

Improved Synthesis of Three Methyl-Branched Pheromone Components Produced by the Female Lichen Moth

Tomonori TAGURI,¹ Rei YAMAKAWA,¹ Yasushi ADACHI,¹ Kenji MORI,² and Tetsu ANDO^{1,†}

¹Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

²Photosensitive Materials Research Center, Toyo Gosei Co., Ltd., 4-2-1 Wakahagi, Inba-mura, Inba-gun, Chiba 270-1609, Japan

Received August 31, 2009; Accepted October 5, 2009; Online Publication, January 7, 2010 [doi:10.1271/bbb.90639]

Female moths of Lyclene dharma dharma (Arctiidae, Lithosiinae) produce a novel sex pheromone composed of three methyl-branched ketones: 6-methyl-2-octadecanone (I), 14-methyl-2-octadecanone (II), and 6,14dimethyl-2-octadecanone (III). Their structures were confirmed by syntheses accomplished by a different route for each component. In order to obtain a sufficient amount of the synthetic pheromone, we developed new routes via methyl-branched 1-alkenes: 6-methyl-1-octadecene (1), 14-methyl-1-octadecene (2), and 6,14-dimethyl-1-octadecene (3). Compound 1 was synthesized by coupling between a C₁₀-chain bromide and a 3methyl-branched C₈ unit (A) prepared from 3-methyl-1,5-pentanediol, 2, by coupling between a C₁₁-chain bromide and a 3-methyl-branched C7 unit (B) prepared from 2-hexanone, and 3, by connecting A and B, using propargyl alcohol as a C₃ linchpin. The use of 3-chloro-1-propanol and tert-butyl acetoacetate as the linchpin was also examined to connect the two synthetic blocks in the synthesis of 3. Components I-III were obtained by Wacker oxidation of the corresponding 1-alkenes 1-3 in good yields.

Key words: Lepidoptera; female sex pheromone; methylbranched 2-ketone; methyl-branched 1alkene; Wacker oxidation

Lepidopteran sex pheromones have been identified from adult females of more than 600 species. In addition to Type I and II pheromones with a straight chain, there are a considerable number of miscellaneous chemicals,1-3) and we have recently identified novel methylbranched ketones from Lyclene dharma dharma. The L. d. dharma females, which were caught on the Iriomote Islands, produced 6-methyl-2-octadecanone (I), 14-methyl-2-octadecanone (II), and 6,14-dimethyl-2-octadecanone (III). The structures were estimated by GC-MS analyses of the pheromone gland extracts before and after Wollf-Kishner reduction.⁴⁾ Although the absolute configurations of their chiral centers could not be determined because of the difficulty collecting a sufficient amount of the pheromone extract, the planar structures of I-III were confirmed by the synthesis regardless of their stereochemistry. The mass spectrum of each synthetic ketone coincided well with that of the corresponding natural component.^{4,5)} Furthermore, lures baited with the optically inactive synthetic ketones successfully attracted many *L. d. dharma* males in the field.⁵⁾

L. d. dharma belongs to Lithosiinae in the family of Arctiidae and is the first species whose sex pheromone has been revealed among the species in this subfamily. The Lithosiinae species, called lichen moths, are commonly found throughout the world, and about 80 species inhabit Japan. The larvae mainly feed on the lichen in forests and contribute to the ecosystem of the forest. While information on the ecological aspects of the Lithosiinae species is very limited, the pheromone, which can be easily synthesized with achiral materials, is utilized as a good monitoring tool for the adults. In our previous study, three components were separately synthesized by routes that started from diols of different chain length and involved no common synthetic units.^{4,5)} To obtain a sufficient amount of the synthetic pheromone, we investigated methods for increasing the yields of the three components. This report presents new synthetic routes for I-III via Wacker oxidation of the terminal alkenes which were constructed with common synthetic units.

