

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 326 (2000) 250-263

Synthesis of 4-deoxy-4-fluoro analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-galactose and their effects on cellular glycosaminoglycan biosynthesis

Ali Berkin^a, Walter A. Szarek^{a,*1}, Robert Kisilevsky^{b,*2}

^a Department of Chemistry, Queen's University, Kingston, Ont., Canada K7L 3N6 ^b Departments of Pathology and Biochemistry, Queen's University, and The Syl and Molly Apps Research Center, Kingston General Hospital, Kingston, Ont., Canada K7L 3N6

Received 4 January 2000; accepted 31 January 2000

Abstract

4-Deoxy-4-fluoro analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-galactose were synthesized and evaluated as inhibitors of hepatic glycosaminoglycan biosynthesis. 2-Acetamido-1,3,6-tri-*O*-acetyl-2,4dideoxy-4-fluoro-D-glucopyranose (**16**) exhibited a reduction of [³H]GlcN and [³⁵S]SO₄ incorporation into hepatocyte cellular glycosaminoglycans to 12 and 18%, respectively, of the control cells, at 1.0 mM. Similarly, 2-acetamido-1,3,6tri-*O*-acetyl-2,4-dideoxy-4-fluoro-D-galactopyranose (**31**) exhibited a reduction of [³H]GlcN and [³⁵S]SO₄ incorporation to 1 and 9%, respectively, of the control cells, at 1.0 mM. Unlike **16**, **31** exhibited a reduction of [¹⁴C]Leu incorporation into cellular protein to 57% of control cells, at 1.0 mM. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Glycosaminoglycans; 2-Acetamido-2,4-dideoxy-4-fluoro-D-glucopyranose derivatives; 2-Acetamido-2,4-dideoxy-4-fluoro-D-galactopyranose derivatives

1. Introduction

Cell-surface heparan sulfate (HS) proteoglycans play an important role in regulating several biological functions of a cell, including cell-cell migration, adhesion, growth and communication, and can serve as receptors for various proteins. HS has been identified as a receptor for herpes simplex virus [1] and is implicated in tumor invasion and metastasis [1,2], arthritis [3], adult-onset diabetes [4], and Alzheimer's disease [5].

The availability of synthetic HS analogues to perturb glycosaminoglycan (GAG) biosynthesis could greatly affect the above-mentioned disorders. The GAG chain of HS is composed of repeating disaccharides of $(1 \rightarrow$ 4)-linked D-glucosamine and uronic acid residues that are variably N- and O-sulfonated. This polysaccharide chain is attached by a tetrasaccharide linkage region consisting of -D-GlcA- β -(1 \rightarrow 3)-D-Gal- β -(1 \rightarrow 3)-D-Gal- β -(1 \rightarrow 4)-D-Xyl- β - to L-serine, and the serine residue is attached to the core protein. We have shown [6] that 3-deoxy-D-xylo-hexose ('3-deoxy-D-galactose') and a 4-chloro-4-de-

¹ *Corresponding author. Tel.: +1-613-5332643; fax: +1-

^{613-5336532;} e-mail: szarekw@chem.queensu.ca

² *Corresponding author.

oxy analogue of a uronic acid, namely methyl (methyl 4-chloro-4-deoxy- β -D-galactopyranosid)uronate [6], significantly reduced D-[³H]glucosamine ([³H]GlcN) and [³⁵S]sulfate ([³⁵S]SO₄) incorporation into cellular GAGs of mouse hepatocytes in culture. The latter compound also exhibited a significant reduction of L-[¹⁴C]leucine ([¹⁴C]Leu) incorporation into total cellular protein synthesis in vitro. Recently, we also found [7] that some 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose were significant inhibitors of both protein and glycoconjugate biosynthesis.

Fluorinated carbohydrates have significant biological activities [8] and are of interest as biological probes, antitumor agents, and inhibitors of hexokinases. The altered hydrogenbonding properties of fluorine and its atomic size relative to that of hydrogen make it of interest in the synthesis of other HS analogues. Sharma et al. [9] have evaluated a series of 4- and 6-fluoro derivatives of 2-acetamido-2-deoxy-D-hexopyranoses on L1210 leukemia cell growth in vitro and found significant inhibition of both total protein and glycoconjugate biosynthesis.

Herein we report the synthesis and biological evaluation of a series of 2-acetamido-2,4dideoxy-4-fluoro-D-glucopyranoses and of 2-acetamido-2,4-dideoxy-4-fluoro-D-galactopyranoses, directed towards influencing cellular GAG and total protein biosynthesis.

2. Results and discussion

Chemical synthesis.—4-Fluoro analogues of 2-acetamido-2.4-dideoxy-D-glucose (Scheme 1) were synthesized by double inversion of the configuration at C-4 of the corresponding 3.6di-O-benzoyl analogues. The 3,6-di-O-benzoyl analogues 1-3 were prepared from the corresponding methyl and benzyl glycosides in a one-step fashion following the procedure of Wang and Lee [10]. Briefly, methyl 2acetamido-2-deoxy- α -D-glucopyranoside [11], methyl 2-acetamido-2-deoxy-B-D-glucopyranoside [11] and benzyl 2-acetamido-2-deoxy- α -D-glucopyranoside [12] were each treated with benzovl chloride in pyridine at -45 °C to afford 1 (82.4%), 2 [10] (70.9%), and 3 [13] (76.9%), respectively, following flash chromatography. Compounds 1, 2, and 3 were each treated with trifluoromethanesulfonic anhydride in pyridine to afford the 4-O-triflyl derivatives, which were isolated and immediately treated with sodium nitrite in DMF to produce the inversion products 4 [10] (58.8%),

Scheme 1. Synthesis of 4-fluoro analogues of 2-acetamido-2,4-dideoxy-D-glucopyranose. Reagents: (i) Tf₂O, pyr; (ii) NaNO₂, DMF; (iii) DAST, CH₂Cl₂; (iv) KOH, MeOH; (v) H₂, Pd-C, AcOH; (vi) Ac₂O, pyr.

Scheme 2. Synthesis of 4-fluoro analogues of 2-acetamido-2,4-dideoxy-D-galactopyranose. Reagents: (i) MsCl, pyr; (ii) TBAF, MeCN; (iii) H₂, Pd-C, AcOH; (iv) Ac₂O, pyr.

5 [10] (50.8%), and **6** [14] (58.2%), respectively. ¹H NMR spectroscopy provided evidence for the inversion of configuration at C-4 for each of compounds **4**–**6** by the disappearance of a discernible H-4–H-5 coupling, an observation indicative of the *galacto* configuration, which was confirmed by NOE experiments.

Treatment of each of compounds 4, 5, and 6 with (diethylamino)sulfur trifluoride (DAST) afforded 7 (81.4%), 8 (40.2%), and 9 (85.2%), respectively. The low yield for the conversion of 5 into 8 is a result of the formation of two unknown side-products, one of which was a fluorinated compound. The inversion of configuration at C-4 for each of compounds 7–9 was determined by ¹H NMR spectroscopy and NOE experiments. Also, ¹⁹F NMR spectroscopy of 7–9 revealed in each case a doublet of doublets at $\delta \sim 197$ ($J \sim 14$ and 51 Hz), a result indicative of an equatorially disposed fluorine atom at C-4 [15].

Compounds 7, 8, and 9 were each O-debenzoylated using KOH in MeOH to afford 10 (90.2%), 11 (81.4%), and 12 (92.5%), respectively. Removal of the benzyl protecting group of 12 by catalytic hydrogenolysis in the presence of 10% Pd-C and hydrogen afforded 13 [9a] (89.1%), which was acetylated with acetic anhydride and pyridine to afford 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-4-fluoro-D-glucopyranose [9a] (16, 93.2%). ¹H NMR spectroscopy of 13 indicated a mixture of α and β anomers in a ratio of 5.7:1, respectively. Compounds 10 and 11 were each acetylated, as above, to afford methyl 2-acetamido-3,6-di-*O*-acetyl-2,4-dideoxy-4-fluoro- α -D-glucopyranoside (14, 88.2%) and methyl 2-acetamido-3,6-di-*O*-acetyl-2,4-dideoxy-4-fluoro- β -D-glucopyranoside (15, 86.8%), respectively.

The synthesis of 4-fluoro analogues of 2-acetamido-2,4-dideoxy-D-galactose (Scheme 2) was attempted from 1-3 using DAST, but was unsuccessful. An alternative route employing the 3,6-di-O-benzyl analogues, 17–19, was investigated. Compounds 17 [16], 18 [17], and 19 [18] were each prepared according to literature procedures and were treated with methanesulfonyl chloride in pyridine to afford **20** (75.2%), **21** (73.6%), and **22** [9a,19] (77.5%), respectively. Compounds 20, 21, and 22 were each treated with anhydrous tetra-*n*-butylammonium fluoride (TBAF) [20] in MeCN to afford 23 (54.3%), 24 (64.0%), and 25 [9a,19] (62.0%), respectively. The difficulty of fluorine substitution at C-4 of 20-22 is evident by the low yields and long reaction times (MeCN at reflux temperature, 4-6 days). Notably, the TBAF must be completely dry before use. ¹H NMR spectroscopy and NOE experiments confirmed the *galacto* configuration for each of **23–25**. Furthermore, the ¹⁹F NMR spectrum for each of **23–25** exhibited a doublet of triplets at $\delta \sim 220$ ($J \sim 28$ and 50 Hz) indicative of an axially disposed fluorine atom at C-4 [9a,19].

Removal of the benzyl protecting groups of each of 23–25 by catalytic hydrogenolysis in the presence of 10% Pd–C and hydrogen afforded 26 (98.2%), 27 (86.5%), and 28 [9a] (87.6%), respectively, which were each acety-lated to afford compounds 29 (84.1%), 30 (88.9%), and 31 [9a] (quant), respectively. ¹H NMR spectroscopy of 31 indicated a mixture of α and β anomers in a ratio of 3.2:1, respectively.

Biological evaluation.—Murine hepatocytes were isolated and placed in culture as described previously [6], and these were then treated with $[^{3}H]$ GlcN and $[^{35}S]$ SO₄ or with

Fig. 1. Effects of increasing concentrations of compounds **16** and **31** on hepatocyte cellular GAG synthesis. Hepatocyte cultures were incubated with D-[³H]glucosamine and [³⁵S]sulfate for 24 h in the absence (control) and presence of compounds **16** (panel A) and **31** (panel B) at 0.01, 0.1, and 1.0 mM. The values represent the mean \pm S.D. of triplicate cultures. Statistical analyses using an unpaired *t*-test revealed that in panel A, control vs. 0.01 or 0.1 mM, not significant; control vs. 0.1 mM, P < 0.01; control vs. 0.01 mM, P < 0.01; control vs. 1.0 mM, P < 0.01.

