Syntheses of partially pivaloylated D-glucopyranoses: new substrates for the esterase from rabbit serum

Đurđica Ljevaković, Srđanka Tomić, and Jelka Tomašić

Department of Radioimmunology, Institute of Immunology, P.O. Box 266, 41000 Zagreb, Croatia (Yugoslavia)

(Received July 23rd, 1991; accepted December 4th, 1991)

ABSTRACT

The selective pivaloylation (pivaloyl chloride-pyridine) of D-glucopyranose proceeds by two pathways after initial 6-pivaloylation, namely, successive esterification of (a) positions 1, 3, 4, and 2 (major pathway) and (b) positions 2, 1, 4, and 3 (minor pathway). Numerous di- (3 and 4), tri- (5-9), and tetra-pivalates (10-12) have been prepared and characterised. On treatment of the 2,6-dipivalate (4) with rabbit serum or partially purified esterase II, PivO-6 was hydrolysed selectively, whereas the 1,6-dipivalate (3) underwent partial $1 \rightarrow 2$ acyl migration to give 4 and enzymic de-esterification of 3 and 4 occurred simultaneously.

INTRODUCTION

The regioselective acylation of sugars can be carried out rarely with efficiency^{1,2}. The ability of pivaloyl chloride to acylate sugars selectively stimulated syntheses of partially pivaloylated derivatives of simple glycosides³⁻⁵ and disaccharides^{6,7}. Pivaloyl derivatives of methyl α -D-glucopyranoside are good substrates for esterases from mammalian sera⁸⁻¹⁰ and are hydrolysed regioselectively to give compounds with unsubstituted primary hydroxyl groups. ¹⁴C-Labelled methyl 2,6-di-O-pivaloyl- α -D-glucopyranoside has been used¹⁰ to monitor the isolation of esterase from rabbit serum.

Regioselective enzymic acylations¹¹⁻¹⁹ and deacylations²⁰⁻²³ in the carbohydrate field have been developed only recently. Numerous furanose and pyranose derivatives^{11,13}, di- and oligo-saccharides, and other sugar-containing compounds^{10,14} have been selectively acylated by lipases^{11,13,18,19} or proteolytic enzymes¹². Also, enzyme-catalysed trans-esterifications between secondary hy-

Correspondence to: Dr. Đ. Ljevakovic, Department of Radioimmunology, Institute of Immunology, P.O. Box 266, 41000 Zagreb, Croatia, Yugoslavia.

droxyl groups and an activated ester (usually a trihaloethyl carboxylate) have been $observed^{15-17}$.

Lipase-catalysed regioselective cleavage of the 1-O-acyl groups of acylated carbohydrates²⁰, selective hydrolyses of the primary acyl groups of methyl 2,3,4,6-tetra-O-acylhexopyranosides^{13,21}, and deacylations of 3',5'-di-O-acylpyrimidine nucleosides by subtilisin²² have been reported.

We now report the synthesis of a series of partially pivaloylated derivatives of D-glucopyranose and their use as substrates for the esterase from rabbit serum.

RESULTS AND DISCUSSION

Unless noted otherwise, the following pivaloylations were conducted in dry pyridine at room temperature.

Treatment of D-glucopyranose (1) with 5 equiv of pivaloyl chloride for 24 h gave 18% of the 1,2,3,4,6-pentapivalate (13), 16% of a 1:1 mixture of the 1,2,4,6- (12) and 1,3,4,6-tetra-pivalate (11), and 15% of the 1,2,3,6-tetrapivalate (10). Attempts to resolve the mixture of 11 and 12 failed. However, 11 and 12 could be synthesised by treatment of the 1,3,6- (8) and 1,2,6-tripivalate (5), respectively, with 10 equiv of pivaloyl chloride. Thus, 5 gave, after chromatography, 10 and 12 in the ratio 1:2, and 8 gave 10, 11, and 13 in the ratios 1:3.2:1. The crystalline tetrapivalates 11 and 12 were obtained and characterised as the acetates 24 and 25, respectively.

