesis of quino-
lines,16 synthesis of enaminones and enaminoesters,17

synthesis of quinoxalines and dihydropyrazines18 and
chemoselective carbon–sulfur bond formation.19

As part of our continued interest in the synthesis of phos-
phonate derivatives, we have recently concentrated on the

development of new environmentally benign procedures
for the synthesis of these important scaffolds.21 In this
connection, herein, we wish to introduce an eco-friendly
method for the efficient synthesis of b-phosphono mal-
onates via phospha-Michael addition of phosphorous nu-
cleophiles to a,b-unsaturated malonates in the presence of
HClO4–SiO2 (Scheme 1, Table 1). In this procedure,
HClO4–SiO2 was applied as a recyclable heterogeneous
catalyst at room temperature and under solvent-free con-
ditions.

Scheme 1

As indicated in Table 1, different substituted benzyliden-
emalonitriles with electron-donating and electron-with-
drawing groups underwent successful phospha-Michael
addition with triethyl phosphite and gave the correspond-
ing b-phosphono malonates in 83–93% yields (entries 1–
9). The catalyst was compatible with functional groups
such as Cl, Br and OMe. No competitive nucleophilic me-
thyl ether cleavage was observed for the substrate which
possessed an aryl methoxy group (entry 9), despite the
strong nucleophilicity of phosphites.22 This method is also
applicable for the synthesis of b-phosphono malonates
from the reaction of triethyl phosphite with a,b-unsaturat-
ed malonates substituted with polyaromatic, heteroaro-
matic and aliphatic groups (entries 10–16). By this
method, the reaction of triethyl phosphite with b,b-disub-
stituted malonates 1q and 1r proceeded well and the cor-
responding products (2q and 2r) were obtained in good
yields. a,b-Unsaturated malonates which contain acid-
labile functionalities such as trimethylsilyl ether or acetal
groups (1s and 1t) also underwent smooth reaction with
triethyl phosphite and produced the desired products in
80% and 85% yields, respectively (entries 19 and 20),
with the protecting groups being unaffected during the
reaction.
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We have also examined the applicability of this method
for the phospha-Michael addition reaction to some other
activated alkenes. As shown in Scheme 2, the reactions
proceeded in one hour affording the desired products in
55–90% yields, although only a trace of the desired prod-
uct was obtained with acrylonitrile after 24 hours.

Scheme 2

After performing the phospha-Michael addition reaction
of triethyl phosphite with benzylidenemalonitrile (1a) un-
der the present conditions, EtOAc was added to the reac-
tion mixture. Then the catalyst was separated by a simple
filtration from the resulting heterogeneous mixture, dried
at 100 ºC and was reused for a consecutive run under the

Table 1 Synthesis of Different Types of b-Phosphono Malonates 
Catalyzed by HClO4–SiO2 under Solvent-Free Conditions at Room 
Temperature

Entry Substrate Product Time 
(min)

Yielda 
(%)

1

1a

2a 60 93

2

1b

2b 30 83

3

1c

2c 45 85

4

1d

2d 60 87

5

1e

2e 20 93

6

1f

2f 30 85

7

1g

2g 5 90

8

1h

2h 150 90

9

1i

2i 180 83

10

1j

2j 60 85

11

1k

2k 90 88

12

1l

2l 180 87

13

1m

2m 5 95

14b

1n

2n 15 80
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16b
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2p 5 83

17c

1q

2q 120 85

18c

1r

2r 120 78

19

1s

2s 180 80

20

1t

2t 120 85

a Isolated yield. Conditions: catalyst (0.03 mmol), a,b-unsaturated 
malonate (1 mmol), triethyl phosphite (1 mmol). All the products 
were characterized by spectroscopic methods and compared with the 
authentic spectra.23

b Reaction temperature: 60 °C.
c Reaction temperature: 80 °C.

Table 1 Synthesis of Different Types of b-Phosphono Malonates 
Catalyzed by HClO4–SiO2 under Solvent-Free Conditions at Room 
Temperature (continued)

Entry Substrate Product Time 
(min)

Yielda 
(%)
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same reaction conditions. The average isolated yield of 2a
for five consecutive runs was 90%, which clearly demon-
strates the recyclability of this catalyst (Figure 1).