[¹⁴C]Leu in the presence and absence of sugar analogues for 24 h. Peracetylated sugars are more lipophilic than their non-acetylated counterparts, a feature that allows for increased cellular uptake by passive diffusion [21]. Therefore, the fluorinated analogues were fully acetylated for in vitro testing.

No significant inhibitory effect was observed (results not shown) for the 4-fluoro analogues of methyl 2-acetamido-2,4-dideoxy-D-glucopyranoside (14 and 15), whereas the analogue 16 displayed a marked reduction of [³H]GlcN and [³⁵S]SO₄ incorporation into hepatocyte cellular GAGs to 12 and 18%, respectively, of the control cells, at 1.0 mM (Fig. 1(A)). The 4-fluoro analogues of methyl 2-acetamido-2,4-dideoxy-D-galactopyranoside (29 and 30) exhibited no significant inhibitory effects on [³H]GlcN and [³⁵S]SO₄ incorporation into isolated GAGs up to 1.0 mM (results not shown). The corresponding analogue 31 exhibited a large inhibition of cellular GAG synthesis by a reduction of [3H]GlcN and $[^{35}S]SO_4$ incorporation to 1 and 9%, respectively, of the control cells, at 1.0 mM (Fig. 1(B)). It is possible that the methyl glycosides 14, 15, 29, and 30 are poor substrates for lysosomal glycosidases as has been observed for 4-deoxy-D-glucopyranosides and 4-deoxy-4-fluoro-D-galactopyranosides [22,23].

The 4-fluoro analogues of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine (16 and 31, respectively) were also evaluated for total protein inhibition by the measurement of ¹⁴C]Leu incorporation into isolated glycoconjugates. Compound 16 exhibited no inhibition of cellular protein synthesis up to 1.0 mM (Fig. 2(A)); however, **31** exhibited a reduction in [¹⁴C]Leu incorporation into cellular protein to 57% of the control cells, at 1.0 mM (Fig. 2(B)). The reduction in total protein synthesis observed for 31 may not be surprising since D-galactosamine is known to be rapidly converted into a UDP-analogue, a process which acts to trap uridine and deplete intracellular UDP pools, and which has been shown to inhibit protein biosynthesis [24,25].

Sharma et al. [9a] have shown that compounds **16** and **31** demonstrated ID_{50} values of 0.035 and 0.034 mM, respectively, for the inhibition of L1210 leukemia cell growth. Fur-

Fig. 2. Effects of increasing concentrations of compounds **16** and **31** on hepatocyte cellular total protein synthesis. Hepatocyte cultures were incubated with L-[¹⁴C]leucine for 24 h in the presence of compounds **16** (panel A) and **31** (panel B) at 0.01, 0.1, and 1.0 mM. The values represent the mean \pm S.D. of triplicate cultures. Statistical analyses using an unpaired *t*-test revealed that in panel A, control vs. 0.01, 0.1, or 1.0 mM, not significant. In panel B, control vs. 0.01 or 0.1 mM, not significant; control vs. 1.0 mM, P < 0.01.

thermore, in their study, compound **31** reduced the incorporation of $[{}^{3}H]GlcN$ and $[{}^{14}C]Leu$ into the total biosynthesized glycoconjugates of L1210 leukemia cells to 48 and 74%, respectively, of control cells at 1.0 mM [9a].

The mechanism of action of the monosaccharide derivatives described in the present work is under investigation.

3. Experimental

General methods and materials.—Melting points were determined on a Fisher–Johns apparatus and are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 polarimeter for solutions in a 1 dm cell at room temperature (rt). ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker AM 400 spectrometer at 400.1, 100.6, and 376.5 MHz, respectively. The signals arising from residual protons in the deuterated solvents were used as internal standards. Chemical shifts (δ) are reported in ppm downfield from Me₄Si for ¹H and ¹³C NMR spectra and downfield from CFCl₃ for ¹⁹F NMR spectra. Thin-layer chromatography (TLC) was performed using glass plates precoated with EM Science Silica Gel 60 F₂₅₄. Flash chromatography was performed using EM Science Silica Gel 60 (230–400 mesh).

 $D-(1,6-^{3}H_{2})$ Glucosamine·HCl (42.3)Ci/ mmol), L-[¹⁴C]leucine (320 mCi/mmol), and $Na_2^{35}SO_4$ (867 mCi/ml) were purchased from either Dupont or ICN Biomedicals. Laboratory chemicals of reagent grade were purchased from Sigma-Aldrich, Fisher Scientific, or BDH Chemicals. Williams' Medium E with L-glutamine, 10% fetal bovine serum, and antibiotic-antimycotic mixtures were supplied by Gibco. Fibronectin, collagenase, papain, and the GAG reference standards (chondroitin sulfate, hyaluronic acid, heparin) as sodium salts were purchased from Sigma-Aldrich.

Preparation of methyl 2-acetamido-3,6-di-O-benzoyl-2-deoxy-α-D-galactopyranoside

(4).—To an ice-cold solution of 1 [7] (3.75 g, 8.46 mmol) in CH_2Cl_2 (50 mL) and pyr (7.0 mL) was added dropwise trifluoromethanesulfonic anhydride (4.76 g, 2 equiv). The solution was stirred for 20 min, diluted with CH2Cl2 (200 mL), and washed successively with icecold, aq solutions of $KHSO_4$ (10%) and NaHCO₃ (satd), and water, dried (MgSO₄), and concentrated under reduced pressure. The crude triflate was used without further purification. To a stirred solution in DMF (100 mL) was added NaNO₂ (1.75 g, 25.4 mmol), and after 40 h at rt, the mixture was concentrated and the residue was coevaporated with toluene under reduced pressure to afford an oil that was subjected to flash chromatography on silica gel (1:1 EtOAc-hexanes). Compound 4 was isolated as tiny, white needles (2.20 g, 58.8%): $R_f 0.31 (3:1 \text{ EtOAc-hexanes})$; mp 202–205 °C, lit. 188–189 °C [10]; $[\alpha]_{D}$ $+85.1^{\circ}$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.86 (s, 3 H, NAc), 3.42 (s, 3 H, OMe), 4.22 (dd ~ t, 1 H, $J_{5,6} = J_{5,6'}$ 6.4 Hz, H-5), 4.26 (d, 1 H, H-4), 4.54 and 4.61 (dq, 2 H, J_{gem} 11.4 Hz, H-6, H-6'), 4.82 (d, 1 H, J_{1.2} 3.6 Hz, H-1), 4.90

(ddd, 1 H, H-2), 5.32 (dd, 1 H, $J_{3,4}$ 3.0, $J_{3,2}$ 11.1 Hz, H-3), 5.79 (d, 1 H, $J_{\rm NH,2}$ 9.8 Hz, NH), 7.38–7.55 (m, 6 H, Ph), 8.01–8.03 (m, 4 H, Ph); ¹³C NMR (CDCl₃): δ 23.3 (NCOCH₃), 47.3 (C-2), 55.3 (OMe), 63.7 (C-6), 67.4 (C-4), 68.2 (C-5), 72.1 (C-3), 98.8 (C-1), 128.4–133.4 (Ph), 166.4 and 166.6 (2 PhC=O), 170.2 (NC=O). Anal. Calcd for $C_{23}H_{25}NO_8$: C, 62.30; H, 5.68; N, 3.16. Found: C, 62.09; H, 5.84; N, 3.16.

Preparation of methyl 2-acetamido-3,6di-O-benzoyl-2-deoxy- β -D-galactopyranoside(5).—To a solution of trifluoromethanesulfonic anhydride (1.28 mL, 7.62 mmol) in CH_2Cl_2 (25 mL) at -15 °C was added dropwise a solution of pyr (1.24 mL, 15.3 mmol) in CH₂Cl₂ (4.0 mL); a solution of **2** [7,10] (2.11 g, 5.09 mmol) in CH₂Cl₂ (10 mL) was added, and the mixture was stirred at -15 °C for 1 h. The reaction mixture was diluted with CH₂Cl₂ (50 mL), washed successively with cold 5% HCl, an aq solution of NaHCO₃ (satd), and water, dried (MgSO₄), and concentrated under reduced pressure. The crude triflate was used without further purification. To a stirred solution in DMF (10 mL) was added NaNO₂ (3.51 g, 50.9 mmol), and after 10 h at rt, the mixture was diluted with CH_2Cl_2 (150 mL), washed with brine, and concentrated, and the residue was coevaporated with toluene under reduced pressure to afford an oil that was subjected to flash chromatography on silica gel (2:1 EtOAc-hexanes). Compound 5 was isolated as tiny, white needles (1.07 g,50.8%): R_f 0.30 (3:1 EtOAc-hexanes); mp 249–252 °C, lit. 237–242 °C [10]; $[\alpha]_{\rm D}$ + 13.6° $\{c \ 1, (1:1 \ MeOH-CHCl_3)\}; {}^{1}H \ NMR (1:1)$ $CD_3OD-CDCl_3$): δ 1.96 (s, 3 H, NAc), 3.61 (s, 3 H, OMe), 4.11 (dd, 1 H, $J_{5.6} = J_{5.6'}$ 6.3 Hz, H-5), 4.34 (d, 1 H, H-4), 4.53 (dd, 1 H, J₂₃ 11.0 Hz, H-2), 4.64 (d, 1 H, J₁₂ 8.6 Hz, H-1), 4.65 and 4.70 (dq, 2 H, J 11.2 Hz, H-6, H-6'), 5.22 (dd, 1 H, J₃₄ 3.2 Hz, H-3), 7.52-8.15 (m, 10 H, Ph); ¹³C NMR (1:1 CD₃OD- $CDCl_3$): δ 22.9 (NCO CH_3), 50.8 (C-2), 56.9 (OMe), 64.2 (C-6), 66.8 (C-4), 73.3 (C-5), 75.2 (C-3), 102.9 (C-1), 129.1-134.0 (Ph), 167.2 and 167.4 (2 PhC=O), 173.0 (NC=O). Anal. Calcd for C₂₃H₂₅NO₈: C, 62.30; H, 5.68; N, 3.16. Found: C, 62.18; H, 5.48; N, 3.05.