Treatment of 1 with 10 equiv of pivaloyl chloride at 60° for 3 days gave only 50%

1	$R = R^{1} = R^{2} = R^{2} = R^{4} = H$	14	$R = Piv, R = R^{2} = R^{3} = R^{4} = Ac$
2	$R = R^{1} = R^{2} = R^{3} = H, R^{4} = Piv$	15	$R = R^{1} = R^{2} = R^{2} = Ac, R^{4} = Piv$
3	$R = R^{4} = Piv, R^{1} = R^{2} = R^{3} = H$	16	$R = R^4 = Piv, R^1 = R^2 = R^3 = Ac$
4	$R = R^{2} = R^{3} = H, R^{1} = R^{4} = Piv$	17	$R = R^2 = R^3 = Ac, R^1 = R^4 = Piv$
5	$R = R^{1} = R^{4} = Piv, R^{2} = R^{3} = H$	18	$R = R^{1} = R^{4} = Piv, R^{2} = R^{3} = Ac$
6	$\mathbf{R} = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{Piv}, \ \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{H}$	19	$\mathbf{R} = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{Piv}, \ \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{Ac}$
7	$R = R^{3} = H, R^{1} = R^{2} = R^{4} = Piv$	20	$R = R^{3} = Ac, R^{1} = R^{2} = R^{4} = Piv$
8	$R = R^{2} = R^{4} = Piv, R^{1} = R^{3} = H$	21	$\mathbf{R} = \mathbf{R}^2 = \mathbf{R}^4 = \mathbf{Piv}, \ \mathbf{R}^3 = \mathbf{R}^3 = \mathbf{Ac}$
9	$R = R^2 = H, R^3 = R^3 = R^4 = Piv$	22	$R = R^2 = Ac, R^1 = R^3 = R^4 = Piv$
10	$R = R^{1} = R^{2} = R^{4} = Piv, R^{3} = H$	23	$R = R^{1} = R^{2} = R^{4} = Piv, R^{3} = Ac$
11	$R = R^2 = R^3 = R^4 = Piv, R^1 = H$	24	$R = R^2 = R^3 = R^4 = Piv, R^1 = Ac$
12	$R = R^{1} = R^{3} = R^{4} = Piv, R^{2} = H$	25	$R = R^{1} = R^{3} = R^{4} = Piv, R^{2} = Ac$
13	$R = R^{1} = R^{2} = R^{3} = R^{4} = Piv$	26	$R = R^2 = R^3 = R^4 = Ac, R^1 = Piv$

Compound	Mp ^a	$[\alpha]_{\mathrm{D}}^{22 \ b}$	Formula	Anal.			
	(degrees)	(degrees)		Calcd		Found	
				C	Н	c	Н
2	161-163	- 69 (MeOH)	C ₁₁ H ₂₀ O ₇	50.02	7.58	50.10	7.59
3	glass	- 13		55 16	9 10	(54.96	7.99
4	151-153	+ 51	$C_{16}\Pi_{28}O_{8}$	33.10	6.10	\$ 55.34	7.98
5	156-157	+ 29				(58.56	8.10
6	129-131	-4		50.21	0.20	58.47	8.21
7	123-125	+ 37	$C_{21}H_{36}O_9$	58.51	8.39	58.12	8.70
8	135-136	-22				58.36	8.09
10	144-145	+ 21				60.55	8.25
11	168-170	+ 15	$C_{26}H_{44}O_{10}$	60.62	8.55	60.52	8.39
12	172-174	-4				60.62	8.45
13 ^c	156-157	+11	$C_{31}H_{52}O_{11}$	61.98	8.73	61.78	8.63
14	141-143	-2		50 77	6 5 3	(52.60	6.75
15	105-107	+ 92	$C_{19} G_{28} O_{11}$	54.11	0.55	52.71	6.74
16	180-181	+ 22		FF (0		(55.50	7.06
17	193-195	+ 12	$C_{22}H_{34}O_{11}$	22.09	1.22	55.67	7.18
18	162-164	+ 14				(58.27	7.75
19	178-180	+8				58.24	7.68
20	159-161	+ 78	$C_{25}H_{40}O_{11}$	58.12	7.81	\$ 58.22	7.61
21	174-175	+ 22	25 10 11			58.22	7.75
22	126-128	+ 98				57.97	7.59
23 ^d	140-141	+ 20	C ₃₆ H ₅₈ O ₁₇	56.68	7.66	56.68	7.50
24	202-204	+8		60.20	0 20	(60.40	8.39
25	225-227	+ 11	$C_{28}\Pi_{46}O_{11}$	00.20	0.50	(60.43	8.45
26	172–173	+9	$C_{19}H_{28}O_{11}$	52.77	6.53	52.57	6.76

