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Jiří Tauchman, Petr Štěpnička *
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A new type of ferrocene–amino acid conjugate, 2-[(methoxycarbonyl)methyl]-2-aza[3]ferrocenophane
(1), was obtained in a rather low yield via condensation reaction of 1,10-bis(hydroxymethyl)ferrocene
and glycine methyl ester in the presence of [RuCl2(PPh3)3] as a catalyst. The compound was characterised
by combustion analysis and by spectroscopic method, and its solid-state structure was established by sin-
gle-crystal X-ray diffraction analysis. Compound 1 is reluctant towards alkylation with MeI but readily
forms a stable picrate salt. Cyclic voltammetry experiments on 1 (in CH3CN at Pt electrode) revealed
the compound to undergo a one-electron reversible oxidation attributable to ferrocene/ferrocenium cou-
ple (Eo0 = �5 mV vs. ferrocene itself), which shifts towards more positive potentials upon protonation
with HCl.

� 2009 Elsevier B.V. All rights reserved.
Ferrocenylated amino acids and peptides have been intensely
studied in the recent past mainly due to their attractiveness as re-
dox-active biomolecular probes and structural models for peptides
[1]. Most typically such compounds have been obtained by con-
densation between an appropriate organometallic reagent (usually
ferrocenecarboxylic acid or its derivative) and free (terminal) ami-
no group of an amino acid or a peptide chain to give the respective
N-ferrocenecarbonyl derivative (type I in Scheme 1). By contrast,
other methods including ferrocenylmethylation at the N-terminus
or preparation of amino acids bearing the ferrocenyl moiety in the
side chain (structures II and III in Scheme 1, respectively) remain
considerably less explored [1].

While seeking for an alternative ‘‘ferrocenylation” method
applicable to amino acids, we became inspired with ferroceno-
phane amines of the type IV (Scheme 2). Such compounds have
been originally synthesised by condensation of 1,10-bis(hydroxy-
methyl)ferrocene with isocyantes (IV: R = C6H4X-4, where X = H,
OMe, NO2 [2]), by twofold alkylation of an amine (RNH2) with
1,10-bis(bromomethyl)ferrocene (IV: R = C6H4NO2-4 [3]) or 1,10-
bis(N-pyridiummethyl)ferrocene dichloride (IV: R = Me [4]) and, fi-
nally, by reductive ammination of ferrocene-1,10-dicarbaldehyde
(IV: R = x-[(7-chloro-4-quinolyl)amino]alkyl [5]). More recently,
Osakada and co-workers devised a practical synthetic route to fer-
rocenophanes IV based on Ru-catalysed condensation of 1,10-
bis(hydroxymethyl)ferrocene with amines [6]. We decided to
make use of this approach in the preparation of a novel ferro-
cene–glycine conjugate 1 (Scheme 2) [7].
ll rights reserved.

a).
Compound 1 was prepared [8] by following the literature meth-
od consisting in thermally induced condensation of 1,10-
bis(hydroxymethyl)ferrocene [10] with glycine methyl ester [11]
at 170 �C in the presence of [RuCl2(PPh3)3] (3.5 mol.%) using N-
methylpyrrolidone as the solvent (Scheme 3). Isolation by column
chromatography afforded analytically pure 1 as an air-stable or-
ange crystalline solid in 10% yield. Apart from for 1, only small
amount of 2-oxa[3]ferrocenophane, which is evidently the product
of dehydration of the starting diol, was isolated from the crude
reaction mixtures. Attempts at improving the yield of 1 failed
probably because of competitive decomposition pathways operat-
ing under the relatively harsh reaction conditions.

Compound 1 was characterised by the conventional spectro-
scopic methods and by combustion analysis [12]. In 1H NMR spec-
tra, it showed a pair of apparent triplets due to symmetrically 1,10-
disubstituted ferrocene moiety (i.e., due to two identical AA0BB0

spin systems) and resonances attributable to the modifying substi-
tuent, namely a singlet for the equivalent, ferrocene-bound CH2

groups (dH 3.10) and two additional singlets for the glycine residue
(dH 3.66 and 3.75 for CH2 and CH3 group, respectively). 13C NMR
spectra were also in accordance with the formulation, displaying
two ferrocene CH resonances and one down-field shifted Cipso sig-
nal (dC 83.15) as it is typical for alkyl-substituted ferrocenes. Sig-
nals of the amino acid moiety were observed in the expected
region (dC 58.77 and 51.42 for CH2 and CH3 groups, respectively);
the glycine C@O was found at dC 171.65. Finally, IR spectra of 1
confirmed the presence of the terminal ester group, showing a
strong mC@O band at 1739 cm�1.