Preparation of benzvl 2-acetamido-3.6-di-Obenzovl-2-deoxy- α -D-galactopyranoside (6).— To an ice-cold solution of **3** [7,13] (4.39 g, 8.45 mmol) in CH_2Cl_2 (150 mL) and pyr (10 mL) was added dropwise trifluoromethanesulfonic anhydride (5.20 g, 2.2 equiv). The mixture was stirred for 20 min, diluted with CH₂Cl₂ (200 mL), and washed sequentially with ice-cold, aq solutions of KHSO₄ (10%) and NaHCO₃ (satd), and water, dried (MgSO₄), and concentrated to afford the 4-triflate, which was used without further purification. To a stirred solution in DMF (50 mL) was added NaNO₂ (1.75 g, 25.4 mmol), and after 16 h at rt, the mixture was concentrated, and the residue was coevaporated with toluene under reduced pressure to afford an oil that was subjected to flash chromatography on silica gel (1:2 EtOAc-hexanes). Compound 6 was isolated and recrystallized (EtOAc-hexanes) to afford white needles (2.56 g, 58.2%): R_{c} 0.48 (1:1) EtOAc-hexanes); mp 187–189 °C, lit. 180 °C $[14]; [\alpha]_{\rm D} + 100.2^{\circ} (c \ 1.25, \text{CHCl}_3), \text{ lit.} + 86.4^{\circ}$ $(c 1, CHCl_3)$ [14]; ¹H NMR (CDCl_3): δ 1.82 (s, 3 H, NAc), 2.65 (br s, 1 H, OH), 4.27 (d, 1 H, $J_{4,3}$ 2.5 Hz, H-4), 4.32 (dd ~ t, 1 H, $J_{5,6} = J_{5,6'}$ 6.4 Hz, H-5), 4.52 and 4.76 (2 d, 2 H, J 11.7 Hz, PhCH₂), 4.53 and 4.63 (dq, 2 H, J_{gem} 11.4 Hz, H-6, H-6'), 4.91 (m, 1 H, H-2), 5.02 (d, 1 H, J_{1.2} 3.7 Hz, H-1), 5.36 (dd, 1 H, H-3), 5.72 (d, 1 H, J_{NH.2} 9.8 Hz, NH), 7.29–8.05 (m, 15 ¹³C NMR (CDCl₃): δ Ph): H. 23.2 (NCOCH₃), 47.3 (C-2), 63.5 (C-6), 67.5 (C-4), 68.5 (C-5), 69.8 (PhCH₂), 72.0 (C-3), 97.0 (C-1), 128.1-136.7 (Ph), 166.3 and 166.5 (2 PhC=O), 170.0 (NC=O). Anal. Calcd for C₂₉H₂₉NO₈: C, 67.04; H, 5.63; N, 2.70. Found: C, 67.10; H, 5.71; N, 2.61.

Methyl 2-acetamido-3,6-di-O-benzoyl-2,4dideoxy-4-fluoro- α -D-glucopyranoside (7). To a solution of DAST (5.70 g, 35.3 mmol) in CH₂Cl₂ (20 mL) in a Teflon Erlenmeyer flask was added dropwise a solution of **4** (1.84 g, 4.16 mmol) in CH₂Cl₂ (40 mL) at -5 °C. The reaction mixture was allowed to warm to rt overnight and then cooled to -5 °C. Methanol (20 mL) was added dropwise to destroy the excess of DAST, and the solution was concentrated under reduced pressure to afford a yellowish oil that was subjected to flash chromatography on silica gel (3:2

EtOAc-hexanes). Compound 7 was isolated and recrystallized from EtOAc-hexanes to afford tiny, white needles (1.51 g, 81.4%): R_f 0.45 (3:1 EtOAc-hexanes); mp 149–152 °C; $[\alpha]_{D}$ + 87.2° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.86 (s, 3 H, NAc), 3.45 (s, 3 H, OMe), 4.18 (m, 1 H, H-5), 4.48 (ddd, 1 H, J₂₁ 3.6, J₂₃ 10.3, $J_{2 \text{ NH}}$ 9.9 Hz, H-2), 4.56 (ddd, 1 H, J_{65} 4.7, J_{6,F} 1.3, J_{gem} 12.1 Hz, H-6), 4.67 (m, 1.5 H, H-4, H-6'), 4.79 (m, 1.5 H, H-1, H-4), 5.63 (dddd, 1 H, J_{3,4} 9.0, J_{3,F} 13.7 Hz, H-3), 5.90 (br d, 1 H, NH), 7.43–7.61 (m, 6 H, Ph), 8.02-8.07 (m, 4 H, Ph); ¹³C NMR (CDCl₃): δ 23.0 (NCOCH₃), 51.7 (J 6.8 Hz, C-2), 55.5 (OMe), 62.5 (C-6), 67.5 (J 23.2 Hz, C-5), 71.7 (J 18.4 Hz, C-3), 87.0 (J 187.7 Hz, C-4), 98.3 (C-1), 128.4–133.4 (Ph), 166.1 and 166.8 (2 PhC=O), 170.0 (NC=O); ¹⁹F NMR (CDCl₃): δ 197.0 (dd, J_{F,H3} 13.6, J_{F,H4} 51.2 Hz). Anal. Calcd for C₂₃H₂₄FNO₇: C, 62.02; H, 5.43; F, 4.26; N, 3.14. Found: C, 61.82; H, 5.57; F, 4.07; N, 3.12.

Methyl 2-acetamido-3,6-di-O-benzovl-2,4dideoxy-4-fluoro- β -D-glucopyranoside (8). To a mixture of 5 (0.875 g, 2.11 mmol) in CH₂Cl₂ (20 mL) in a Teflon Erlenmever flask was added dropwise DAST (2.89 g, 17.9 mmol) at -40 °C. The reaction mixture was allowed to warm to rt overnight and then cooled to -5 °C. Methanol (5 mL) was added dropwise to destroy the excess of DAST, and the solution was concentrated under reduced pressure to afford a vellowish oil that was subjected to flash chromatography on silica gel (1:1 EtOAc-hexanes). Compound was isolated and recrystallized from 8 EtOAc-hexanes to afford an amorphous, white solid (0.353 g, 40.2%): R_f 0.62 (EtOAc); mp 173–175 °C; $[\alpha]_{D}$ – 7.5° (*c* 2, CHCl₃); ¹H NMR (CDCl₃): δ 1.86 (s, 3 H, NAc), 3.45 (s, 3 H, OMe), 4.18 (m, 1 H, H-5), 4.48 (ddd, 1 H, J_{2,1} 3.6, J_{2,3} 10.3, J_{2,NH} 9.9 Hz, H-2), 4.56 $(ddd, 1 H, J_{6,5}^{2,3} 4.7, J_{6,F}^{2,3} 1.3, J_{gem} 12.1 Hz, H-6),$ 4.67 (m, 1.5 H, H-4, H-6'), 4.79 (m, 1.5 H, H-1, H-4), 5.63 (dddd, 1 H, J₃₄ 9.0, J_{3F} 13.7 Hz, H-3), 5.90 (br d, 1 H, NH), 7.43–7.61 (m, 6 H, Ph), 8.02–8.07 (m, 4 H, Ph); ¹³C NMR (CDCl₃): δ 23.0 (NCOCH₃), 51.7 (J 6.8 Hz, C-2), 55.5 (OMe), 62.5 (C-6), 67.5 (J 23.2 Hz, C-5), 71.7 (J 18.4 Hz, C-3), 87.0 (J 187.7 Hz, C-4), 98.3 (C-1), 128.4–133.4 (Ph), 166.1 and

166.8 (2 Ph*C*=O), 170.0 (NC=O); ¹⁹F NMR (CDCl₃): δ 197.0 (dd, $J_{F,H3}$ 13.6, $J_{F,H4}$ 51.2 Hz). Anal. Calcd for C₂₃H₂₄FNO₇: C, 62.02; H, 5.43; F, 4.26; N, 3.14. Found: C, 62.12; H, 5.42; F, 4.43; N, 3.18.

2-acetamido-3,6-di-O-benzoyl-2,4-Benzvl dideoxy-4-fluoro- α -D-glucopyranoside (9).— To a solution of DAST (1.39 g, 8.63 mmol) in CH_2Cl_2 (5 mL) in a Teflon Erlenmeyer flask was added dropwise a solution of 6 (0.500 g,1.02 mmol) in CH₂Cl₂ (10 mL) at -5 °C. The reaction mixture was allowed to warm to rt overnight and then cooled to -5 °C. Methanol (5 mL) was added dropwise to destroy the excess of DAST, and the solution was concentrated under reduced pressure to afford an oil which was subjected to flash chromatography on silica gel (1:2 EtOAchexanes). Compound 9 was isolated as a clear, colorless oil (0.426 g, 85.2%): R_f 0.30 (1:2) EtOAc-hexanes); $[\alpha]_{D}$ + 101.2° (*c* 1.7. CHCl₃); ¹H NMR (CDCl₃): δ 1.80 (s, 3 H, NAc), 4.24 (m, 1 H, H-5), 4.47–4.63 (m, 3 H, H-2, H-6, H-6'), 4.56 and 4.77 (2 d, 2 H, J 11.8 Hz, PhC H_2), 4.76 (ddd ~ dt, 1 H, J_{45} 9.4, $J_{4 \text{ F}}$ 51.0 Hz, H-4), 4.98 (dd ~ t, 1 H, $J_{1,2} = J_{1,\text{F}}$ 3.3 Hz, H-1), 5.68 (dddd, 1 H, $J_{3,4}$ 9.0, $J_{3,2}$ 10.9, J_{3.F} 13.6 Hz, H-3), 5.93 (d, 1 H, J_{NH,2} 9.6 Hz, NH), 7.32–7.59 (m, 9 H, Ph), 8.02–8.09 (m, 6 H, Ph); ${}^{13}C$ NMR (CDCl₃): δ 22.9 (NCOCH₂), 51.7 (J 6.8 Hz, C-2), 62.4 (C-6), 67.8 (J 22.7 Hz, C-5), 70.1 (PhCH₂), 71.6 (J 18.7 Hz, C-3), 87.0 (J 187.7 Hz, C-4), 96.5 (C-1), 128.1-136.3 (Ph), 166.0 and 166.7 (2 PhC=O), 170.0 (NC=O); ¹⁹F NMR (CDCl₃): δ 197.0 (dd, J_{F,H3} 13.6, J_{F,H4} 51.2 Hz); ESIMS (positive-ion): Expected for $C_{29}H_{28}FNO_7$ $[M + H]^+$: 522.2. Found: 522.3. Anal. Calcd for C₂₉H₂₈FNO₇·H₂O: C, 64.55; H, 5.60; F, 3.52; N, 2.60. Found: C, 64.79; H, 5.59; F, 3.26; N, 2.51.