TABLE I

Analytical data for compounds 2-26

^{*a*} From isopropyl ether-light petroleum. ^{*b*} In chloroform, if not stated otherwise. ^{*c*} Lit.²⁴ mp 156-157° (from EtOH), $[\alpha]_{\rm D}$ + 10.9°. ^{*d*} Analytical data for C₂₈H₄₆O₁₁·2Ac₂O.

of the pentapivalate 13 (cf. the reaction²⁴ of 1 with pivaloyl chloride in pyridinechloroform at 75-80° for 5 days, which gave 74% of 13). These results illustrate the steric effects associated with the bulky pivaloyl group. The β configurations of 10-13 were confirmed by the ¹H-NMR data.

With 3 equiv of pivaloyl chloride, 1 gave at least nine products and chromatography of the mixture yielded the 1,3,6- (8, 48%), 1,4,6- (6, 9%), and 1,2,6-tripivalate (5, 9%), and the 1,6-dipivalate (3, 28%), and they were characterised as the acetylated derivatives 21, 19, 18, and 16, respectively (Table I). The structures of these compounds were confirmed by analytical and ¹H-NMR data (Table II).

Treatment of 1 with 2 equiv of pivaloyl chloride gave the 2,6-di- (4) and 1,6-di-pivalate (3), and the 6-pivalate (2) in the ratios 1:7:2.7. The signal for H-1 (δ 5.66, $J_{1,2}$ 7.32 Hz) in the ¹H-NMR spectrum of 3 indicated that HO-1 was substituted, and the corresponding data for 4 and 2 indicated that HO-1 was unsubstituted. The favoured pivaloylation of HO-1 accords with its higher acidity¹.

Compd	Chemical shifts	(mdd)									
	H-1(d, J _{1.2} Hz)	Me ₃ C-	CO 4				AcO ^a				
		1	2	3	4	6	1	2	3	4	6
۳	5.66 (7.32)	1.19				1.22					
4			1.23^{b}			1.22^{b}					
v	5.64 (8.20)	1.19	1.18			1.21					
9	5.51 (7.91)	1.19			1.24^{b}	1.23^{b}					
7			1.19	1.24^{b}		1.20^{b}					
æ	5.59 (7.91)	1.19		1.24^{b}		1.21^{b}					
6			1.22^{b}		1.23^{b}	1.22^{b}					
10	5.69 (8.20)	1.19	1.13	1.17		1.22					
11	5.61 (8.20)	1.19		1.17	1.16	1.20					
12	5.66 (8.20)	1.19	1.20^{b}		1.22^{b}	$1.20^{\ b}$					
13	5.71 (8.20)	1.18	1.12	1.12	1.15	1.21					
14	5.67 (7.91)	1.20						2.01	2.01	2.03	2.09
15	6.32 (3.81)					1.21	2.17	2.03	2.03	2.04	
16	5.66 (7.91)	1.19				1.21		2.01	2.01	2.03	
17	5.74 (7.62)		1.14			1.22	2.08		1.99	2.03	
18	5.69 (8.20)	1.18	1.13			1.21			1.99	2.03	
19	5.66 (7.91)	1.19			1.16	1.21		2.01	1.99		
20	6.36 (3.81)		1.13	1.13		1.21	2.15			2.02	
21	5.66 (8.20)	1.18		1.13		1.21		1.99		2.01	
22	6.37 (3.52)		1.13		1.15	1.22	2.17		1.98		
23	5.71 (7.91)	1.18	1.12	1.12		1.21				2.01	
24	5.66 (8.20)	1.18		1.12	1.15	1.21		1.98			
25	5.70 (7.91)	1.18	1.12		1.16	1.21			1.96		
26	5.76 (7.32)		1.14				2.09		1.99	2.03	2.09
^a All signals	are singlets. ^b As	signments cou	ld be reversed	Ч.							