Results and Discussion

Wacker oxidation⁶⁾ might enable **I–III** to be directly synthesized from the corresponding 1-alkenes: 6-methyl-1-octadecene (**1**), 14-methyl-1-octadecene (**2**), and 6,14dimethyl-1-octadecene (**3**). Since both **1** and **2** bear a structure common to **3**, we made a synthetic plan for **1–3** which involved mutual synthetic blocks, as shown in Fig. 1. If **1** and **2** could be prepared from methylbranched C₈ and C₇ units (**A** and **B**), **3** could be synthesized by coupling **A** and **B**, using a C₃-chain compound as the linchpin.

Scheme I in Fig. 2 summarizes the synthesis of the key building block (A_1 ; A, X = OTs) and its conversion to I. 3-Methyl-1,5-pentanediol was introduced to silanyloxy tosylate (4) by treating tosyl chloride (TsCl) after mono sililating by *tert*-butyldimethylsilyl chloride (TBDMSCl). Tosylate 4 was coupled with allylmagnesium bromide by employing the Schlosser's coppercatalyzed Grignard reaction,⁷⁾ and its TBDMS group

[†] To whom correspondence should be addressed. Tel/Fax: +81-42-388-7278; E-mail: antetsu@cc.tuat.ac.jp

Fig. 1. Synthetic Strategy for Three Methyl-Branched Pheromone Components (I–III) Using 3-Methyl-Branched C₈ and C₇ Units (A and B) as Key Synthetic Blocks.

 $X = OTs (A_1)$ and $X = I (A_2)$ in A; $Y = OTs (B_1)$, $Y = I (B_2)$, and $Y = MgBr (B_3)$ in B

Scheme I

Fig. 2. Synthetic Routes to 6-Methyl-2-octadecanone (Component I, Scheme I), 14-Methyl-2-octadecanone (Component II, Scheme II), and 6,14-Dimethyl-2-octadecanone (Component III, Scheme III).

a, 1) BuLi, THF, 2) TBDMSCl; b, TsCl, DMAP, pyridine; c, $CH_2=CHCH_2MgBr$, Li_2CuCl_4 , Et_2O ; d, TBAF, THF; e, $CH_3(CH_2)_9MgBr$, Li_2CuCl_4 , THF; f, O_2 , $PdCl_2$, CuCl, $DMF-H_2O$; g, $(EtO)_2POCH_2CO_2Et$, NaH, THF; h, H_2 , Pd-C, MeOH; i, $LiAlH_4$, Et_2O ; j, $CH_2=CH(CH_2)_9MgBr$, Li_2CuCl_4 , THF; k, $PhCH_2Br$, NaH, NaI, DMF; l, BuLi, THF-HMPA; m, HBr, H_2SO_4 ; n, 1) Mg, Et_2O , 2) Li_2CuCl_4 , THF

was removed to yield 3-methyl-7-octen-1-ol (5) which was converted into tosylate A_1 by TsCl. This unit (A_1) was coupled with n-decylmagnesium bromide to yield 1alkene 1, and 6-methyl-2-ketone I was obtained by Wacker oxidation of 1. Scheme II in Fig. 2 is a summary of the synthesis of another key block $(B_1; B,$ Y = OTs) and its conversion to II. 2-Hexanone was coupled with the anion prepared from triethyl phosphonoacetate⁸⁾ to yield a mixture of (Z)- and (E)-ethyl 3-methyl-2-heptenoate (6), which was converted into 3-methyl-1-heptanol (7) by catalytic hydrogenation and LiAlH₄ reduction. Alcohol 7 was treated with TsCl to build up tosylate B_1 , which was coupled with 10-undecenylmagnesium bromide to construct another 1-alkene 2. 14-Methyl-2-ketone II was obtained by Wacker oxidation of 2.