Methyl 2-acetamido-2,4-dideoxy-4-fluoro- α -D-glucopyranoside (10).—To a solution of compound 7 (0.35 g, 0.78 mmol) in MeOH (20 mL) was added KOH (0.5 g), and the mixture was stirred for 30 min at rt. The mixture was neutralized with Amberlite IR-120 (H⁺) resin and filtered, and the filtrate was concentrated under reduced pressure to give a crude product that was recrystallized from absolute EtOH to afford **10** (0.18 g, 90.2%) as white needles: R_f 0.65 (1:3 MeOH-CHCl₃); mp $189-190 \,^{\circ}C; \, [\alpha]_{D} + 139.0^{\circ} \, (c \ 1, MeOH); \,^{1}H$ NMR (CD₃OD): δ 1.92 (s, 3 H, NAc), 3.32 (s, 3 H, OMe), 3.64 (m, 2 H, H-5, H-6), 3.73 (m, 1 H, J_{6',F} 2.1, J_{gem} 10.0, H-6'), 3.78-3.91 (m, 2 H, $J_{2,3}$ 10.8 Hz, H-2, H-3), 4.23 (ddd ~ dt, 1 H, $J_{4,3} = J_{4,5}$ 8.1, $J_{4,F}$ 51.1 Hz, H-4), 4.60 (t, 1 H, $\tilde{J}_{1,2} = \tilde{J}_{1,F}$ 3.2 Hz, H-1); ¹³C NMR (CD₃OD): δ 22.5 (NCOCH₃), 54.9 (J 8.2 Hz, C-2), 55.7 (OMe), 61.7 (C-6), 70.9 (J 18.9 Hz, C-3), 71.1 (J 24.6 Hz, C-5), 91.3 (J 180.1 Hz, C-4), 99.6 (C-1), 173.7 (NC=O); ¹⁹F NMR (CD₃OD): δ 197.1 (dd, $J_{\text{F,H3}}$ 14.5, $J_{\text{F,H4}}$ 51.8 Hz). Anal. Calcd for $C_9H_{16}FNO_5$: C, 45.57; H, 6.37; F, 8.01; N, 5.90. Found: C, 45.72; H, 6.50; F, 8.27; N, 5.89.

Methyl 2-acetamido-2,4-dideoxy-4-fluoro- β -D-glucopyranoside (11).—To a solution of 8 (0.196 g, 0.440 mmol) in MeOH (15 mL) was added KOH (0.2 g), and the mixture was stirred for 30 min at rt. The mixture was neutralized with Amberlite IR-120 (H⁺) resin and filtered, and the filtrate was concentrated under reduced pressure to afford a crude product that was recrystallized from absolute EtOH to afford 11 (0.085 g, 81.4%) as an amorphous solid: R_f 0.46 (1:3 MeOH-CHCl₃); mp 192–194 °C; $[\alpha]_{\rm D} = 50.0^{\circ}$ (c 0.61, MeOH); ¹H NMR (CD₃OD): δ 1.89 (s, 3 H, NAc), 3.35–3.42 (m, 1 H, H-5), 3.38 (s, 3 H, OMe), 3.57 (m, 1 H, H-2), 3.65 (m, 1 H, H-6), 3.69 (m, 1 H, H-3), 3.75 (m, 1 H, J_{gem} 12.3 Hz, H-6'), 4.18 (ddd, 1 H, $J_{4,3} = J_{4,5}$ 8.7, $J_{4,F}$ 50.8 Hz, H-4), 4.29 (d, 1 H, $J_{1,2}$ 8.3 Hz, H-1); ¹³C NMR (CD₃OD): δ 22.9 (NCOCH₃), 57.0 (J 8.3 Hz, C-2), 57.1 (OMe), 61.7 (C-6), 73.7 (J 18.6 Hz, C-3), 75.3 (J 24.6 Hz, C-5), 91.0 (J 181.0 Hz, C-4), 103.4 (C-1), 173.8 (NC=O); ¹⁹F NMR (CD₃OD): δ 197.0 (dd, $J_{F,H3}$ 16.1, $J_{\text{F,H4}}$ 50.6 Hz); FABMS (positive-ion): Expected for $C_9H_{17}FNO_5$: 238.1091. Found: 238.1080.

Benzyl 2-acetamido-2,4-dideoxy-4-fluoro- α -D-glucopyranoside (12).—To a solution of compound 9 (1.45 g, 2.94 mmol) in MeOH (40 mL) was added KOH (1.0 g), and the mixture was stirred for 30 min at rt. The mixture was neutralized with 1N HCl and concentrated under reduced pressure to give a solid that was recrystallized from absolute EtOH to afford 12 (0.81 g, 92.5%) as tiny, white crystals:

 $R_{f} 0.38 (1:9 \text{ MeOH}-CH_{2}Cl_{2}); \text{ mp } 197-198 \text{ }^{\circ}C;$ $+206.3^{\circ}$ (c 1, MeOH); ¹H NMR $[\alpha]_{D}$ (CD₃OD): δ 1.85 (s, 3 H, NAc), 3.61 (ddd, 1 H, J_{6.5} 4.9, J_{gem} 12.3, J_{6.F} 1.5 Hz, H-6), 3.67-3.73 (m, 2 H, H-5, H-6'), 3.81-3.91 (m, 2 H, H-2, H-3), 4.22 (ddd, 1 H, J₄, 8.1, J₄, 9.8, J₄, F 50.9 Hz, H-4), 4.43 and 4.65 (2 d, 2 H, J 12.1 Hz, PhC H_2), 4.76 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1), 7.23 (m, 5 H, Ph); 13 C NMR (CD₃OD): δ 22.5 (NCOCH₃), 54.9 (J 8.4 Hz, C-2), 61.7 (C-6), 70.4 (PhCH₂), 70.6 (J 18.8 Hz, C-5), 71.5 (J 24.7 Hz, C-3), 91.4 (J 180.0 Hz, C-4), 97.3 (C-1), 128.9–138.7 (Ph), 173.6 (NC=O); ¹⁹F NMR (CD₃OD): δ 169.6 (dd, $J_{\rm FH3}$ 14.4, $J_{\rm FH4}$ 51.6 Hz). Anal. Calcd for $C_{15}H_{20}FNO_5$: C, 57.50; H, 6.43; F, 6.06; N, 4.47. Found: C, 57.42; H, 6.50; F, 5.93; N, 4.37.

Preparation of 2-acetamido-2,4-dideoxy-4fluoro-D-glucopyranose (13).—A mixture of 12 (0.58 g, 1.85 mmol), acetic acid (15 mL), and 10% Pd-C (0.5 g) was subjected to a hydrogen pressure (55 psig) for 3 days. The mixture was filtered through Celite 521 (Aldrich) and the residue washed with MeOH. The filtrate and washings were combined and concentrated under reduced pressure to afford an oil that was purified by flash chromatography on silica gel (1:9 to 1:5 MeOH-CH₂Cl₂) to yield 13 (0.37 g, 89.1%) as a mixture of α and β anomers in a ratio of 5.7: 1 as determined by ¹H NMR spectroscopy. R_f 0.25 and 0.31 (1:3) MeOH-CHCl₃); mp 176-180 °C (dec), lit. $174-175 \text{ °C} [9a]; [\alpha]_{D} + 59.3^{\circ} (\text{equil}) (c 1)$ MeOH), lit. + 61.5° (c 1, MeOH) [9a]. α Anomer: ¹H NMR (CD₃OD): δ 1.91 (s, 3 H, NAc), 3.52-3.75 (m, 2 H, H-6, H-6'), 3.78-3.94 (m, 3 H, H-2, H-3, H-5), 4.24 (m, J_{4F} 46.3 Hz, H-4), 5.03 (m, 1 H, J_{1.2} 3.2 Hz, H-1); ¹³C NMR (CD₃OD): δ 22.6 (NCOCH₃), 55.5 (J 8.0 Hz, C-2), 61.8 (C-6), 70.5 and 70.7 (C-3, C-5), 91.5 (J 182.8 Hz, C-4), 92.4 (C-1), 173.7 (NC=O); ¹⁹F NMR (CD₃OD): δ 199.6 (dd, $J_{\text{F,H3}}$ 14.3, $J_{\text{F,H4}}$ 50.6 Hz). Anal. Calcd for C₈H₁₄FNO₅: C, 43.05; H, 6.32; F, 8.51; N, 6.28. Found: C, 42.86; H, 6.37; F, 8.61; N, 6.22.

Methyl 2-acetamido-3,6-di-O-acetyl-2,4dideoxy-4-fluoro- α -D-glucopyranoside (14).— Compound 10 (0.10 g, 0.42 mmol) was treated with Ac₂O (1.0 mL) in pyr (2.0 mL) at 0 °C, and the mixture was stirred overnight at rt.

The solution was concentrated, and the residue was coevaporated with toluene under reduced pressure to afford a clear oil which was crystallized from EtOAc-hexanes to give 14 (0.13 g, 88.2%) as white crystals: R_f 0.64 (EtOAc); mp 112–113 °C; $[\alpha]_{D}$ + 58.9° (c 1, CHCl₂); ¹H NMR (CDCl₂): δ 1.95 (s, 3 H, NAc), 2.08 and 2.10 (2 s, 6 H, 2 OAc), 3.40 (s, 3 H, OMe), 3.95 (m, 1 H, H-5), 4.23-4.29 (m, 2 H, H-2, H-6), 4.39 (m, 1 H, H-6'), 4.49 (ddd ~ dt, 1 H, $J_{4,3} = J_{4,5}$ 9.5, $J_{4,F}$ 51.0 Hz, H-4), 4.68 (t, 1 H, $J_{1,2} = J_{1,F}$ 3.3 Hz, H-1), 5.31 (ddd, 1 H, $J_{3,2}$ 9.0, $J_{3,4}$ 10.8, $J_{3,F}$ 14.2 Hz, H-3), 5.72 (d, 1 H, $J_{\rm NH,2}$ 9.5 Hz, NH); ¹³C NMR (CDCl₃): δ 20.8 (NCOCH₃), 51.7 (J 6.8 Hz, C-2), 55.5 (OMe), 62.0 (C-6), 67.2 (J 23.6 Hz, C-5), 71.2 (J 18.6 Hz, C-3), 86.6 (J 186.5 Hz, C-4), 98.2 (C-1), 170.0, 170.6, and 171.3 (2 OCOCH₃, NC=O); ¹⁹F NMR (CDCl₃): δ 227.3 (dd, $J_{\text{E,H3}}$ 13.8, $J_{\text{E,H4}}$ 51.2 Hz). Anal. Calcd for C₁₃H₂₀FNO₇: C, 48.60; H, 6.27; F, 5.91; N, 4.36. Found: C, 48.18; H, 6.35; F, 5.69; N, 4.42.