110

¹H-NMR data (CDCl₃), 100 MHz for pivaloyl derivatives of D-glucopyranose

TABLE II

Compounds 2-4 were characterised as the acetylated derivatives 15-17, respectively.

A small yield of the 6-pivalate (2) was isolated after treatment of 1 with 1 equiv of pivaloyl chloride. The ¹H-NMR spectrum (CD₃OD) of 2 contained one sharp signal (s, δ 1.22) that was attributed to PivO-6, but traces of other monopivalates could not be excluded. Acetylation of 2 gave an α,β -mixture of the tetra-acetates from which the crystalline α anomer (15 α) was isolated.

In order to clarify the pattern of reaction of 1 with pivaloyl chloride, the 1,6- (3) and 2,6-dipivalate (4) were each treated with 1 equiv of pivaloyl chloride. Thus, 3 gave, after chromatography, the 1,3,6-tripivalate (8, 52%) together with small proportions of the 1,2,6- (5) and 1,4,6-tripivalate (6). The ¹H-NMR spectrum of 8 contained, inter alia, a signal at δ 5.02 (t, $J_{2,3}$ 9.08, $J_{3,4}$ 8.50 Hz) that indicated HO-3 to be substituted. Pivaloylation of HO-3 in 3 rather than HO-2 may reflect steric hindrance, but also accords with the reported higher reactivity of HO-3 in the β -gluco series. The formation of 5 and 6 in equal proportions indicates that HO-2 and HO-4 have similar reactivities.

Pivaloylation of the 2,6-dipivalate (4) afforded the 2,4,6- (9), 2,3,6- (7), and 1,2,6-tripivalate (5) in the ratios 1:1.3:5.2, which were characterised as the acetylated derivatives 22, 20, and 18, respectively.

The foregoing results indicate that the pivaloylation of D-glucopyranose (1) yields first the 6-pivalate (2), which is followed in the major pathway by successive pivaloylation at HO-1, HO-3, HO-4, and HO-2, and, in the minor pathway, at HO-2, HO-1, HO-4, and HO-3.

The partially pivaloylated D-glucoses 2-13 and the respective acetylated derivatives 14-26 (Table I) can be differentiated readily on the basis of their chromatographic mobilities and ¹H-NMR data (Table II).

The susceptibility of the 1,6- (3) and 2,6-dipivalate (4) to rabbit serum and esterase II¹⁰ isolated therefrom was examined. Since the resulting monopivalates had identical mobilities in TLC and no reference compounds were available, they were characterised as the tetra-acetates. In this manner, the tetra-acetate (26) of the 2-pivalate was the only product isolated (76%) after the action of rabbit serum on 4, whereas, after the action of esterase II, 85% of a 7:1 mixture of the acetylated 2- (26) and 6-pivalate (15) was obtained from which 26 was isolated by crystallisation. The relative resistance of PivO-2 in 4 to enzymic hydrolysis is in agreement^{8,9} with the pattern of stepwise de-esterification of methyl 2,6-di-*O*pivaloyl- α -D-glucopyranoside by esterases from different sources. The regioselective removal of PivO-6 was also observed¹⁰ in the enzymic hydrolysis of methyl 2-acetamido-2-deoxy-3,4,6-tri-*O*-pivaloyl- α -D-glucopyranoside.