Scheme III in Fig. 2 shows the synthesis of **III** *via* dimethyl-1-alkene **3** which utilized propargyl alcohol as a linchpin. The alcohol was converted into benzyl ether (**8**) and coupled with an iodide⁹⁾ (**B**₂; **B**, Y = I), which had been prepared from **7**, to yield a compound with a methyl-branched C₁₀-chain (**9**). Hydrogenation of the triple bond and deprotection of the benzyl ether of **9** gave 6-methyl-1-octanol (**10**). Alcohol **10** was converted to a Grignard reagent *via* bromide (**11**) and coupled with **A**₁ to yield **3** under the same copper-catalyzed condition

as that for the syntheses of 1 and 2.⁷⁾ 6,14-Dimethyl-2ketone III was obtained by Wacker oxidation of 3.

Dimethyl-1-alkene 3 was also synthesized with the other C₃ linchpins as shown in Fig. 3. The tosylate of 3-chloro-1-propanol (12) was coupled with a Grignard reagent (\mathbf{B}_3 ; \mathbf{B} , $\mathbf{Y} = MgBr$) to yield 1-chloro-6-methyldecane (13). Chloride 13 was converted to a Grignard reagent and coupled with A_1 to yield 3 (Scheme IV). We also attempted to use *tert*-butyl acetoacetate as the C₃ linchpin (Scheme V). The dianion of tert-butyl acetoacetate, which had been generated by treating with NaH and butyllithium (BuLi), 10 was coupled with B_2 to yield a ketoester (14). This step was more smoothly accomplished by the iodide than by the tosylate B_1 . As a second alkylation, the activated enolate of 14, which had been generated by treating with potassium tert-butoxide, was coupled with another iodide $(A_2; A, X = I)$. Since it was not easy to separate the required ketoester with a long chain (15), the reaction mixture was used in further steps involving dealkoxycarbonylation under an acidic condition and Wollf-Kishner reduction after partial purification. While no intermediates other than 14 in Scheme V were isolated and characterized, the GC-MS analysis confirmed the formation of **3**, and a pure sample was obtained after the usual silica gel column chromatography. The insufficient yield might be improved by

Scheme IV

Fig. 3. Synthetic Routes to 6,14-Dimethyl-1-octadecene (3) Starting from 3-Chloropropan-1-ol (Scheme IV) and *tert*-Butyl Acetoacetate (Scheme V).

a, TsCl, DMAP, C₅H₅N; b, Li₂CuCl₄, THF; c, Mg, MeMgBr, THF, Li₂CuCl₄; d, NaH, THF-HMPA, BuLi; e, *t*-BuOK, *t*-BuOH, Δ ; f, 1) TsOH, Δ , 2) NH₂NH₂, KOH, DEG, Δ

examining the conditions for each step in detail and by applying other starting esters such as ethyl acetoacetate. The corresponding alkylated ethyl acetoacetate might be easily dealkoxycarbonylated under a neutral condition.¹¹⁾

The improved synthetic routes shown in Fig. 2 enable three 2-ketones I-III to be synthesized in 18-58% total yields, while our previous syntheses achieved less than 10% total yields.^{4,5)} The GC-MS data for new synthetic I-III coincided well with those of the corresponding natural pheromone components, and the NMR data were the same as those of the compounds previously synthesized.^{4,5,12)} 14-Methyl-1-octadecene 2, our synthetic intermediate for II, is a pheromone component of the peach leafminer moth, Lyonetia clerkella L. (Lyonetiidae).¹³⁾ While several reports have described its synthesis and ¹H-NMR data,^{13–17)} assignment of the ¹³C-NMR signals has not been reported. We assigned the ¹³C signals of 1-alkenes 1-3 by comparing them with those of 2-ketones I–III previously analyzed⁵⁾ and confirmed the results with the use of two-dimensional experiments (Table 1). Signal separation in the ¹³C-NMR spectra was markedly better than that in the ¹H-NMR spectra, indicating the ¹³C-NMR analysis as one of the most reliable tools to confirm the structure of a synthetic pheromone with a methyl-branched skeleton.