Methyl 2-acetamido-3,6-di-O-acetyl-2,4dideoxy-4-fluoro- β -D-glucopyranoside (15).— Compound 11 (0.085 g, 0.357 mmol) was treated with $Ac_2O(1.5 \text{ mL})$ in pyr (2.5 mL) at 0 °C, and the mixture was stirred overnight at rt. The solution was concentrated, and the residue was coevaporated with toluene under reduced pressure to afford a crude solid that was recrystallized from EtOAc-Et₂O to afford 15 (0.100 g, 86.8%) as clear, colorless rods: R_{f} 0.30 (EtOAc); mp 174–176 °C; $[\alpha]_{D}$ -61.4° (c 1, MeOH); ¹H NMR (CDCl₃): δ 1.80 (s, 3 H, NAc), 1.96 and 1.99 (2 s, 6 H, 2 OAc), 3.40 (s, 3 H, OMe), 3.95 (m, 1 H, H-5), 4.23-4.29 (m, 2 H, H-2, H-6), 4.39 (m, 1 H, H-6'), 4.49 (ddd ~ dt, 1 H, $J_{43} = J_{45}$ 9.5, J_{4F} 51.0 Hz, H-4), 4.68 (t, 1 H, $J_{1,2} = J_{1,F}$ 3.3 Hz, H-1), 5.31 (ddd, 1 H, $J_{3,2}$ 9.0, $J_{3,4}$ 10.8, $J_{3,F}$ 14.2 Hz, H-3), 5.72 (d, 1 H, J_{NH,2} 9.5 Hz, NH); ¹³C NMR (CDCl₃): δ 20.6 and 22.7 (NCOCH₃, 2 OCOCH₃), 55.2 (J 5.9 Hz, C-2), 57.3 (OMe), 63.4 (C-6), 72.4 (J 23.6 Hz, C-5), 74.1 (J 18.8 Hz, C-3), 88.7 (J 184.3 Hz, C-4), 102.9 (C-1), 171.8, 172.4, and 173.5 (2 OCOCH₃, NC=O); ¹⁹F NMR (CDCl₃): δ 227.2 (dd, $J_{F,H3}$ 14.9, $J_{F,H4}$ 49.4 Hz). Anal. Calcd for C₁₃H₂₀FNO₇: C, 48.60; H, 6.27; F, 5.91; N, 4.36. Found: C, 48.74; H, 6.42; F, 6.16; N, 4.43.

2-Acetamido - 1,3,6-tri - O - acetyl - 2,4-dide*oxy-4-fluoro-D-glucopyranose* (16).—Compound 13 (0.10 g, 0.45 mmol) was treated with acetic anhydride (1.0 mL) in pyr (2.0 mL) at 0 °C, and the mixture was stirred overnight at rt. The solution was concentrated, and the residue was coevaporated with toluene under reduced pressure to produce an opaque oil that was crystallized from EtOAc-hexanes to give the β anomer of **16** (0.032 g) as colorless rods. The remainder of 16 crystallized as a mixture of α and β anomers (0.125 g, 93.2%). β Anomer: R_f 0.38 (EtOAc); mp 188–189 °C; $[\alpha]_{\rm D} = -29.2^{\circ}$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.92 (s, 3 H, NAc), 2.09 and 2.11 (3 s, 9 H, 3 OAc), 3.83 (m, 1 H, H-5), 4.21-4.31 (m, 2 H, H-2, H-6), 4.40 (d, 1 H, J_{sem} 12.3 Hz, H-6'), 4.53 (dt, 1 H, $J_{4,3} = J_{4,5}$ 9.3, $J_{4,F}$ 50.4 Hz, H-4), 5.23 (ddd, 1 H, J_{3,2} 8.9, J_{3,4} 10.7, J_{3,F} 14.2 Hz, H-3), 5.67 (d, 1 H, J_{1,2} 8.8 Hz, H-1), 5.77 (d, 1 H, $J_{\rm NH,2}$ 9.5 Hz, $\tilde{\rm NH}$); ¹³C NMR (CDCl₃): δ 20.8 and 20.9 (3 OCOCH₃), 23.2 (NCOCH₂), 52.6 (J 7.4 Hz, C-2), 61.8 (C-6), 72.1 (J 24.1 Hz, C-5), 86.1 (J 187.0 Hz, C-4), 92.5 (C-1), 169.5, 170.3, 170.6, and 171.2 (3 $OCOCH_3$, NC=O); ¹⁹F NMR (CDCl₂): δ 200.0 (dd, $J_{F,H3}$ 13.5, $J_{F,H4}$ 50.1 Hz). Anal. Calcd for $C_{14}H_{20}FNO_8$: C, 48.14; H, 5.77; F, 5.44; N, 4.01. Found: C, 47.90; H, 5.52; F, 5.63: N. 3.99.

Methyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-mesyl- α -D-glucopyranoside (20).-To a solution of methyl 2-acetamido-3,6-di-O-benzyl- α -D-glucopyranoside [16] (17, 4.75 g, 11.4 mmol) in pyr (60 mL) was added a solution of methanesulfonyl chloride (5 mL) in pyr (7 mL) with stirring at 0 °C. The solution was kept at 0 °C for 11 h and then poured into ice-water. The resulting solid was collected by filtration and dissolved in CHCl₃; the solution was washed with H₂O, dried $(MgSO_4)$, and concentrated to a solid that was recrystallized from EtOAc-hexanes to give 20 (4.24 g, 75.2%) as short, glassy needles: R_f 0.39 (3:1 EtOAc-hexanes); mp 194–195 °C (dec); $[\alpha]_{D}$ + 90.2° (c 1, CHCl₃); ¹H NMR $(CDCl_3)$: δ 1.87 (s, 3 H, NAc), 2.84 (s, 3 H, SMe), 3.37 (s, 3 H, OMe), 3.70 (dd, 1 H, J_{6.5} 5.2, J_{gem} 11.0 Hz, H-6), 3.79-3.84 (m, 2 H, H-3, H-6'), 3.88 (m, 1 H, H-5), 4.41 $(ddd \sim dt, 1 H, J_{2,1} 3.6, J_{2,3} = J_{2,NH} 10.0 Hz,$

H-2), 4.55 and 4.62 (2 d, 2 H, J 11.8 Hz, PhCH₂), 4.67–4.72 (m, 4 H, H-1, H-4, PhCH₂), 5.56 (d, 1 H, NH), 7.25–7.36 (m, 10 $^{13}\mathrm{C}$ NMR $(CDCl_3)$: H. Ph); δ 23.3 (NCOCH₂), 38.5 (SMe), 52.1 (C-2), 55.3 (OMe), 68.4 (C-6), 69.2 (C-5), 73.5 and 73.9 (2 PhCH₂), 78.0 (C-3, C-4), 98.3 (C-1), 127.5-128.6, 137.1, and 137.8 (Ph), 169.7 (NC=O). Anal. Calcd for $C_{24}H_{31}NO_8S$: C, 58.40; H, 6.33; N, 2.84; S, 6.50. Found: C, 58.44; H, 6.57; N. 2.82; S. 6.61.

Methyl 2-acetamido-3,6-di-O-benzvl-2-deoxy-4-O-mesyl- β -D-glucopyranoside (21).-To a solution of methyl 2-acetamido-3,6di-*O*-benzyl-β-D-glucopyranoside [17] (18. 2.00 g, 4.81 mmol) in pyr (30 mL) was added a solution of methanesulfonyl chloride (3 mL) in pyr (5 mL) with stirring at 0 °C. The solution was kept at 0 °C for 24 h and processed as described for the preparation of 20 to afford **21** (1.75 g, 73.6%) as white rods: R_f 0.31 (2:1 EtOAc-hexanes); mp 170–171 °C (dec); $[\alpha]_{\rm D}$ + 24.0° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.89 (s, 3 H, NAc), 2.87 (s, 3 H, SMe), 3.40 (m, 1 H, H-2), 3.49 (s, 3 H, OMe), 3.72 (m, 2 H, H-5, H-6), 3.86 (dd, 1 H, J_{6'.5} 3.9, J_{gem} 12.8 Hz, H-6'), 4.33 (dd, 1 H, J_{3,2} 9.4 Hz, H-3), 4.61 (d, 2 H, J 1.6 Hz, PhCH₂), 4.64 (m, 1 H, H-4), 4.67 and 4.78 (2 d, 2 H, J 11.1 Hz, PhCH₂), 4.83 (d, 1 H, J_{1.2} 7.9 Hz, H-1), 5.84 (d, 1 H, J_{NH,2} 7.6 Hz, NH), 7.27–7.38 (m, 10 $13\overline{C}$ NMR $(CDCl_3)$: 23.5H. Ph); δ (NCOCH₃), 38.6 (SMe), 56.9 (OMe), 57.6 (C-2), 68.8 (C-6), 73.3 (C-5), 73.6 (PhCH₂), 74.0 (PhCH₂), 78.2 (C-3), 78.5 (C-4), 100.3 (C-1), 127.7-128.6, 137.6, and 137.9 (Ph), 171.5 (NC=O). Anal. Calcd for C₂₄H₃₁NO₈S: C, 58.40; H, 6.33; N, 2.84; S, 6.50. Found: C, 58.32; H, 6.51; N, 2.87; S, 6.73.

Preparation of benzyl 2-acetamido-3,6-di-Obenzyl-2-deoxy-4-O-mesyl- α -D-glucopyranoside (22).—To a solution of benzyl 2-acetamido-3,6-di-O-benzyl- α -D-glucopyranoside [18] (19, 0.390 g, 0.793 mmol) in pyr (5 mL) was added a solution of methanesulfonyl chloride (0.5 mL) in pyr (0.7 mL) with stirring at 0 °C. The solution was kept at 0 °C for 24 h and processed as described for the preparation of 20 to afford 22 (0.45 g, 77.5%) as tiny, white needles: R_f 0.62 (2:1 EtOAc-hexanes); mp 172–173 °C, lit. 168–170 °C [19]; $[\alpha]_D$

 $+103.2^{\circ}$ (c 1, CHCl₃), lit. $+98^{\circ}$ (c 0.8, CHCl₃) [19]; ¹H NMR (CDCl₃): δ 1.84 (s, 3 H, NAc), 2.86 (s, 3 H, SMe), 3.73 (dd, 1 H, J_{65} 5.1, J_{gem} 11.0 Hz, H-6), 3.81 (dd, 1 H, J_{6',5} 2.4 Hz, H-6'), 3.89 (dd ~ t, 1 H, J_{34} 9.1 Hz, H-3), 4.01 (m, 1 H, H-5), 4.45 ($ddd \sim dt$, 1 H, $J_{2,3} = J_{2,\text{NH}}$ 9.7 Hz, H-2), 4.49 and 4.74 (2 d, 2 H, J 11.6 Hz, PhCH₂), 4.58 and 4.65 (2 d, 2 H, J 11.8 Hz, PhCH₂), 4.69 (d, 2 H, J 2.1 Hz, PhCH₂), 4.74 (m, 1 H, H-4), 4.92 (d, 1 H, J_{1 2} 3.4 Hz, H-1), 5.52 (d, 1 H, NH), 7.28-7.41 (m, 15 H, Ph); ¹³C NMR (CDCl₃): δ 23.3 (NCOCH₃), 38.5 (SMe), 52.2 (C-2), 68.3 (C-6), 69.7 (C-5), 69.8 (PhCH₂), 73.6 and 73.9 (2) PhCH₂), 78.0 (C-4), 78.1 (C-3), 96.6 (C-1), 127.5–128.6, 136.6, 137.1, and 137.9 (Ph), 169.6 (NC=O).