Rabbit serum catalysed the hydrolysis of the 1,6-dipivalate (3) to give, after acetylation, 42% of a 1:3.4 mixture of the acetylated 6- (15) and 2-pivalate (26). Esterase II reacted with 3 to give, after acetylation, mainly 26 (37%). The formation of the 2-pivalate in the enzymic deacylation of the 1,6-dipivalate (3) can be explained only by acyl migration. When 3 was incubated in phosphate-buffered

saline in the absence of esterase, a product was formed which co-migrated in TLC with the 2,6-dipivalate (4), and an equilibrium of 3 and 4 was established with a 40% decrease in the intensities of the signals for H-1 (d, δ 5.66) and PivO-1 (s, δ 1.19) with corresponding increases in that (s, δ 1.22) due to PivO-2,6 (see Table II). The migration of PivO-1 was confirmed by the isolation of the 2,3,4- (16) and 1,3,4-triacetate (17) after acetylation.

Hydrolysis of PivO-1 in the 1,6-dipivalate (3) was faster than that of PivO-6, as indicated by the absence of a resonance for PivO-1 in the ¹H-NMR spectrum of the products of enzymic hydrolysis. Acyl migration also occurred when the pH was lowered to 6.3 and in pure water (data not presented). Some $2 \rightarrow 1$ acyl migration was also observed during the hydrolysis of the 2,6-dipivalate (4). Due to the faster hydrolysis of PivO-1 and PivO-6 than of PivO-2, only the 2-pivalate was isolated.

Many examples of acyl migration in the gluco series have been reported¹. Generally, the migration occurs from O-1 towards O-6 with $1 \rightarrow 2$ migration observed most often as in 3. In contrast to the above results, methyl 2,6-di-*O*-pivaloyl- α -D-glucopyranoside and methyl 2-acetamido-2-deoxy-3,6-di-*O*-pivaloyl- α -D-glucopyranoside did not undergo acyl migrations^{8,10}. However, $2 \rightarrow 4$ acyl migration in methyl 2,6-di-*O*-pivaloyl- α -D-glucopyranoside was observed⁹ in transformations caused by sera of ruminants, but the enzyme was not identified.

EXPERIMENTAL

General methods.—Melting points are uncorrected. Optical rotations were determined for 1% solutions in chloroform if not stated otherwise. Column chromatography was performed on silica gel (Merck) and TLC on Kieselgel G (Merck) with A, benzene-ethyl acetate (in the proportions given); B, ether-light petroleum (1:1); and C, acetonitrile-water (5:1); and detection by charring with H_2SO_4 . The physical constants and elemental analyses of 2–8 and 10–26 are given in Table I. The ¹H-NMR spectra (100 MHz, CDCl₃, internal Me₄Si) were recorded with a Jeol JNM FX-100 FT spectrometer, and the data for 3–26 are given in Table II.

Selective pivaloylation of D-glucopyranose (1).—(a) To a solution of 1 (180 mg, 1 mmol) in dry pyridine (2 mL) was added pivaloyl chloride (625 μ L, 5 mmol). The mixture was stirred at ambient temperature for 24 h, EtOH (2 mL) was added, the mixture was concentrated, and traces of pyridine were removed by evaporation of toluene from the residue. Column chromatography (solvent A, 10:1) gave, first, 1,2,3,4,6-penta-O-pivaloyl- β -D-glucopyranose (13; 134 mg, 26%; $R_{\rm F} \sim 0.85$). Eluted next was a 1:1 mixture (193 mg, 45%; $R_{\rm F} \sim 0.43$) that was shown by TLC (solvent B) to comprise 1,2,4,6- (12, $R_{\rm F} \sim 0.67$) and 1,3,4,6-tetra-O-pivaloyl- β -D-glucopyranose (11, $R_{\rm F} \sim 0.57$). Eluted last was 1,2,3,6-tetra-O-pivaloyl- β -D-glucopyranose (10; 89 mg, 21%; $R_{\rm F} \sim 0.29$).