Studies on pheromones with the structure of a 1-alkene or 2-ketone are still very limited.¹⁻³⁾ Further investigation of the communication systems of many lepidopteran species, particularly in the families of Arctiidae and Lyonetiidae, make it necessary to systematically synthesize many authentic standards with a methyl-branched structure. Synthetic blocks **A** and **B** can be respectively utilized for 6-methyl and ω 5-methyl compounds for this purpose. In the case of the *L. d. dharma* pheromone, optically active isomers of each component have been synthesized by olefin crossmetathesis, utilizing blocks with a C₁₀-chain.¹²⁾ We are going to prepare optically active **A** and **B** to establish a different route.

Experimental

Instruments. ¹H- and ¹³C-NMR spectra were recorded by a Delta 2 Fourier transform spectrometer (Jeol, Tokyo, Japan) at 399.8 and 100.5 MHz, respectively, for CDCl₃ solutions containing TMS as an internal standard. ¹H-¹H COSY, HMQC, and HMBC spectra were also measured with the same spectrometer, using the usual pulse sequences and parameters. GC-MS was conducted in the EI mode (70 eV) with an

 Table 1.
 ¹³C-NMR Assignments for the Synthetic 1-Alkenes 1–3 and

 2-Alkanone III^a

 Chemical shift (å ppm)

Position	Chemical shift (δ ppm)			
	1	2	3	Ш
1	114.1	114.1	114.1	29.9
2	139.3	139.3	139.3	209.4
3	34.2	33.9	34.2	44.2
4	26.4	~ 30	26.4	21.4
5	36.6	~ 30	36.6	36.5
6	32.67	~ 30	32.68	32.65
7	37.05	~ 30	37.06	36.90
8	27.09	~ 30	27.10 ^c	27.05 ^e
9-11	~ 30	~ 30	$\sim 30^{ m g}$	$\sim 30^{h}$
12	~ 30	27.12	27.12 ^c	27.11 ^e
13	~ 30	36.82 ^b	36.81 ^d	36.79 ^f
14	~ 30	32.76	32.75	32.74
15	~ 30	37.13 ^b	37.13 ^d	37.11 ^f
16	32.0	~ 30	$\sim 30^{ m g}$	$\sim 30^{h}$
17	22.7	23.1	23.1	23.1
18	14.1	14.2	14.2	14.2
6Me	19.69		19.70	19.55
14Me	—	19.74	19.74	19.73

^a6-Methyl-1-octadecene (**1**), 14-methyl-1-octadecene (**2**), 6,14-dimethyl-1octadecene (**3**), and 6,14-dimethyl-2-octadecanone (**III**). NMR data for **III** have been reported in a previous paper.⁵) ^{b–}fChemical shift values may be reversed.

^g29.4, 29.8, 30.05, and 30.07.

h29.4, 29.8, 30.02, and 30.05

HP5973 mass spectrometer (Hewlett-Packard) equipped with a split/splitless injector and a DB-23 column (0.25 mm ID \times 30 m, 0.25 µm film; J & W Scientific, Folsom, CA, USA). The column temperature program was 50 °C for 2 min, 10 °C/min to 160 °C, and 4 °C/min to 220 °C. The carrier gas was He. IR spectra were recorded as a thin film (neat liquid) with an FT/IR-350 instrument (Jasco, Tokyo, Japan).

5-(tert-Butyldimethylsilyl)oxy-3-methylpentyl tosylate (4). BuLi (a 1.65 M hexane solution, 30 ml) was added dropwise to a solution of 3methyl-1,5-pentanediol (5.9 g, 50 mmol) in dry THF (60 ml) in a threenecked flask while stirring under an Ar atmosphere. After stirring at room temperature (rt) for 10 min, TBDMSCl (7.5 g, 50 mmol) dissolved in dry THF (10 ml) was added via a syringe. The mixture was stirred for $45\,\mathrm{min}$ at rt, poured into a saturated aqueous solution of $\mathrm{NH_4Cl},$ and extracted with Et₂O (3×100 ml). The resulting organic layer was successively washed with H2O, a NaHCO3 solution and brine, dried over Na_2SO_4 , and concentrated in vacuo. The crude product was chromatographed over SiO₂ (200 g), and elution with hexane/EtOAc (from 10:1 to 5:1) gave 5-(tert-butyldimethylsilyl)oxy-3-methyl-1pentanol (9.7 g, 42 mmol, 84%). This alcohol was added to a mixture of dry pyridine (30 ml), TsCl (8.8 g, 46 mmol), and 4-(dimethylamino)pyridine (DMAP, 100 mg) which were stirred in a three-necked flask cooled in an ice bath under Ar. The crude product was stirred for 2 h in the bath, poured into an HCl solution (1.0 M, 250 ml), and extracted