Methyl 2-acetamido-3,6-di-O-benzyl-2,4-dideoxy-4-fluoro- α -D-galactopyranoside (23).— To a solution of 20 (2.1 g, 4.25 mmol) in anhyd MeCN (30 mL) was added a solution of anhyd tetra-n-butylammonium fluoride [20] (10.9 g, 9.8 equiv) in anhyd MeCN (15 mL), and the solution was heated at reflux temperature for 6 days. The solvent was removed under reduced pressure, and the residue was dissolved in CH₂Cl₂; the solution was washed with H₂O and concentrated to a brownish solid. The aqueous layer was extracted with CH₂Cl₂, and the extracts were dried (MgSO₄) and concentrated to a brownish solid. The combined samples of crude brownish solids were recrystallized from EtOAc-hexanes to afford 23 (0.96 g, 54.3%) as tiny, white needles: R_f 0.47 (2:1 EtOAchexanes); mp 203–204 °C; $[\alpha]_D$ + 131.7° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.93 (s, 3 H, NAc), 3.32 (s, 3 H, OMe), 3.55 (dddd, 1 H, $J_{3,4}$ 2.3, $J_{3,2}$ 11.0, $J_{3,F}$ 27.8 Hz, H-3), 3.64 (dddd, 2 H, $J_{6,F}$ 1.4, J_{gem} 9.4 Hz, H-6, H-6'), 3.72 (m, 1 H, H-2), 3.85 (ddd ~ dt, 1 H, $J_{5,6} = J_{5,6'}$ 6.6, $J_{5,F}$ 28.8 Hz, H-5), 4.47 and 4.76 (2 d, 2 H, J 12.3 Hz, PhCH₂), 4.57 (d, 2 H, J 3.3 Hz, PhC H_2), 4.77 (overlapping d, 1 H, H-1), 4.92 (dd, 1 H, $J_{4,F}$ 50.2 Hz, H-4), 5.34 (d, 1 H, J_{NH.2} 8.8 Hz, NH), 7.29–7.35 (m, 10 H, Ph); ¹³C NMR (CDCl₃): δ 23.4 (NCOCH₃), 48.4 (C-2), 55.4 (OMe), 68.0 (J 6.5 Hz, C-6), 68.2 (J 17.9 Hz, C-5), 70.7 and 73.7 (2 PhCH₂), 74.0 (J 18.6 Hz, C-3), 85.3 (J 184.9 Hz, C-4), 98.7 (C-1), 127.7-128.5, 137.1, and 137.8 (Ph), 169.8 (NC=O); ¹⁹F NMR

(CDCl₃): δ 219.9 (dt, $J_{F,H3}=J_{F,H5}$ 28.2, $J_{F,H4}$ 50.3 Hz). Anal. Calcd for C₂₃H₂₈FNO₅: C, 66.17; H, 6.76; F, 4.55; N, 3.36. Found: C, 65.95; H, 6.57; F, 4.39; N, 3.26.

Methyl 2-acetamido-3,6-di-O-benzyl-2,4-dideoxy-4-fluoro- β -D-galactopyranoside (24).— To a solution of 21 (0.80 g, 1.62 mmol) in anhyd MeCN (25 mL) was added a solution of anhyd tetra-*n*-butylammonium fluoride [20] (6.36 g, 15 equiv) in anhyd MeCN (7.5 mL), and the mixture was heated at reflux temperature for 4 days. The reaction mixture was processed as described for the preparation of 23 to afford a brownish solid that was subjected to flash chromatography on silica gel (3:1 EtOAc-hexanes). The resulting solid was recrystallized from EtOAc-hexanes to afford 24 (0.43 g, 64.0%) as an amorphous, white solid: $R_c 0.38$ (2:1 EtOAc-hexanes); mp 208-210 °C; [α]_D + 29.9° (*c* 1.1, CHCl₃); ¹H NMR $(CDCl_3)$: δ 1.93 (s, 3 H, NAc), 3.31 (m, 1 H, H-2), 3.49 (s, 3 H, OMe), 3.66-3.76 (m, 3 H, H-5, H-6, H-6'), 4.38 (dddd, 1 H, J₃₄ 2.4, J₃₂ 10.9, J_{3F} 28.1 Hz, H-3), 4.52 and 4.70 (2 d, 2 H, J 11.6 Hz, PhCH₂), 4.57 (s, 2 H, PhCH₂), 4.88 (dd, 1 H, $J_{4,F}$ 50.2 Hz, H-4), 4.99 (d, 1 H, J_{1,2} 8.2 Hz, H-1), 5.75 (br s, 1 H, NH), 7.26– 7.37 (m, 10 H, Ph); 13 C NMR (CDCl₃): δ 23.7 (NCOCH₃), 55.2 (C-2), 56.9 (OMe), 67.7 (C-6), 71.8 (PhCH₂), 72.0 (J 18.5 Hz, C-5), 73.6 (PhCH₂), 74.5 (J 18.9 Hz, C-3), 85.1 (J 184.7 Hz, C-4), 100.2 (C-1), 127.3-128.5, and 137.6 (Ph), 171.0 (NC=O); 19 F NMR (CDCl₃): δ 220.1 (dt, $J_{F,H3} = J_{F,H5}$ 28.2, $J_{F,H4}$ 50.5 Hz). Anal. Calcd for C₂₃H₂₈FNO₅: C, 66.17; H, 6.76; F, 4.55; N, 3.36. Found: C, 66.32; H, 7.00; F, 4.34; N, 3.41.

Benzyl 2-acetamido-3,6-di-O-benzyl-2,4-dideoxy-4-fluoro- α -D-galactopyranoside (25).— To a solution of 22 (1.78 g, 3.10 mmol) in anhyd MeCN (60 mL) was added a solution of anhyd tetra-*n*-butylammonium fluoride [20] (9.41 g, 11.6 equiv) in anhyd MeCN (40 mL), and the mixture was heated at reflux temperature for 4 days. The reaction mixture was processed as described for the preparation of 23 to afford a brownish solid that was subjected to flash chromatography on silica gel (1:1 EtOAc-hexanes). The resulting solid was recrystallized from EtOAc-hexanes to afford 25 (0.96 g, 62.0%) as an amorphous, white solid: $R_c 0.22$ (1:1 EtOAc-hexanes); mp 180-182 °C, lit. 186–187 °C [9a]; $[\alpha]_{\rm D}$ + 137.8° (c 1, CHCl₃), lit. + 117° (c 1, CHCl₃) [9a]; ¹H NMR (CDCl₃): δ 2.00 (s, 3 H, NAc), 3.65 (m, 2 H, H-3, H-6), 3.72 (m, 1 H, H-6), 3.94 $(ddd \sim dt, 1 H, J_{5.6} = J_{5.6'} 6.5, J_{5.F} 29.2 Hz,$ H-5), 4.45 and 4.67 (2 d, 2 H, J 11.8 Hz, PhCH₂), 4.48 and 4.75 (2 d, 2 H, J 12.2 Hz, PhCH₂), 4.56 (s, 2 H, PhCH₂), 4.57 (m, 1 H, H-2), 4.95 (dd, 1 H, J_{43} 2.0, J_{4F} 50.1 Hz, H-4), 5.00 (d, 1 H, J_{1.2} 3.7 Hz, H-1), 5.33 (d, 1 H, J_{NH}, 8.9 Hz, NH), 7.24–7.38 (m, 15 H, Ph); ¹³C NMR (CDCl₃): δ 23.3 (NCOCH₃), 48.4 (C-2), 67.9 (J 5.1 Hz, C-6), 68.6 (J 18.6 Hz, C-5), 69.9 (PhCH₂), 70.8 and 73.7 (2 PhCH₂), 74.2 (J 18.5 Hz, C-3), 85.3 (J 185.2 Hz, C-4), 97.2 (C-1), 127.7–128.6, 137.1, and 137.8 (Ph), 169.8 (NC=O); ¹⁹F NMR (CDCl₃): δ 220.3 (dt, $J_{\text{F,H3}} = J_{\text{F,H5}}$ 28.6, $J_{\text{F,H4}}$ 50.9 Hz). Anal. Calcd for $C_{29}H_{32}FNO_5$: C, 70.57; H, 6.53; F, 3.85; N, 2.84. Found: C, 70.44; H, 6.49; F, 4.04; N, 2.86.

Methyl 2-acetamido-2,4-dideoxy-4-fluoro- α -D-galactopyranoside (26).—A mixture of 23 (0.83 g, 1.5 mmol), acetic acid (20 mL), and 10% Pd-C (1.0 g) was subjected to a hydrogen pressure (55 psig) for 4 days. The mixture was diluted with MeOH, neutralized with Amberlite IRA-400 (OH⁻) resin, filtered through Celite 521 (Aldrich), and the filtrate was concentrated under reduced pressure to a white solid that was recrystallized (EtOH-acetone) to afford **26** (0.30 g, 80.6%) as an amorphous, white solid: $R_f 0.50$ (1:3 MeOH-CHCl₃); mp 227–228 °C; $[\alpha]_{D}$ + 173.4° (*c* 1, MeOH); ¹H NMR (CD₃OD): δ 1.98 (s, 3 H, NAc), 3.32 (s, 3 H, OMe), 3.64 (m, 1 H, H-6), 3.69 (m, 1 H, H-6'), 3.75–3.83 (m, 2 H, J_{3.4} 2.6 Hz, H-3, H-5), 4.18 (dd, 1 H, J_{2.3} 11.2 Hz, H-2), 4.64 (d, 1 H, J₁₂ 3.6 Hz, H-1), 4.70 (dd, 1 H, J₄₃ 2.6, $J_{4,F}$ 47.4 Hz, H-4); ¹³C NMR (CD₃OD): δ 22.6 (NCOCH₃), 51.7 (C-2), 55.8 (OMe), 61.4 (J 5.2 Hz, C-6), 68.2 (J 19.4 Hz, C-3), 71.3 (J 18.5 Hz, C-5), 90.4 (J 180.7 Hz, C-4), 100.0 (C-1), 173.8 (NC=O); ¹⁹F NMR (CD₃OD): δ 221.2 (dt, $J_{E,H3} = J_{E,H5}$ 29.0, $J_{E,H4}$ 50.6 Hz). Anal. Calcd for C₉H₁₆FNO₅: C, 45.57; H, 6.80; F, 8.01; N, 5.90. Found: C, 45.39; H, 6.88; F, 8.24; N, 5.72.