Figure 1 Reusability of HClO4–SiO2 as a catalyst for the synthesis
of b-phosphono malonate 2a

In order to show the unique catalytic behavior of support-
ed perchloric acid in these reactions, we performed the
phospha-Michael addition of triethyl phosphite to ben-
zylidenemalonitrile (1a) in the presence of a catalytic
amount (3 mol%) of HClO4, LiClO4, metal triflates [e.g.,
Al(OTf)3, Ce(OTf)4, Zn(OTf)2, Mg(OTf)2, LiOTf], Lewis
acids (e.g., AlCl3·6H2O, ZrCl4, FeCl3, ZnCl2), metal ox-
ides (e.g., Sb2O3, SnO2, ZnO) and a Brønsted acid
(NH2SO3H) for comparison. As is evident from Table 2,
supported perchloric acid is the most effective catalyst for
this purpose leading to the formation of b-phosphono ma-
lonate (2a) in high yield. A similar reaction in the absence
of the catalyst led to the formation of the desired product
(2a) in low yield after 24 hour (Table 2, entry 17).

Finally, we evaluated the generality of this method for the
phospha-Michael addition of different phosphite esters to
benzylidenemalonitrile (1a) under the standard reaction
conditions (Table 3).

The catalytic phospha-Michael addition of trimethyl
phosphite and triisopropyl phosphite with 1a proceeded
well and the desired products were isolated in 77% and
60% yields (entries 1 and 2). A similar reaction in the
presence of triphenyl phosphite or diethyl phosphite as a
phosphorus nucleophile led to the formation of the desired
product in low yields (entries 3 and 4).

In conclusion, HClO4–SiO2 has been shown to be a reus-
able and efficient catalyst for the synthesis of a variety of
b-phosphono malonates by phospha-Michael addition of
phosphite esters to different a,b-unsaturated malonates.24