with EtOAc (3 × 100 ml). The resulting organic layer was successively washed with H₂O, a NaHCO₃ solution and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residual materials were chromatographed over SiO₂ (200 g), elution with hexane/EtOAc (10:1) gave tosylate **4** (16 g, 41 mmol, 98%). ¹H-NMR δ : 0.02 (6H, s, Si(CH₃)₂), 0.83 (3H, d, J = 6.5 Hz, CH₃CH), 0.87 (9H, s, SiC(CH₃)₃), 1.32 (1H, m), 1.47 (2H, m), 1.69 (2H, m), 2.45 (3H, s, CH₃Ph), 3.59 (2H, m, TBDMSOCH₂), 4.07 (2H, m, TsOCH₂), 7.34 (2H, d, J = 8.5 Hz), 7.79 (2H, d, J = 8.5 Hz). ¹³C-NMR δ : -5.4 (×2), 18.3, 19.2, 21.6, 25.9 (×3), 26.2, 35.7, 39.4, 60.9, 68.9, 127.9 (×2), 129.8 (×2), 133.2, 144.6. IR ν_{max} cm⁻¹: 2929, 1604, 1475, 1363, 1178, 1097, 943, 837, 775, 663, 555.

3-Methyl-7-octen-1-ol (5). Tosylate 4 (15.5 g, 40 mmol) dissolved in dry Et₂O (60 ml) was treated with Li₂CuCl₄ (a 0.1 M THF solution, 1.0 ml) and allylmagnesium bromide (a 1.0 M Et₂O solution, 44 ml) while stirring at 0 °C under Ar. The mixture was stirred at 0 °C for 8 h and poured into an H2SO4 solution (2.0 M, 200 ml), and the product was extracted with Et₂O (3×100 ml). After the usual work-up, the crude product was chromatographed over SiO2 (200g) with an eluent of hexane/EtOAc (10:1) to give the TBDMS ether of 5 (8.5 g, 33 mmol, 83%). Next, to remove the protective group, the ether dissolved in dry THF (10 ml) was treated with tetrabutylammonium fluoride (TBAF, a 1.0 M THF solution, 40 ml) under Ar. The mixture was stirred at rt for 3 h, poured into a saturated aqueous solution of NH₄Cl (100 ml), and extracted with Et₂O (3×100 ml). After the usual work-up, the crude product was chromatographed over SiO₂ (200 g) with an eluent of hexane/EtOAc (from 10:1 to 5:1) to give 5 (4.3 g, 30 mmol, 91%). ¹H-NMR δ : 0.90 (3H, d, J = 6.5 Hz, CH₃CH), ~1.3 (4H, m), \sim 1.6 (2H, m), 1.87 (1H, m), 2.04 (2H, dt, J = 7, 7 Hz, $CH_2CH=C$), 3.68 (2H, m, CH_2OH), 4.94 (1H, d, J = 10.5 Hz, CH=CHH), 5.00 (1H, d, J = 17 Hz, CH=CHH), 5.81 (1H, ddt, J = 17, 10.5, 6.5 Hz, CH=CH₂). ¹³C-NMR δ : 19.6, 26.3, 29.4, 34.0, 36.5, 39.9, 61.2, 114.3, 139.1. IR $\nu_{max}\,cm^{-1}$: 3365, 3078, 2929, 1641, 1460, 1057, 999, 910. GC-MS (relative intensity): t_R 9.97 min; m/z 124 $([M - 18]^+, 1\%), 109 (11\%), 81 (55\%), 55 (100\%).$

