Tetrahedron Letters 54 (2013) 1097-1099

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

tion to the chiral aldehyde and Still-Gennari olefination.

First stereoselective total synthesis of pectinolide C and total synthesis of pectinolide A

Gowravaram Sabitha*, Sukant Kishore Das, Praveen AnkiReddy, J. S. Yadav

Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 607, India

ARTICLE INFO

ABSTRACT

Article history: Received 26 October 2012 Revised 10 December 2012 Accepted 12 December 2012 Available online 20 December 2012

Keywords: Pectinolides δ-Lactones Chelation-controlled Still-Gennari First synthesis

In recent times, naturally occurring 6-membered lactones have attracted significant interest among synthetic chemists and biologists due to their interesting biological activities. Pectinolides A-C (Fig. 1 and 1-3)¹ are such examples, isolated from the Mexican shrub Hyptis pectinata (Lamiaceae), which was used as a remedy in the treatment of fevers, skin diseases, gastric disturbances,² rhinopharyngitis, and lung congestion.³ In addition, pectinolides were found to exhibit significant cytotoxic activity (ED50 $<4 \mu g/ml$) against a variety of tumor cell lines as well as antibacterial activity against the Gram-positive bacteria. On the basis of spectral, chiroptical, and chemical evidence, the absolute stereochemistry of pectinolide A was established as 6S-[(3S-acetyloxy)-1Z-heptenyl]-5S-(acetyloxy)-5,6-dihydro-2H-pyran-2-one. Mosher ester derivatives were used with pectinolide B (2) for confirmation of the 3'-(S) absolute stereochemistry on the side chain chiral center of pectinolides A–C. The structures of pectinolides B(2) and C(3) were determined as the monodeacetylated forms of 1 by comparison of their spectral data and chemical correlation with the prototype compound. Staphylococcus aureus and Bacillus subtilis were sensitive to pectinolide A (1) in the concentration range of $6.25-12.5 \,\mu g/$ ml. Our continued interest on the synthesis of bio-active lactones, prompted us to undertake the synthesis of these molecules. While our work on the synthesis of 1 and 3 was in progress, one synthesis of pectinlolide A has appeared,⁵ whereas, there is no report on the synthesis of pectinolide C.

Herein, we report the first stereoselective total synthesis of pectinolide C and total synthesis of pectinolide A by a convergent strategy which relies on acetylenic addition onto a chiral aldehyde, and *cis*-Wittig olefination as the key steps.

© 2013 Elsevier Ltd. All rights reserved.

The first stereoselective synthesis of pectinolide C and synthesis of pectinolide A, from easily accessible 1-

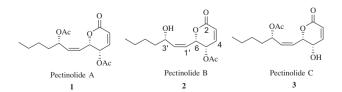
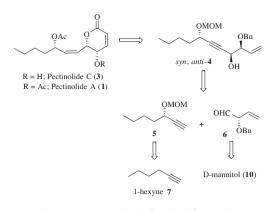
hexyne and p-mannitol are reported in a convergent manner. The salient features include acetylenic addi-

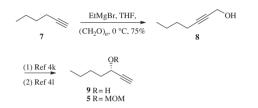
Tetrahedro

Retrosynthetic analysis (Scheme 1) reveals that target pectinolides **3** and **1** can be obtained from *syn*, *anti*-isomer **4**, which was accessible from acetylenic compound **5** and aldehyde **6** by an addition reaction. Alkyne **5** and aldehyde **6** in turn could be obtained from readily available 1-hexyne **7** and p-mannitol, respectively.