Solid-state structure of 1 was determined by single-crystal X-
ray diffraction [13]. A view of the molecular structure is presented

http://dx.doi.org/10.1016/j.inoche.2009.10.038
mailto:stepnic@natur.cuni.cz
http://www.sciencedirect.com/science/journal/13877003
http://www.elsevier.com/locate/inoche


N

R

OH

O

Fc

O

H

I

H2N

Y

OH

O

Fc

N

R

OH

O

Fc
H

II III

Scheme 1. Selected examples of ferrocenylated amino acids (Fc = ferrocenyl, Y = an
organic spacer).
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Scheme 2. [3]Ferrocenophane amines (IV) and the amino acid derivative under
study (1).
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in Fig. 1 together with selected distances and angles. The bridged
cyclopentadienyl rings in the molecule of 1 are mutually eclipsed
and symmetrically tilted by ca. 12� (the variation in the Fe-ring
centroid distances being statistically insignificant), and the geom-
etry of the ferrocenophane part does not differ much from the
structural data reported for the N-methyl analogue (IV, R = Me
[4]). The CNC bridge in 1 is bent at the nitrogen atom with the
C11–N–C12 angle being 113.8(1)�, and symmetrically incorporates
the glycine unit (the C11/C12–N–C13 angles differ by only 1�).
However, the pendant moiety it is slightly twisted at the C13–
H2NCH2CO2Me
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Scheme 3. Preparation of ferrocenophane 1 and i
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Fig. 1. View of the molecule of 1 showing displacement ellipsoids at the 30% probability
1.499(2), C6–C12 1.496(2), N–C11 1.471(2), N–C12 1.475(2), N–C13 1.454(2), C13–C14
C11–N–C12 113.8(1), N–C13–C14 116.7(1), O1–C14–O2 123.5(2), C14–O2–C15 116.0
respective centroids.
C14 bond (N–C13–C14–O1 = 9.1(3)�), which lowers the overall
molecular symmetry. As a consequence, the {C13, C14, O1, O2,
C15} plane [16] is practically perpendicular to the {C11, N, C12}
plane (dihedral angle = 83.6(2)�) but, simultaneously, inclined to-
wards the Cp2 ring as evidenced by the dihedral angles of the
{C13, C14, O1, O2, C15} plane and the Cp1/Cp2 rings being
4.5(1)/15.8(1)� (Fig. 2).

Alkylation of 1 with an excess of methyl iodide [17] met with no
success, leading only to a complete recovery of unchanged 1. On
the other hand, treatment of 1 with 2,4,6-trinitrophenol in ethyl
acetate and subsequent crystallisation [18] yielded picrate 2 as a
red crystalline solid (Scheme 3), which was characterised by melt-
ing point and by spectroscopic methods [19]. Ions constituting salt
2 were clearly seen in electrospray mass spectra. Likewise, the 1H
NMR spectrum of 2 showed signals attributable to cation [1H]+ and
characteristic resonance due to the picrate protons at dH 8.94. The
presence of the picrate anion was further manifested in IR spectra
via the diagnostic bands at 1556/1567 (masNO2), 1321/1364
(msNO2), 1615/1629 (mC–C), and at 1270 cm�1 (phenoxide mC–O)
[20]. A band due to glycine C@O group (mC@O) was observed at
1751 cm�1, shifted by 12 cm�1 to higher energies compared to 1.

Cyclic voltammogram of compound 1 recorded in acetonitrile at
a platinum electrode [21] displayed a diffusion-controlled, one-
electron reversible oxidation [22] at Eo0 = –0.005 V vs. ferrocene/
ferrocenium reference (Fig. 3). Addition of MeI (10 equiv.,
30 min) to the analysed solution left the redox response un-
changed which is, indeed, in line with the observed reluctance of
1 towards alkylation. On the other hand, addition of HCl (as a
methanol solution) led to immediate protonation at the nitrogen
atom, which in turn resulted in a pronounced shift of the ferro-
cene/ferrocenium wave towards more positive potentials (ca.
275 mV with 5 equiv., and ca. 300 mV with 10 equiv. of added
HCl), while not affecting its overall reversibility (Fig. 3) [23].

In summary, we have succeeded in preparing of a new type of
ferrocene–amino acid conjugate starting from simple precursors
2
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ts picrate salt 2 (Hpic = 2,4,6-trinitrophenol).
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level. Selected distances and angles: Fe–Cg1 1.6370(7), Fe–Cg2 1.6353(8), C1–C11
1.518(2), C14–O1 1.201(2), C14–O2 1.332(2), O2–C15 1.445(2); \Cp1, Cp2 11.9(1),
(1). Definition of ring planes: Cp1 = C(1–5), Cp2 = C(6–10); Cg1 and Cg2 are the
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Fig. 2. Projections of the molecule of 1 along (a) the C1–C6 vector, and (b) the C13–
N bond (for atom labelling, see Fig. 1).

Fig. 3. Cyclic voltammograms of 1 before (solid line) and after (dashed line)
addition of 5 equiv. of HCl (recorded in acetonitrile on Pt electrode, 100 mV s�1 scan
rate).
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and using the known synthetic protocol. Although validated only
for glycine, this method most likely represents a general approach
to structurally unique amino acid derivatives that contain the re-
dox-active ferrocene moiety.

Ferrocenophane 1, was characterised by a combination of com-
bustion analysis and common spectroscopic methods, and its for-
mulation was corroborated by X-ray crystallography. Cyclic
voltammetry measurements have shown the compound to under-
go one-electron reversible electron oxidation, presumably at the
ferrocene moiety. Upon protonation, this oxidation expectedly be-
comes more difficult, which is reflected by a shift of the associated
redox wave towards more positive potentials. In the case of the re-
lated N-methyl derivative (IV, R = Me), a shift +380 mV was noted
for the ferrocene/ferrocenium wave upon protonation with H[BF4]
in the same solvent [4].
Supplementary material

CCDC 746701 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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