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The first stereoselective synthesis of pectinolide C and synthesis of pectinolide A, from easily accessible 1-
hexyne and D-mannitol are reported in a convergent manner. The salient features include acetylenic addi-
tion to the chiral aldehyde and Still–Gennari olefination.
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In recent times, naturally occurring 6-membered lactones have
attracted significant interest among synthetic chemists and biolo-
gists due to their interesting biological activities. Pectinolides A–C
(Fig. 1 and 1–3)1 are such examples, isolated from the Mexican
shrub Hyptis pectinata (Lamiaceae), which was used as a remedy
in the treatment of fevers, skin diseases, gastric disturbances,2 rhi-
nopharyngitis, and lung congestion.3 In addition, pectinolides were
found to exhibit significant cytotoxic activity (ED50 <4 lg/ml)
against a variety of tumor cell lines as well as antibacterial activity
against the Gram-positive bacteria. On the basis of spectral, chirop-
tical, and chemical evidence, the absolute stereochemistry of pec-
tinolide A was established as 6S-[(3S-acetyloxy)-1Z-heptenyl]-5S-
(acetyloxy)-5,6-dihydro-2H-pyran-2-one. Mosher ester derivatives
were used with pectinolide B (2) for confirmation of the 30-(S)
absolute stereochemistry on the side chain chiral center of pectino-
lides A–C. The structures of pectinolides B (2) and C (3) were deter-
mined as the monodeacetylated forms of 1 by comparison of their
spectral data and chemical correlation with the prototype com-
pound. Staphylococcus aureus and Bacillus subtilis were sensitive
to pectinolide A (1) in the concentration range of 6.25–12.5 lg/
ml. Our continued interest on the synthesis of bio-active lactones,4

prompted us to undertake the synthesis of these molecules. While
our work on the synthesis of 1 and 3 was in progress, one synthesis
of pectinlolide A has appeared,5 whereas, there is no report on the
synthesis of pectinolide C.
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Herein, we report the first stereoselective total synthesis of pec-
tinolide C and total synthesis of pectinolide A by a convergent
strategy which relies on acetylenic addition onto a chiral aldehyde,
and cis-Wittig olefination as the key steps.

Retrosynthetic analysis (Scheme 1) reveals that target pectino-
lides 3 and 1 can be obtained from syn, anti-isomer 4, which was
accessible from acetylenic compound 5 and aldehyde 6 by an addi-
tion reaction. Alkyne 5 and aldehyde 6 in turn could be obtained
from readily available 1-hexyne 7 and D-mannitol, respectively.

The synthesis of MOM-protected propargylic alcohol 5 com-
menced from 1-hexyne 7 (Scheme 2) by converting it into propar-
gylic alcohol 8. Thus, we proceeded to couple the in situ metalated
hexyne (obtained by treating 7 with ethyl magnesium bromide)
with formaldehyde to afford 8 with 75% yield. Compound 8 was
converted into chiral propargylic alcohol 9 in four steps as reported
earlier.4k MOM protection of the resulting secondary alcohol in
compound 9 afforded fragment 5 in 85% yield.4l

The aldehyde 6 is a known compound which was synthesized
from the commercially available D-mannitol 10 according to the re-
ported procedure in 85% yield.6
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Figure 1. Structure of pectinolides A–C.
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Scheme 2. Synthesis of MOM-protected propargylic alcohol 5.
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Scheme 4. Synthesis of pectinolides C (3) and A (1).
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Scheme 1. Retrosynthesis of pectinolides C and A.
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With the two intermediates 5 and 6 in hand, we proceeded to
couple in situ metalated alkyne (obtained by treating 5 with ethyl
magnesium bromide) with aldehyde 6 in the presence of
MgBr2�Et2O at �78 �C to furnish the syn, anti-isomer 4 in 70% yield
with high diastereomeric excess (de = >97%) analyzed by chiral
HPLC.7 Formation of major diastereomeric alcohol can be explained
on the basis of chelation-controlled (Anti Felkin-Anh model) addi-
tion of Grignard nucleophile to the aldehyde leading to the single
stereoisomer syn, anti-4.

Acylation of compound 4 with acryloyl chloride in the presence
of NEt3 in CH2Cl2 gave acrylate ester 11. Unfortunately, several at-
tempts for the ring-closing metathesis of diene 11 using Grubbs’
second-generation ruthenium catalyst (Ru-II) were not successful,
resulting in 10% yield of the required lactone 12 (Scheme 3).

Because of low yields in the RCM reaction, the terminal olefin in
compound 4 needs to be cleaved and Still–Gennari reaction should
be performed. The free hydroxyl group in 4 is thus protected as TBS
ether using TBSOTf and 2,6-lutidine to provide 13. The latter was
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Scheme 3. Synthesis of lactone 12.
then converted into the corresponding aldehyde by dihydroxyla-
tion of the terminal double bond, oxidative cleavage of the result-
ing 1,2-diol followed by modified Still–Gennari olefination with
(F3CCH2O)2POCH2COOMe) in THF to afford cis-olefinic ester 14.
Since attempts to cyclize TBS-protected ester 14 to the lactone
15 failed under several conditions, we decided to hydrolyze the es-
ter group. Ester 14 was thus converted into the corresponding acid
by hydrolysis using 0.5 N aq LiOH in THF/MeOH (2:1), which with-
out further purification, directly treated with PTSA in toluene at
room temperature to form lactone 15 in a one-pot reaction via a
three-step sequence (TBDMS deprotection, lactonization, and
MOM deprotection) (85%, over two steps). Next, the triple bond
was partially reduced to the cis-olefin 16 using Lindlar’s catalyst
and then free hydroxyl group was acetylated with acetic anhydride
to furnish 17.

Finally global debenzylation (TiCl4/CH2Cl2/0 �C/15 min) gave
the target pectinolide C (3) {½a�25

D +72.4 (c = 0.5, MeOH), lit. ½a�25
D

+80.99 (c = 0.76, MeOH)} (80%), whose spectroscopic data were
identical to that of the natural product. Further, in a separate
experiment, 3 was acetylated by using acetic anhydride/Et3N to af-
ford pectinolide A (1) {½a�25

D +191.3 (c = 0.5, MeOH), lit. ½a�25
D +202.0

(c = 0.15, MeOH)} in 90% yield (Scheme 4). The physical and spec-
troscopic data of our synthetic sample 1 were identical to those of
the reported natural and synthetic products.

We have accomplished the total synthesis of 3 and 1 starting
from relatively cheap and commercially available D-mannitol and
1-hexyne by means of a versatile strategy utilizing acetylenic addi-
tion to the chiral aldehyde and Still–Gennari olefination.
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