The synthesis of MOM-protected propargylic alcohol **5** commenced from 1-hexyne **7** (Scheme 2) by converting it into propargylic alcohol **8**. Thus, we proceeded to couple the in situ metalated hexyne (obtained by treating **7** with ethyl magnesium bromide) with formaldehyde to afford **8** with 75% yield. Compound **8** was converted into chiral propargylic alcohol **9** in four steps as reported earlier.^{4k} MOM protection of the resulting secondary alcohol in compound **9** afforded fragment **5** in 85% yield.⁴¹

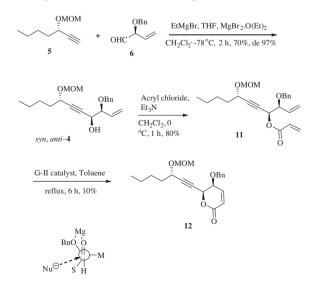
The aldehyde **6** is a known compound which was synthesized from the commercially available p-mannitol **10** according to the reported procedure in 85% yield.⁶

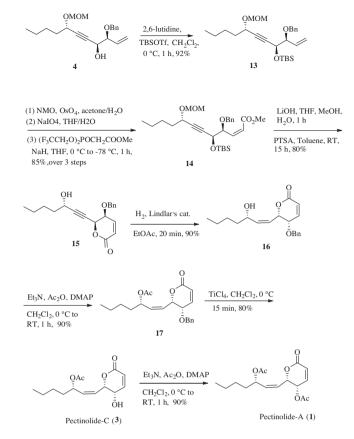

Figure 1. Structure of pectinolides A-C.

^{0040-4039/\$ -} see front matter \odot 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.12.039

Scheme 1. Retrosynthesis of pectinolides C and A.



Scheme 2. Synthesis of MOM-protected propargylic alcohol 5.


With the two intermediates **5** and **6** in hand, we proceeded to couple in situ metalated alkyne (obtained by treating **5** with ethyl magnesium bromide) with aldehyde **6** in the presence of MgBr₂·Et₂O at -78 °C to furnish the *syn*, *anti*-isomer **4** in 70% yield with high diastereomeric excess (de = >97%) analyzed by chiral HPLC.⁷ Formation of major diastereomeric alcohol can be explained on the basis of chelation-controlled (Anti Felkin-Anh model) addition of Grignard nucleophile to the aldehyde leading to the single stereoisomer *syn*, *anti*-**4**.

Acylation of compound **4** with acryloyl chloride in the presence of NEt₃ in CH_2Cl_2 gave acrylate ester **11**. Unfortunately, several attempts for the ring-closing metathesis of diene **11** using Grubbs' second-generation ruthenium catalyst (Ru-II) were not successful, resulting in 10% yield of the required lactone **12** (Scheme 3).

Because of low yields in the RCM reaction, the terminal olefin in compound **4** needs to be cleaved and Still–Gennari reaction should be performed. The free hydroxyl group in **4** is thus protected as TBS ether using TBSOTf and 2,6-lutidine to provide **13**. The latter was

Scheme 3. Synthesis of lactone 12.

Scheme 4. Synthesis of pectinolides C (3) and A (1).

then converted into the corresponding aldehyde by dihydroxylation of the terminal double bond, oxidative cleavage of the resulting 1,2-diol followed by modified Still–Gennari olefination with (F₃CCH₂O)₂POCH₂COOMe) in THF to afford *cis*-olefinic ester **14**. Since attempts to cyclize TBS-protected ester **14** to the lactone **15** failed under several conditions, we decided to hydrolyze the ester group. Ester **14** was thus converted into the corresponding acid by hydrolysis using 0.5 N aq LiOH in THF/MeOH (2:1), which without further purification, directly treated with PTSA in toluene at room temperature to form lactone **15** in a one-pot reaction via a *three*-step sequence (TBDMS deprotection, lactonization, and MOM deprotection) (85%, over two steps). Next, the triple bond was partially reduced to the *cis*-olefin **16** using Lindlar's catalyst and then free hydroxyl group was acetylated with acetic anhydride to furnish **17**.