Conventional treatment of 10 with acetic anhydride-pyridine for 16 h at ambient temperature afforded, after column chromatography (solvent A, 10:1), the 4-acetate 23 (51 mg, 95%).

(b) Pivaloylation of 1 (180 mg) with 3 equiv of pivaloyl chloride (375 μ L) in dry pyridine (2 mL), as in (a), followed by column chromatography (solvent A, 1:1) of the product, gave the 1,3,6- (8; 208 mg, 48%; $R_F \sim 0.83$), 1,4,6- (6; 39 mg, 9%; $R_F \sim 0.67$), and 1,2,6-tripivalate (5; 40 mg, 9%; $R_F \sim 0.55$). Elution with solvent C then afforded 1,6-di-O-pivaloyl- β -D-glucopyranose (3; 98 mg, 28%).

Conventional acetylation of 3 (50 mg), followed by column chromatography (solvent A, 2:1) and crystallisation, gave the 2,3,4-triacetate 16 (64 mg, 94%). Likewise, 5 gave the 3,4-diacetate 18 (57 mg, 96%), 6 gave the 2,3-diacetate 19 (61 mg, 98%), and 8 gave the 2,4-diacetate 21 (55 mg, 92%).

(c) Reaction of 1 (180 mg) with 2 equiv of pivaloyl chloride (250 μ L) in dry pyridine (2 mL), as in (a), gave, after column chromatography (solvent C), the 2,6-(4; 15 mg, 3%; $R_{\rm F} \sim 0.91$) and 1,6-dipivalate (3; 54 mg, 21%; $R_{\rm F} \sim 0.84$), and the 6-pivalate (2; 22 mg, 8%; $R_{\rm F} \sim 0.70$).

Acetylation of 2 (50 mg), followed by column chromatography (solvent A, 2:1), gave the 2,3,4,6-tetra-acetate 15 (66 mg, 98%). Likewise, 4 gave the 1,3,4-triacetate 17 (65 mg, 96%).

Other pivaloylations. — (a) 1,6-Di-O-pivaloyl- β -D-glucopyranose (3). To a solution of 3 (323 mg, 0.93 mmol) in dry pyridine (6.6 mL) was added pivaloyl chloride (116 μ L, 0.93 mmol). The mixture was stored for 24 h at ambient temperature, then diluted with EtOH (2 mL), and concentrated. Column chromatography (solvent A, 2:1) of the residue gave the 1,3,6- (8; 225 mg, 52%; $R_F \sim 0.68$), 1,4,6-(6; 30 mg, 8%; $R_F \sim 0.49$), and 1,2,6-tripivalate (5; 30 mg, 8%; $R_F \sim 0.38$).

(b) 2,6-Di-O-pivaloyl-D-glucopyranose (4). To a solution of 4 (350 mg, 1 mmol) in dry pyridine (2 mL) was added pivaloyl chloride (125 μ L, 1 mmol). The mixture was stirred for 16 h at ambient temperature, then worked-up as described for 3. Column chromatography (solvent A, 2:1) of the product gave a mixture of the tetrapivalate (54 mg, 10%), 2,4,6- (9; 27 mg, 6%; $R_{\rm F} \sim 0.77$), 2,3,6- (7; 35 mg, 8%; $R_{\rm F} \sim 0.62$), and 1,2,6-tripivalate (5; 132 mg, 31%; $R_{\rm F} \sim 0.38$), and 4 (60 mg, 17%; $R_{\rm F} \sim 0.28$).