3-Methyl-7-octenyl tosylate (A_I). In a similar manner to that for the preparation of **4**, alcohol **5** (4.3 g, 30 mmol) was tosylated with TsCl (6.9 g, 36 mmol) and DMAP (200 mg). The crude product was chromatographed over SiO₂ (150 g) with an eluent of hexane/EtOAc (10:1) to give A_I (8.4 g, 28 mmol, 93%). ¹H-NMR δ : 0.81 (3H, d, J = 6.5 Hz, CH₃CH), 1.0–1.6 (6H, m), 1.66 (1H, m), 1.97 (2H, dt, J = 7, 7 Hz, CH₂CH=C), 2.45 (3H, s, CH₃Ph), 4.05 (2H, m, TsOCH₂), 4.92 (1H, d, J = 10.5 Hz, CH=CHH), 4.95 (1H, d, J = 17 Hz, CH=CHH), 5.76 (1H, ddt, J = 17, 10.5, 6.5 Hz, CH=CH₂), 7.34 (2H, d, J = 8.5 Hz), 7.78 (2H, d, J = 8.5 Hz). ¹³C-NMR δ : 19.1, 21.6, 26.0, 29.0, 33.8, 35.6, 36.0, 69.0, 114.4, 127.8 (×2), 129.8 (×2), 133.1, 138.7, 144.6. IR ν_{max} cm⁻¹: 3074, 2927, 1639, 1599, 1460, 1361, 1176, 1097, 945, 891, 816, 665, 555.

8-*Iodo-6-methyl-1-octene* (*A*₂). NaI (4.5 g, 30 mmol) was added to a solution of tosylate A₁ (5.7 g, 20 mmol) in dimethylformamide (DMF, 25 ml) at rt, and the mixture was stirred at 100 °C for 2 h. After cooling to rt, the mixture was poured into water (400 ml) and extracted with hexane (3 × 100 ml). The crude product was chromatographed over SiO₂ (100 g) after the usual work-up. Elution with hexane gave A₂ (4.5 g, 18 mmol, 90%). ¹H-NMR δ: 0.88 (3H, d, *J* = 6.5 Hz, *CH*₃CH), ~1.3 (4H, m), ~1.55 (1H, m), 1.65 (1H, m), 1.87 (1H, m), 2.04 (2H, dt, *J* = 7, 7 Hz, *CH*₂CH=C), 3.17 (1H, ddd, *J* = 9.5, 8, 8 Hz, *CHHI*), 3.25 (1H, ddd, *J* = 9.5, 9.5, 5.5 Hz, CH*H*), 4.95 (1H, d, *J* = 10.5 Hz, CH=CHH), 5.00 (1H, d, *J* = 17 Hz, CH=CHH), 5.81 (1H, ddt, *J* = 17, 10.5, 6.5 Hz, *CH*=CH₂). ¹³C-NMR δ: 5.2, 18.7, 26.1, 33.7, 33.9, 35.7, 40.9, 114.4, 138.9. IR ν_{max} cm⁻¹: 3076, 2927, 1639, 1460, 1178, 995, 910, 606. GC-MS: *t*_R 9.80 min; *m*/*z* 252 (M⁺, 1%), 155 (6%), 97 (13%), 55 (100%).