Good to high yields, short reaction times, simple workup,
ease of catalyst recovery, lack of by-products, and recy-
clability of the catalyst without appreciable loss of activity
make this method an attractive and useful contribution to
the present methodologies.
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(1-Phenyl-2,2-dicyanoethyl) Phosphonic Acid Diethyl 
Ester (2a)
1H NMR (CDCl3): d = 1.11 (t, 3 H, 3JHH = 6.8 Hz), 1.33 (t, 3 
H, 3JHH = 7.0 Hz), 3.65 (dd, 1 H, 3JHH = 8.0, 2JHP = 21.0 Hz), 
3.91–4.21 (m, 4 H), 4.55 (t, 1 H, 3JHH = 8.3 Hz), 7.43 (s, 5 
H). 13C NMR (CDCl3): d = 16.1 (d, 3JCP = 5.6 Hz), 16.2 (d, 
3JCP = 5.6 Hz), 25.5, 44.6 (d, 1JCP = 144.0 Hz), 63.4 (d, 
2JCP = 7.5 Hz), 64.4 (d, 2JCP = 7.0 Hz), 111.1 (d, 3JCP = 12.5 
Hz), 111.3 (d, 3JCP = 10.0 Hz), 129.2, 129.3, 129.4, 129.8. 
31P NMR (CDCl3): d = 20.04. MS (70 eV): m/z = 292 [M+], 
155 [M+ – P(O)(OEt)2].
[1-(2-Chlorophenyl)-2,2-dicyanoethyl] Phosphonic Acid 
Diethyl Ester (2b)
1H NMR (CDCl3): d = 1.11 (t, 3 H, 3JHH = 7.0 Hz), 1.36 (t, 3 
H, 3JHH = 7.0 Hz), 3.75–4.30 (m, 4 H), 4.46 (dd, 1 H, 3JHH = 
8.2, 2JHP = 21.2 Hz), 4.61 (t, 1 H, 3JHH = 8.5 Hz), 7.35 (d, 2 
H, 3JHH = 4.0 Hz), 7.47 (s, 1 H), 7.75 (d, 1 H, 3JHH = 5.3 Hz). 
13C NMR (CDCl3): d = 16.0 (d, 3JCP = 6.3 Hz), 16.2 (d, 
3JCP = 5.6 Hz), 24.9, 39.4 (d, 1JCP = 144.6 Hz), 63.6 (d, 2JCP 
= 7.5 Hz), 64.4 (d, 2JCP = 6.9 Hz), 110.9 (d, 3JCP = 5.6 Hz), 
111.1, 127.8, 128.6, 129.6, 130.6, 135.1. 31P NMR (CDCl3): 
d = 19.47. MS (70 eV): m/z = 326 [M+], 328 [M+ + 2], 189 
[M+ – P(O)(OEt)2], 191 [(M+ + 2) – P(O)(OEt)2].
[1-(4-Chlorophenyl)-2,2-dicyanoethyl] Phosphonic Acid 
Diethyl Ester (2d)
1H NMR (CDCl3): d = 1.16 (t, 3 H, 3JHH = 7.0 Hz), 1.33 (t, 3 
H, 3JHH = 7.0 Hz), 3.62 (dd, 1 H, 3JHH = 7.5 Hz, 2JHP = 21.5 
Hz), 3.82–4.19 (m, 4 H), 4.55 (t, 1 H, 3JHH = 7.7 Hz), 7.42 (s, 
4 H). 13C NMR (CDCl3): d = 16.1 (d, 3JCP = 5.0 Hz), 16.2 (d, 
3JCP = 5.6 Hz), 25.5, 43.9 (d, 1JCP = 144.7 Hz), 63.5 (d, 
2JCP = 7.0 Hz), 64.4 (d, 2JCP = 7.0 Hz), 111.0 (d, 3JCP = 11.9 
Hz), 111.2 (d, 3JCP = 11.3 Hz), 128.8, 129.6, 130.7, 135.7. 
31P NMR (CDCl3): d = 19.42. MS  (70 eV): m/z = 326 [M+], 
328 [M+ + 2], 189 [M+ – P(O)(OEt)2], 191 [(M+ + 2) – 
P(O)(OEt)2].
[1-(Naphthalen-2-yl)-2,2-dicyanoethyl] Phosphonic Acid 
Diethyl Ester (2j)
1H NMR (CDCl3): d = 1.08 (t, 3 H, 3JHH = 7.0 Hz), 1.36 (t, 3 
H, 3JHH = 7.0 Hz), 3.65–4.22 (m, 5 H), 4.66 (t, 1 H, 3JHH = 
8.5 Hz), 7.52–7.58 (m, 3 H), 7.87–7.96 (m, 4 H). 13C NMR 
(CDCl3): d = 16.1 (d, 3JCP = 5.6 Hz), 16.2 (d, 3JCP = 6.2 Hz), 
25.7, 44.8 (d, 1JCP = 144.0 Hz), 63.4 (d, 2JCP = 7.5 Hz), 64.4 
(d, 2JCP = 7.0 Hz), 111.2 (d, 3JCP = 13.2 Hz), 111.3 (d, 3JCP = 
8.2 Hz), 125.9, 126,9, 127.2, 127.6, 127.7, 127.8, 128.2, 
129.2, 129.4, 133.3. 31P NMR (CDCl3): d = 19.95.
[1-(Furan-2-yl)-2,2-dicyanoethyl] Phosphonic Acid 
Diethyl Ester (2k)
1H NMR (CDCl3): d = 1.24–1.37 (m, 6 H), 3.87 (dd, 1 H, 
3JHH = 6.5 Hz, 2JHP = 22.7 Hz), 3.98–4.23 (m, 4 H), 4.51 (t, 
1 H, 3JHH = 8.7 Hz), 6.44 (s, 1 H), 6.62 (s, 1 H), 7.49 (s, 1 H).
13C NMR (CDCl3): d = 16.1, 16.2, 24.3, 39.1 (d, 1JCP = 147.1 
Hz), 63.9 (d, 2JCP = 6.9 Hz), 64.2 (d, 2JCP = 6.9 Hz), 110.9 (d, 
3JCP = 9.4 Hz), 111.1 (d, 3JCP = 11.9 Hz), 111.3, 111.7, 143.2, 
144.0. 31P NMR (CDCl3): d = 19.88. MS (70 eV): m/z = 282 
[M+], 145 [M+ –P(O)(OEt)2].
[1-(Pyridin-3-yl)-2,2-dicyanoethyl] Phosphonic Acid 
Diethyl Ester (2m)
1H NMR (CDCl3): d = 1.18 (t, 3 H, 3JHH = 6.8 Hz), 1.33 (t, 3 
H, 3JHH = 7.0 Hz), 3.65 (dd, 1 H, 3JHH = 6.8 Hz, 2JHP = 21.6 
Hz), 3.92–4.21 (m, 4 H), 4.63 (t, 1 H, 3JHH = 8.5 Hz), 7.39 (t, 
1 H, 3JHH = 6.5 Hz), 7.95 (d, 1 H, 3JHH = 6.5 Hz), 8.67 (s, 2 
H). 13C NMR (CDCl3): d = 16.1 (d, 3JCP = 5.0 Hz), 16.2 (d, 
3JCP = 5.0 Hz), 25.3, 42.1 (d, 1JCP = 144.6 Hz), 63.8 (d, 
2JCP = 7.0 Hz), 64.5 (d, 2JCP = 7.0 Hz), 110.8 (d, 3JCP = 10.7 
Hz), 111.0 (d, 3JCP = 11.9 Hz), 124.0, 126,7, 136.5, 150.5, 
150.8. 31P NMR (CDCl3): d = 19.03. MS (70 eV): m/z = 293 
[M+], 156 [M+ – P(O)(OEt)2].
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