Finally global debenzylation (TiCl₄/CH₂Cl₂/0 °C/15 min) gave the target pectinolide C (**3**) { $[\alpha]_D^{25}$ +72.4 (*c* = 0.5, MeOH), lit. $[\alpha]_D^{25}$ +80.99 (*c* = 0.76, MeOH)} (80%), whose spectroscopic data were identical to that of the natural product. Further, in a separate experiment, **3** was acetylated by using acetic anhydride/Et₃N to afford pectinolide A (**1**) { $[\alpha]_D^{25}$ +191.3 (*c* = 0.5, MeOH), lit. $[\alpha]_D^{25}$ +202.0 (*c* = 0.15, MeOH)} in 90% yield (Scheme 4). The physical and spectroscopic data of our synthetic sample **1** were identical to those of the reported natural and synthetic products.

We have accomplished the total synthesis of **3** and **1** starting from relatively cheap and commercially available *p*-mannitol and 1-hexyne by means of a versatile strategy utilizing acetylenic addition to the chiral aldehyde and Still–Gennari olefination.

Acknowledgments

S.K.D. thanks UGC and A.P.R. thanks CSIR, New Delhi for the award of fellowships.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.12. 039.

References and notes

- Pereda-Miranda, R.; Hernández, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, M.; Chai, H.; Pezzuto, J. M. J. Nat. Prod. 1993, 56, 583–593.
- Mattinez, M. Las Plantas Medicinales de Mexico; Mexico: Editorial Botas, 1989. p 508.
- Malan, K.; Pelissier, Y.; Marion, C.; Blaise, A.; Blessiere, J. Planta Med. 1988, 54, 531–532.
- (a) Sabitha, G.; Bhaskar, V.; Reddy, S. S. S.; Yadav, J. S. *Tetrahedron* 2008, 64, 10207–10213; (b) Sabitha, G.; Bhaskar, V.; Reddy, S. S. S.; Yadav, J. S. *Synthesis* 2009, 3285; (c) Sabitha, G.; Gopal, P.; Reddy, C. N.; Yadav, J. S. *Tetrahedron Lett.* 2009, 46, 6298–6302; (d) Sabitha, G.; Gopal, P.; Reddy, C. N.; Yadav, J. S. *Synthesis* 2009, 3301; (e) Sabitha, G.; Fatima, N.; Gopal, P.; Reddy, C. N.; Yadav, J. S. *Synthesis* 2009, 3301; (e) Sabitha, G.; Fatima, N.; Gopal, P.; Reddy, C. N.; Yadav, J. S. *Tetrahedron: Asymmetry* 2009, 20, 184–191; (f) Sabitha, G.; Prasad, M. N.; Shankaraiah, K.; Yadav, J. S. *Synthesis* 2010, 1171–1175; (g) Sabitha, G.; Reddy, S. S.; Yadav, J. S. *Tetrahedron Lett.* 2011, 52, 2407–2409; (i) Sabitha, G.; Reddy, S. S.; Yadav, J. S. *Tetrahedron Lett.* 2011, 52, 2407–2409; (i) Sabitha, G.; Reddy, C. N.; Raju, A.; Yadav, J. S. *Tetrahedron: Asymmetry* 2011, 22, 493–498; (j) Sabitha, G.; Reddy, C. N.; Reddy, S. S.; Yadav, J. S. *S.*; Yadav, J. S. *Synthesis* 2012, 2, 7241–7247; (l) José-Luis, A.; Villorbina, G.; Camps, F. J. Org. Chem. 2004, 69, 7108–7113.
- 5. Yadav, J. S.; Mandal, S. S. Tetrahedron Lett. 2011, 52, 5747-5749.
- Kamal, A.; Reddy, P. V.; Prabhakar, S. Tetrahedron: Asymmetry 2009, 20, 1120– 1124.

7. The diastereomeric excess of the product was determined using a Shimadzu high-performance liquid-chromatography (HPLC) system equipped with a chiral HPLC column (Chiralcel OD) and a UV detector at an absorbance of 225 nm. ATLANTIS DC18 150 × 4.6 mm, 5 μ (column) and a solvent system of acetonitrile and 0.1% formic acid at a flow rate of 1.0 ml/min were used. t_R : 15.9 and 17.2 min.