6-Methyl-1-octadecene (1). In a similar manner to that for the alkylation of 4, tosylate A_1 (3.0g, 10 mmol) was coupled with decylmagnesium bromide (a 1.0 M Et₂O solution, 14 ml) by using Li₂CuCl₄ (a 0.1 M THF solution, 1.0 ml) as a catalyst. The crude product was chromatographed over SiO₂ (150 g) with an eluent of hexane to give 1 (2.6 g, 9.8 mmol, 98%). ¹H-NMR δ : 0.85 (3H, d,

J = 6.5 Hz, CH₃CH), 0.88 (3H, t, J = 6.5 Hz, CH₃CH₂), ~1.1 (2H, m), ~1.25 (22H, m), ~1.35 (3H, m), 2.02 (2H, dt, J = 7, 7Hz, CH₂CH=C), 4.93 (1H, d, J = 10.5 Hz, CH=CHH), 4.99 (1H, d, J = 17 Hz, CH=CHH), 5.82 (1H, ddt, J = 17, 10.5, 6.5 Hz, CH=CH₂). IR v_{max} cm⁻¹: 3078, 2924, 2846, 1641, 1464, 993, 908. GC-MS: t_{R} 12.74 min; m/z 266 (M⁺, 1%), 97 (100%), 57 (90%).

Ethyl 3-methyl-2-heptenoate (6). Triethyl phosphonoacetate (18.9 g, 72 mmol) dissolved in dry THF (40 ml) was treated with NaH (60%, 2.9 g, 72 mmol) while stirring at rt under Ar. The reaction mixture was stirred for 20 min at rt, and EtOH (4.0 ml) was then added to quench the remaining NaH. Next, 2-hexanone (6.0 g, 60 mmol) was added dropwise and the mixture stirred for 1 h at rt and for an additional 30 min under reflux. The mixture was then cooled to rt, poured into a saturated aqueous solution of NH₄Cl (100 ml), and extracted with Et₂O $(3\times100\,\text{ml}).$ After the usual work-up, the crude product was chromatographed over SiO₂ (300 g) with eluention by hexane and hexane/EtOAc (10:1) to give a 1:1 mixture of (Z)-2-heptenoate and its (E)-isomer (6; 9.5 g, 56 mmol, 93%). ¹H-NMR (Z)-isomer δ: 0.92 (3H, t, J = 7 Hz, $CH_3CH_2CH_2$), 1.27 (3H, t, J = 7 Hz, CH_3CH_2O), ~1.4 (4H, m), 1.88 (3H, d, J = 1.5 Hz, $CH_3C=C$), 2.62 (2H, t, J = 7.5 Hz, CH₂C=C), 4.13 (2H, q, J = 7 Hz, CH₃CH₂O), 5.65 (1H, m, CH=C); (E)-isomer δ : 0.91 (3H, t, J = 7 Hz, $CH_3CH_2CH_2$), 1.28 (3H, t, J = 7 Hz, CH₃CH₂O), ~1.4 (4H, m), 2.13 (2H, m, CH₂C=C), 2.15 (3H, d, J = 1.5 Hz, $CH_3C=C$), 4.14 (2H, q, J = 7 Hz, CH_3CH_2O), 5.66 (1H, m, CH=C). ¹³C-NMR δ: 13.9, 14.0, 14.3, 14.4, 18.7, 22.3, 22.9, 25.2, 29.6, 30.4, 33.2, 40.7, 59.40, 59.44, 115.4, 116.0, 160.4, 160.8, 166.4, 166.9. IR $\nu_{\text{max}} \text{ cm}^{-1}$: 2908, 1739, 1649, 1461, 1367, 1149, 1039, 731. GC-MS: t_R 8.20 min; m/z 170 (M⁺, 40%), 141 (46%), 125 (59%), 55 (100%).