Methyl 2-acetamido-2,4-dideoxy-4-fluoro- β -D-galactopyranoside (27).—A mixture of 24 (0.448 g, 0.833 mmol), acetic acid (20 mL), and 10% Pd-C (0.6 g) was subjected to a hydrogen pressure (55 psig) for 4 days. The mixture was processed as described for 26 to afford a solid that was recrystallized from EtOH-hexanes to give 27 (0.17 g, 86.5%) as tiny, colorless crystals: R_f 0.35 (1:3 MeOH-CHCl₃); mp 209–211 °C; $[\alpha]_{D} = -24.8^{\circ}$ (c 1, MeOH); ¹H NMR (CD₃OD): δ 1.97 (s, 3 H, NAc), 3.45 (s, 3 H, OMe), 3.58 (ddd \sim dt, 1 H, $J_{5,6} = J_{5,6'}$ 6.6, $J_{5,F}$ 27.6 Hz, H-5), 3.72 (dddd, 1 H, $J_{3,2}$ 10.9, $J_{3,4}$ 2.5 Hz, H-3), 3.73 (d, 2 H, H-6, H-6'), 3.86 (dd, 1 H, H-2), 4.36 (dd, 1 H, $J_{1,2}$ 8.3, $J_{1,F}$ 0.8 Hz, H-1), 4.72 (dd, 1 H, H-4); ${}^{13}C$ NMR (CD₃OD): δ 23.0 (NCOCH₃), 54.4 (C-2), 57.0 (OMe), 61.1 (J 5.1 Hz, C-6), 71.7 (J 19.3 Hz, C-3), 75.2 (J 18.1 Hz, C-5), 89.6 (J 181.0 Hz, C-4), 103.6 (C-1), 174.0 (NC=O); ¹⁹F NMR (CD₃OD): δ 217.1 (dt, $J_{\text{E},\text{H3}} = J_{\text{E},\text{H5}}$ 28.3, $J_{\text{E},\text{H4}}$ 50.6 Hz). Anal. Calcd for C₉H₁₆FNO₅: C, 45.57; H, 6.80; F, 8.01; N, 5.90. Found: C, 45.70; H, 6.94; F, 8.19; N, 5.86.

2-Acetamido-2.4-dideoxy-4-fluoro-D-galac*topyranose* (28).—A mixture of 25 (0.600 g, 1.22 mmol), acetic acid (15 mL), and 10% Pd-C (1.0 g) was subjected to a hydrogen pressure (55 psig) for 4 days. The mixture was processed as described for 26 to afford a solid that was recrystallized from EtOH-Et₂O to obtain 28 (0.27 g, 86.7%) as tiny, white needles: R_f 0.17 (1:3 MeOH-CHCl₃); mp 205–209 °C, lit. 195 °C [9a]; $[\alpha]_{\rm D}$ + 87.9° (equil) (c 1, MeOH), lit. + 85.5° (c 1, MeOH) [9a]. α Anomer: ¹H NMR (CD₃OD): δ 1.93 (s, 3 H, NAc), 3.58 (dddd, 1 H, $J_{6.5}$ 6.7, $J_{6.F}$ 1.0, J_{gem} 11.0 Hz, H-6), 3.65 (dd, 1 H, H-6'), 3.84 (ddd, 1 H, J_{3,2} 11.1, J_{3,4} 2.5, J_{3,F} 28.8 Hz, H-3), 4.00 (ddd ~ dt, 1 H, $J_{56'}$ 6.8, J_{5F} 30.3 Hz, H-5), 4.13 (dd, 1 H, H-2), 4.71 (dd, 1 H, H-4), 5.07 (d, 1 H, $J_{1,2}$ 3.4 Hz, H-1); ¹³C NMR (CD₃OD): δ 22.6 (NCOCH₃), 52.2 (C-2), 61.3 (C-6), 68.0 (J 18.9 Hz, C-3), 70.6 (J 17.5 Hz, C-5), 90.5 (J 179.6 Hz, C-4), 92.8 (C-1), 173.9 (NC=O); ¹⁹F NMR (CD₃OD): δ 221.1 (dt, $J_{\text{F, H3}} = J_{\text{F,H5}} 29.5, J_{\text{F,H4}} 50.8 \text{ Hz}).$ Methyl 2-acetamido-3,6-di-O-acetyl-2,4-

Methyl 2-acetamido-3,6-di-O-acetyl-2,4dideoxy-4-fluoro-α-D-galactopyranoside (29). —Compound 26 (0.200 g, 0.843 mmol) was

treated with acetic anhydride (1.5 mL) in pyr (2.5 mL) at 0 °C, and the mixture was stirred overnight at rt. The solution was concentrated, and the residue was coevaporated with toluene under reduced pressure to obtain a crude product that was recrystallized from EtOAc-hexanes to afford 29 (0.23 g, 84.1%) as white needles: R_f 0.18 (3:1 EtOAc-hexanes); mp 166–168 °C; $[\alpha]_D$ +101.6° (c 1, CHCl₂); ¹H NMR (CDCl₂): δ 1.95 (s, 3 H, NAc), 2.06 and 2.07 (2 s, 6 H, 2 OAc), 3.38 (s, 3 H, OMe), 3.98 (ddd ~ dt, 1 H, $J_{5,6}$ 6.5, $J_{5,F}$ 28.4 Hz, H-5), 4.22 (dd, 1 H, J_{gem} 11.3 Hz, H-6), 4.29 (ddd, 1 H, $J_{6',5}$ 6.8, $J_{6',F}$ 0.7 Hz, H-6'), 4.61 (m, 1 H, H-2), 4.75 (d, 1 H, J₁, 3.5 Hz, H-1), 4.77 (dd, 1 H, J_{4,3} 2.3, J_{4,F} 50.7 Hz, H-4), 5.09 (dddd, 1 H, J_{3,2} 11.3, J_{3,F} 27.8 Hz, H-3), 5.63 (d, 1 H, $J_{\rm NH,2}$ 9.6 Hz, NH); ¹³C NMR (CDCl₃): δ 20.7 and 20.8 (2 OCOCH₃), 23.3 (NCOCH₃), 47.7 (C-2), 55.5 (OMe), 61.9 (J 5.3 Hz, C-6), 67.0 (J 18.0 Hz, C-5), 68.8 (J 17.4 Hz, C-3), 86.4 (J 186.0 Hz, C-4), 98.6 (C-1), 169.9, 170.4, and 171.2 (2 OCOCH₃, NC=O); ¹⁹F NMR (CDCl₃): δ 219.2 (dt, $J_{\text{F,H3}} = J_{\text{F,H5}}$ 28.1, $J_{\text{F,H4}}$ 50.7 Hz). Anal. Calcd for C₁₃H₂₀FNO₇: C, 48.60; H, 6.27; F, 5.91; N, 4.40. Found: C, 48.69; H, 6.05; F, 6.12; N, 4.43.

2-acetamido-3,6-di-O-acetyl-2,4-Methvl dideoxy-4-fluoro- β -D-galactopyranoside (30). -Compound 27 (0.10 g, 0.42 mmol) was treated with $Ac_2O(1.0 \text{ mL})$ in pyr (2.0 mL) at 0 °C, and the mixture was stirred overnight at rt. The solution was processed as described for 29 to afford a solid that was recrystallized from EtOAc to obtain 30 (0.12 g, 88.9%) as tiny, white needles: $R_f 0.20$ (EtOAc); mp 235– 236 °C; $[\alpha]_{D}$ – 19.4° {c 1, (1:1 MeOH– CHCl₃); ¹H NMR (1:1 CD₃OD–CDCl₃): δ 1.97 (s, 3 H, NAc), 2.13 and 2.12 (2 s, 6 H, 2 OAc), 3.52 (s, 3 H, OMe), 3.91 (ddd ~ dt, 1 H, $J_{5.6}$ 6.5, $J_{5.F}$ 26.4 Hz, H-5), 4.09 (dd, 1 H, $J_{2.3}$ 11.1 Hz, H-2), 4.26 (dd, 1 H, J_{oem} 11.3 Hz, H-6), 4.37 (ddd, 1 H, $J_{6',5}$ 6.7, $J_{6',F}$ 0.8 Hz, H-6'), 4.59 (dd, 1 H, J_{1.2} 8.4, J_{1.F} 1.0 Hz, H-1), 4.84 (dd, 1 H, J_{4,3} 2.5, J_{4,F} 50.6 Hz, H-4), 5.13 (dddd, 1 H, J_{3F} 27.7 Hz, H-3); ¹³C NMR (1:1 CD₃OD-CDCl₃): δ 20.0 and 20.1 (2) OCOCH₃), 22.2 (NCOCH₃), 50.2 (C-2), 56.2 (OMe), 61.5 (J 5.3 Hz, C-6), 70.5 (C-3, C-5), 85.3 (J 185.3 Hz, C-4), 101.1 (C-1), 170.5,

170.7, and 171.7 (2 OCOCH₃, NC=O); ¹⁹F NMR (1:1 CD₃OD-CDCl₃): δ 219.2 (dt, J_{F_1} _{H3} = $J_{F,H5}$ 28.1, $J_{F,H4}$ 50.7 Hz). Anal. Calcd for C₁₃H₂₀FNO₇: C, 48.60; H, 6.27; F, 5.91; N, 4.40. Found: C, 48.65; H, 5.91; F, 5.77; N, 4.36.

Preparation of 2-acetamido-1,3,6-tri-Oacetyl-2,4-dideoxy-4-fluoro-D-galactopyranose (31).—Compound 28 (0.10 g, 0.42 mmol) was treated with $Ac_2O(1.0 \text{ mL})$ in pyr (2.0 mL) at 0 °C, and the mixture was stirred overnight at rt. The solution was processed as described for 29 to afford a solid that was recrystallized from EtOAc-hexanes to obtain 31 (0.16 g, quant) as clear, colorless rods: R_f 0.13 and 0.19 (3:1 EtOAc-hexanes); mp 140-142 °C, lit. $155 - 158 \,^{\circ}\text{C}$ [9a]; $[\alpha]_{\text{D}} + 114.0^{\circ}$ (c 1, CHCl₃), lit. + 144° (c 1, CHCl₃) [9a]. α Anomer: ¹H NMR (CDCl₂): δ 1.93 (s, 3 H, NAc), 2.12 and 2.15 (2 s, 9 H, 3 OAc), 4.09 $(ddd \sim dt, 1 H, J_{5,6} 6.6, J_{5,F} 27.8 Hz, H-5),$ 4.19 (dd, 1 H, J_{gem} 11.2 Hz, H-6), 4.37 (ddd, 1 H, J_{6',5} 6.7, J_{6',F} 0.8 Hz, H-6'), 4.75 (m, 1 H, H-2), 4.83 (dd, 1 H, $J_{4,3}$ 2.2, $J_{4,F}$ 50.0 Hz, H-4), 5.16 (dddd, 1 H, $J_{3,2}^{2}$ 11.6, $J_{3,F}^{2}$ 26.9 Hz, H-3); 5.57 (d, 1 H, H-2), 6.20 (d, 1 H, J_{1.2} 3.6 Hz, H-1); ¹³C NMR (CDCl₃): δ 20.7, 20.8, and 20.9 (3 OCOCH₃), 23.1 (NCOCH₃), 46.8 (C-2), 61.4 (J 6.2 Hz, C-6), 68.0 (J 18.4 Hz, C-5), 68.9 (J 18.2 Hz, C-3), 85.8 (J 186.7 Hz, C-4), 91.2 (C-1), 168.7, 170.0, 170.4, and 171.4 (3 OCOCH₃, NC=O); ¹⁹F NMR (CDCl₃): δ 219.0 (dt, $J_{F,H3} = J_{F,H5}$ 27.4, $J_{F,H4}$ 50.2 Hz).