Conventional acetylation of 7 (50 mg) gave the 1,4-diacetate (20; 56 mg, 95%). Likewise, 9 (50 mg) gave the 1,3-diacetate (22; 57 mg, 96%).

(c) 1,2,6-Tri-O-pivaloyl- β -D-glucopyranose (5). Treatment of 5 (100 mg, 0.23 mmol) with pivaloyl chloride (290 μ L, 2.3 mmol) in dry pyridine (2 mL) for 16 h at ambient temperature, followed by column chromatography (solvent A, 10:1), gave the 1,2,4,6- (12; 61 mg, 59%) and 1,2,3,6-tetrapivalate (10; 36 mg, 30%).

Conventional acetylation of 12 (50 mg) gave the 3-acetate (25; 53 mg, 97%).

(d) 1,3,6-Tri-O-pivaloyl- β -D-glucopyranose (8). Treatment of 8 (172 mg, 0.4 mmol) with pivaloyl chloride (500 μ L, 4 mmol) in dry pyridine (2 mL) for 16 h at ambient temperature, followed by column chromatography (solvent A, 10:1), afforded the 1,2,3,4,6-pentapivalate 13 (35 mg, 15%), and the 1,3,4,6- (11; 99 mg, 48%) and 1,2,3,6-tetrapivalate (10; 31 mg, 15%).

Conventional acetylation of 11 (50 mg) gave the 2-acetate (24; 52 mg, 96%). 2,3,4,6-Tetra-O-acetyl-1-O-pivaloyl- β -D-glucopyranose (14).—To a solution of

2,3,4,6-tetra-O-acetyl- β -D-glucopyranose (174 mg, 0.5 mmol) in dry pyridine (1 mL) was added pivaloyl chloride (125 μ L), and the mixture was stirred for 16 h at ambient temperature, then concentrated. Column chromatography (solvent A, 1:1) of the residue gave 14 (140 mg, 65%).

Enzymic deacylations.—Rabbit serum and esterase II were prepared as described¹⁰. A solution of the substrate in phosphate-buffered saline (PBS, 0.01 M, 10 mL) was incubated with rabbit serum or esterase II at 37°. The pH was maintained at 7.2 by the addition of 0.1 M NaOH and each reaction was monitored by TLC (solvent C). Reaction was stopped by adding EtOH (10 mL), the precipitated proteins were removed by centrifugation, the solvent was evaporated, the residue was acetylated conventionally, and the product was subjected to column chromatography (solvent A, 5:1).

(a) Treatment of the 2,6-dipivalate 4 (100 mg) with rabbit serum (2 mL) for 15 h, followed by acetylation and column chromatography, as described above, gave the acetylated 2-pivalate 26 (94 mg, 76%) and traces of the acetylated 6-pivalate 15.

Hydrolysis of 4 (100 mg) with esterase II (3.6 mg) for 3 h, followed by acetylation and column chromatography, afforded a mixture (100 mg, 85%) of 26 and 15 in the ratio 7:1 (¹H-NMR data). Crystallisation of the mixture from isopropyl ether-light petroleum gave 26 as needles.

(b) Treatment of the 1,6-dipivalate 3 (100 mg) with rabbit serum (2 mL) for 14 h, followed by acetylation and column chromatography (solvent A, 5:1), gave a mixture (47 mg, 42%) of the acetylated 6- (15) and 2-pivalate (26) in the ratio 1:3.4 (¹H-NMR data).

Hydrolysis of 3 (50 mg) with esterase II for 27 h, followed by acetylation and column chromatography (solvent A, 5:1), afforded a mixture (23 mg, 37%) of the acetylated 2- (26) and 6-pivalate (15) in the ratio 10:1. Crystallisation of the mixture from isopropyl ether-light petroleum gave 26.