Spectral data for selected compounds:

(35,45,75)-3-(benzyloxy)-7-(methoxymethoxy)undec-1-en-5-yn-4-ol (4): $[\alpha]_D^{25}$: -19.4 (c = 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.39–7.29 (m, 5H), 5.97– 5.75 (m, 1H), 5.46–5.35 (m, 2H), 4.92 (dd, *J* = 6.8, 4.5 Hz, 1H), 4.68 (d, *J* = 11.3 Hz, 2H), 4.56 (d, *J* = 6.8 Hz, 1H), 4.43 (d, *J* = 11.3 Hz, 1H), 4.39–4.32 (m, 1H), 3.96– 3.83 (m, 1H), 3.36 (s, 3H), 1.82–1.62 (m, 2H), 1.48–1.27 (m, 4H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 134.0, 133.7, 128.4, 127.8, 127.7, 120.5, 94.0, 84.9, 83.2, 82.2, 70.8, 70.4, 65.1, 55.5, 35.2, 27.3, 22.3, 13.9; IR (neat) 3444, 2933, 2871, 1457, 1096, 1033, 738, 698 cm⁻¹; ESI HRMS *m/z* calcd for C₂₀H₂₈O₄Na [M+Na]^{*} 355.18798, found 355.18971.

 $\begin{array}{l} (SZ) - 1 - ((2S,3S) - 3 - hydroxy - 6 - oxo - 3, 6 - dihydro - 2H - pyran - 2 - yl)hept - 1 - en - 3 - yl \\ acetate (3): [x]_D^{25} + 72.4 (c = 0.5, MeOH); ^1H NMR (CDCI_3, 300 MHz): \delta 7.01 (dd,$ J = 9.8, 5.3 Hz, 1H), 6.15 (d, J = 9.8 Hz, 1H), 5.78 - 5.64 (m, 2H), 5.51 (ddd, J = 9.8,7.5, 6.0 Hz, 1H), 5.30 (dd, J = 6.0, 2.3 Hz, 1H), 4.15 (dd, J = 5.3, 2.3 Hz, 1H), 2.05 (s, $3H), 1.72 - 1.56 (m, 4H), 1.39 - 1.30 (m, 2H), 0.91 (t, J = 6.8 Hz, 3H); ^{13}C NMR$ $(CDCI_3, 75 MHz): \delta 171.0, 162.7, 144.2, 134.1, 125.5, 122.8, 77.8, 70.9, 63.1, 34.2,$ 27.1, 22.4, 21.1, 13.9; IR (neat) 3443, 2928, 1725, 1245, 1039 cm⁻¹; ESI HRMS*m*/*z*calcd for C₁₄H₂₀O₅Na [M+Na]⁺ 291.12029, found 291.12109.

(S,Z)-1-((2S,3S)-3-acetoxy-6-oxo-3,6-dihydro-2H-pyran-2-yl)hept-1-en-3-yl acetate (1): $[x]_D^{25}$ +191.3 (c = 0.5, MeOH); ¹H NMR (CDCl₃, 300 MHz): δ 6.96 (dd, J = 9.6, 5.6 Hz, 1H), 6.24 (d, J = 9.8 Hz, 1H), 5.73 (dd, J = 11.1, 8.3 Hz, 1H), 5.62 (dd, J = 10.7, 8.3 Hz, 1H), 5.59 (dd, J = 7.9, 2.8 Hz, 1H), 5.35 (ddd, J = 13.5, 7.1, 6.6 Hz, 1H), 5.17 (dd, J = 5.7, 2.8 Hz, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 1.78-1.52 (m, 2H), 1.36-1.12 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 170.2, 169.8, 162.0, 139.9, 133.1, 126.2, 125.1, 75.0, 69.4, 64.2, 34.0, 27.2, 22.4, 21.0, 20.4, 13.8; IR (neat) 2925, 2856, 1739, 1373, 1225, 1029, 771 cm⁻¹; ESI HRMS m/z calcd for C₁₆H₂₂O₆Na [M+Na]⁺ 333.13086, found 333.13196.