Biological evaluation.—Hepatocytes were obtained from 6-8-week-old, female Swiss white mice (Charles River Canada, St. Constant, Quebec) by the procedure described previously [26,27]. Briefly, the liver was perfused with 50 mL of 0.01 M Hepes buffer (pH 7.4) containing 0.5 mM EGTA, followed by 50 mL of a collagenase type-IV solution (0.5 mg/mL) in 0.1 M Hepes (pH 7.6). The liver was removed, and the hepatocytes separated from the capsule by gentle teasing. The pooled cells were centrifuged at 200 rpm at 5 °C for 5 min and washed once with fresh medium. After resuspension in 20 mL of Williams' Medium E and filtration through a Nitex 110 nylon membrane, the cells were exposed to Trypan Blue and counted on a hemocytometer to determine the viability and cell number.

The viability was usually greater than 85%. The cells were plated in triplicate on fibronectin-coated tissue culture dishes (Falcon 35 \times 10 mm) at a density of 2 \times 10⁶ cells per plate. They were incubated in 2 mL of Williams' Medium E containing 10% Fetal bovine serum and 1% antibiotic-antimycotic mixtures. After 2 h, the non-adherent cells were removed, and the attached cells were fed with fresh plating medium for a 24-h period. The cells were then provided with fresh medium containing the necessary isotopes and/or monosaccharide derivative. For GAG labeling, $[^{3}H]$ GlcN (2 μ Ci/mL) and $[^{35}S]$ SO₄ (4 μ Ci/mL) were included in the medium. For experiments monitoring protein synthesis, the cells were incubated with $[^{14}C]$ Leu (0.5 μ Ci/ mL). The labeled cellular GAGs, or total proteins, were harvested 24 h later.

GAG isolation.—After the 24-h labeling period, the medium was separated from the cells, and the cells were solubilized in 4 M guanidine-HCl, 2% Triton X-100 in 0.05 M acetate buffer (pH 6.0). A GAG carrier (1 mg/mL each of chondroitin sulfate, hyaluronan, and heparin) was added to all of the samples. The isolation of radioactive GAGs was based on the cetylpyridinium chloride (CPC) precipitation technique described by Hronowski and Anastassiades [28]. Briefly, media and cell fractions were each subjected to papain digestion, and the GAGs were precipitated as sodium salts by CPC. After lyophilization, the samples were dissolved in a known volume of water for analysis. Media GAGs were analyzed only during preliminary experiments. Cellular GAGs served as the assav material for the effects of the sugar analogs.

Total protein isolation.—Total cell protein synthesis was determined by measuring [¹⁴C]Leu incorporation. After the cells had been incubated in the labeling medium for the specified period of time, the culture medium was removed, and the cell fractions were solubilized by treatment with 1% sodium dodecyl sulfate and then combined with the medium. The proteins were precipitated by the addition of 3 mL of a 10% aq solution of trichloroacetic acid (TCA) containing 10 mg/ mL of DL-leucine. The samples were heated at 90 °C for 30 min to destroy leucine tRNA and then cooled at 4 °C for 30 min. Using a Millipore 1225 sampling manifold, each sample was passed through a glass microfiber filter (Whatman 934-AH), and the filter was washed three times with 5 mL of a cold, 5% aq solution of TCA containing 10 mg/mL of DL-leucine and once with 3 mL of EtOH. The filters were air-dried and immersed in 5 mL of scintillation solution, and the radioactivity was measured. Nonspecific binding of [³H]Leu was not more than 5% of the total incorporated radioactivity.

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada and the Medical Research Council of Canada (Grant MT-3153) for financial support.

References

- [1] J.D. Esko, Curr. Opin. Cell Biol., 3 (1991) 805-816.
- [2] (a) J. Tímár, C. Diczházi, I. Bartha, G. Pogány, S. Paku, E. Rásó, J. Tóvári, A. Ladányi, K. Lapis, L. Kopper, A. Jeney, *Int. J. Cancer*, 62 (1995) 755–761. (b) G.L. Nicolson, G. Poste, *N. Engl. J. Med.*, 295 (1976) 197–203. (c) G.L. Nicolson, G. Poste, *N. Engl. J. Med.*, 295 (1976) 253–258. (d) J.D. Esko, K.S. Rostand, J.L. Weinke, *Science*, 241 (1988) 1092–1096.
- [3] G. Carroll, Ann. Rheum. Dis., 48 (1989) 17-24.
- [4] K.H. Johnson, T.D. O'Brien, C. Betsholtz, B. Westermark, *Lab. Invest.*, 66 (1992) 522–535.
- [5] A.D. Snow, J. Willmer, R. Kisilevsky, *Hum. Pathol.*, 18 (1987) 506-510. (b) A.D. Snow, T.N. Wight, *Neurobiol. Aging*, 10 (1989) 481-497.
- [6] S.S. Thomas, J. Plenkiewcz, E.R. Ison, M. Bols, W. Zou, W.A. Szarek, R. Kisilevsky, *Biochim. Biophys. Acta*, 1272 (1995) 37–48.
- [7] A. Berkin, M.A. Szarek, J. Plenkiewicz, W.A. Szarek, R. Kisilevsky, *Carbohydr. Res.*, 325 (2000) 30–45.
- [8] (a) P. Goldman, Science, 164 (1969) 1123-1130. (b)
 W.C.J. Ross, J. Chem. Soc. C, (1966) 1816-1821. (c) J. Adamson, A.B. Foster, Carbohydr. Res., 10 (1969) 517-523. (d) P.G. Walker, in P.N. Campbell, G. D. Greville (Eds.), Essays in Biochemistry, Vol. 2, Academic Press,

New York, 1966, p. 33. (e) R. Filler, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, in R. Filler (Ed.), Studies in Organic Chemistry 48, Elsevier, New York, 1993, pp. 1–23.

- [9] (a) M. Sharma, R.J. Bernacki, B. Paul, W. Korytnyk, *Carbohydr. Res.*, 198 (1990) 205–221. (b) M. Sharma, W. Korytnyk, *Carbohydr. Res.*, 83 (1980) 163–169. (c) M. Sharma, W. Korytnyk, *Carbohydr. Res.*, 79 (1980) 39–51. (d) M. Sharma, G.G. Potti, O.D. Simmons, W. Korytnyk, *Carbohydr. Res.*, 163 (1987) 41–51. (e) M. Sharma, R.J. Bernacki, W. Korytnyk, *ACS Symp. Ser.*, 374 (1988) 191–206. (f) B. Woynarowska, C.J. Dimitroff, M. Sharma, K.L. Matta, R.J. Bernacki, *Glycoconjugate J.*, 13 (1996) 663–674. (g) B. Woynarowska, D.M. Skrincosky, A. Haag, M. Sharma, K. Matta, R.J. Bernacki, *J. Biol. Chem.*, 269 (1994) 22797–22803.
- [10] L.X. Wang, Y.C. Lee, J. Chem. Soc., Perkin Trans. 1, (1996) 581–587.
- [11] R. Kuhn, F. Zilliken, A. Gauhe, Chem. Ber., 86 (1953) 466-467.
- [12] R. Kuhn, H.H. Baer, *Liebigs Ann. Chem.*, 611 (1958) 236–241.
- [13] C. Gallo-Rogriguez, O. Varela, R.M. de Lederkremer, J. Org. Chem., 61 (1996) 1886–1889.
- [14] H. Paulsen, V. Rutz, I. Brockhausen, Justus Liebigs Ann. Chem., (1992) 735–745.
- [15] R.L. Thomas, S.A. Abbas, K.L. Matta, Carbohydr. Res., 175 (1988) 153–157.
- [16] S.S. Rana, J.J. Barlow, K.L. Matta, Carbohydr. Res., 113 (1983) 257–272.
- [17] R. Cromer, U. Spohr, D.P. Khare, J. LePendu, R.U. Lemieux, Can. J. Chem., 70 (1992) 1511–1530.
- [18] P.J. Garegg, H. Hultberg, *Carbohydr. Res.*, 93 (1981) C10-C11.
- [19] R.L. Thomas, S.A. Abbas, K.L. Matta, Carbohydr. Res., 184 (1988) 77–85.
- [20] D.P. Cox, J. Terpinski, W. Lawrynowicz, J. Org. Chem., 49 (1984) 3216–3219.
- [21] R.J. Bernacki, W. Korytnyk, Development of Membrane Sugar and Nucleotide Sugar Analogs as Potential Inhibitors or Modifiers of Cellular Glycoconjugates, in M.J. Horowitz (Ed.), The Glycoconjugates, Vol. IV, Part B, Academic Press, New York, 1982, pp. 245–263.
- [22] K.R. Roeser, G. Legler, *Biochim. Biophys. Acta*, 657 (1981) 321–333.
- [23] J.D. McCarter, M.J. Adam, S.G. Withers, *Biochem. J.*, 286 (1992) 721–727.
- [24] D.O.R. Keppler, J.F.M. Rudigier, E. Bischoff, K.F.A. Decker, Eur. J. Biochem., 17 (1970) 246–253.
- [25] T. Anukarahanonta, H. Shinozuka, E. Farber, Res. Commun. Chem. Pathol. Pharmacol., 5 (1973) 481–491.
- [26] L. Subrahmanyan, R. Kisilevsky, Scand. J. Immunol., 27 (1988) 251–260.
- [27] R. Kisilevsky, L. Subrahmanyan, Lab. Invest., 66 (1992) 778–785.
- [28] L. Hronowski, T.P. Anastassiades, J. Biol. Chem., 255 (1980) 9210–9217.