(c) Incubation of 3 (50 mg) in PBS (10 mL) at 37° for 14 h gave a 3:2 mixture of 3 and 4. ¹H-NMR data: δ 5.66 (d, 0.56 H, $J_{1,2}$ 7.32 Hz, H-1), 1.22 (s, 15.57 H, PivO-2,6), 1.19 (s, 14.13 H, PivO-1).

Conventional acetylation of the above mixture, followed by column chromatography (solvent A, 5:1), gave acetylated 1,6- (16) and 2,6-dipivalate (17).

ACKNOWLEDGMENTS

We thank Mrs. B. Prester for technical assistance, Mr. Ž. Marinić for the NMR measurements, and Mrs. R. Herman for the microanalyses.

REFERENCES

1 A.H. Haines, Adv. Carbohydr. Chem. Biochem., 33 (1968) 11-109.

2 R.W. Binkley, Modern Carbohydrate Chemistry, Dekker, New York, 1988, pp. 137-144.

- 3 S. Tomić-Kulenović and D. Keglević, Carbohydr. Res., 85 (1980) 302-306.
- 4 D. Keglević, D. Ljevaković, and S. Tomić-Kulenović, Carbohydr. Res., 92 (1981) 51-63.
- 5 Đ. Ljevaković, S. Tomić, and J. Tomašić, Carbohydr. Res., 182 (1988) 197-205.
- 6 M.S. Chowdhary, L. Hough, and A.C. Richardson, J. Chem. Soc., Perkin Trans. 1, (1984) 419-427.
- 7 R.C. Garcia, L. Hough, and A.C. Richardson, Carbohydr. Res., 200 (1990) 307-317.
- 8 S. Tomić, A. Treščec, and J. Tomašić, Comp. Biochem. Physiol., 87B (1987) 761-765.
- 9 S. Tomić, Lj. Sesartić, and J. Tomašić, Comp. Biochem. Physiol., 92B (1989) 681-684.
- 10 S. Tomić, A. Treščec, D. Ljevaković, and J. Tomašić, Carbohydr. Res., 210 (1991) 191-198.
- 11 M. Therisod and A.M. Klibanov, J. Am. Chem. Soc., 108 (1986) 5638-5640.
- 12 S. Riva, J. Chopineau, A.P.G. Kieboom, and A.M. Klibanov, J. Am. Chem. Soc., 110 (1988) 584-589.
- 13 W.J. Hennen, H.M. Sweers, Y.-F. Wang, and C.-H. Wong, J. Org. Chem., 53 (1988) 4939-4945.
- 14 A. Uemura, K. Nozaki, J.-I. Yamashita, and M. Yasumoto, Tetrahedron Lett., 30 (1989) 3817-3818.
- 15 D. Colombo, F. Ronchetti, and L. Toma, Tetrahedron, 47 (1991) 103-110.
- 16 P. Ciuffreda, D. Colombo, F. Ronchetti, and L. Toma, J. Org. Chem., 55 (1990) 4187-4190.
- 17 M. Therisod and A.M. Klibanov, J. Am. Chem. Soc., 109 (1987) 3977-3981.
- 18 V. Gotor and R. Pulido, J. Chem. Soc., Perkin Trans. 1, (1991) 491-492.
- 19 K. Adelhorst, F. Bjorkling, S.E. Gadtfredsen, and O. Kirk, Synthesis, (1990) 112-115.
- 20 J.F. Shaw and A.M. Klibanov, Biotechnol. Bioeng., 29 (1987) 648-651.
- 21 H.M. Sweers and C.-H. Wong, J. Am. Chem. Soc., 108 (1986) 6421-6422.
- 22 A. Uemura, K. Nozaki, J.-I. Yamashita, and M. Yasumoto, Tetrahedron Lett., 30 (1989) 3819-3820.
- 23 A. Ballesteros, M. Bernabe, C. Cruzado, M. Martin-Lomas, and C. Otero, *Tetrahedron*, 45 (1989) 7077-7082.
- 24 H. Kunz and A. Harreus, Liebigs Ann. Chem., (1982) 41-48.