3-Methyl-1-heptanol (7). A mixture of the heptenoate **6** (9.4 g, 55 mmol), Pd-C (10%, 250 mg), and MeOH (100 ml) was stirred under H₂ at rt for 1.5 h. After filtering off the catalyst, the solvent was evaporated. The produced heptanoate dissolved in dry THF (20 ml) was added dropwise to LiAlH₄ (2.1 g, 55 mmol) suspended in dry THF (30 ml) cooled in an ice bath. After stirring at rt for 1 h, an HCl solution (1.0 M, 150 ml) was extracted with Et₂O (3 × 100 ml). After the usual work-up, the product was chromatographed over SiO₂ (200 g) with an elution by hexane and hexane/EtOAc (from 10:1 to 2:1) to give **7** (6.8 g, 52 mmol, 95%). ¹H-NMR δ : 0.89 (3H, d, *J* = 6.5 Hz, *CH*₃CH), 0.89 (3H, t, *J* = 6.5 Hz, *CH*₃CH₂), ~1.3 (7H, m), ~1.6 (2H, m), 3.69 (2H, m, *CH*₂OH). ¹³C-NMR δ : 14.1, 19.7, 23.0, 29.2, 29.5, 36.8, 40.0, 61.2. IR ν_{max} cm⁻¹: 3334, 2924, 1460, 1379, 1057. GC-MS: *t*_R 8.23 min; *m/z* 112 ([M – 18]⁺, 2%), 97 (4%), 84 (67%), 55 (100%).

3-Methylheptyl tosylate (**B**₁). In a similar manner to that for the preparation of **4**, alcohol **7** (6.5 g, 50 mmol) was tosylated with TsCl (11.4 g, 60 mmol) and DMAP (300 mg). The product was chromatographed over SiO₂ (200 g) with elution by hexane/EtOAc (10:1) to give **B**₁ (8.4 g, 46 mmol, 92%). ¹H-NMR & 0.80 (3H, d, *J* = 6.5 Hz, CH₃CH), 0.86 (3H, t, *J* = 6.5 Hz, CH₃CH₂), 1.0–1.3 (6H, m), ~1.4 (1H, m), ~1.5 (1H, m), 1.65 (1H, m), 2.45 (3H, s, CH₃Ph), 4.06 (2H, m, TsOCH₂), 7.35 (2H, d, *J* = 8.5 Hz), 7.79 (2H, d, *J* = 8.5 Hz). ¹³C-NMR δ : 14.1, 19.2, 21.6, 22.8, 29.0, 29.1, 35.7, 36.3, 69.1, 127.9 (×2), 129.8 (×2), 133.2, 144.6. IR ν_{max} cm⁻¹: 2927, 1599, 1466, 1362, 1176, 945, 887, 816, 665, 555.

1-Iodo-3-methylheptane (*B*₂). In a similar manner to that for the iodination of **A**₁, tosylate **B**₁ (5.7 g, 20 mmol) was converted to **B**₂ (4.3 g, 18 mmol, 90%). ¹H-NMR δ : 0.87 (3H, d, J = 6.5 Hz, *CH*₃CH), 0.89 (3H, t, J = 6.5 Hz, *CH*₃CH₂), 1.1–1.35 (6H, m), ~1.55 (1H, m), 1.64 (1H, m, *CH*HCH₂I), 1.87 (1H, m, *CHHCH*₂I), 3.17 (1H, ddd, J = 9.5, 8, 8 Hz, *CH*HI), 3.25 (1H, ddd, J = 9.5, 9.5, 5.5 Hz, *CHHI*). ¹³C-NMR δ : 5.3, 14.1, 18.8, 22.9, 29.0, 33.9, 35.9, 41.0. IR ν_{max} cm⁻¹: 2925, 1464, 1379, 1214, 1178, 606. GC-MS: t_R 7.96 min; m/z 240 (M⁺, 2%), 155 (7%), 127 (3%), 113 (20%), 57 (100%).

14-Methyl-1-octadecene (2). To dry THF (30 ml) containing Mg turnings (0.97 g, 40 mmol), 11-bromo-1-undecene (4.7 g, 20 mmol) in dry THF (4 ml) was added while stirring at $0 \,^{\circ}$ C under Ar. After stirring at $0 \,^{\circ}$ C for 1 h, the mixture was warmed to rt. The produced Grignard

reagent was taken up in a syringe and added to a solution of **B**₁ (4.3 g, 18 mmol) and Li₂CuCl₄ (a 0.1 M THF solution, 1.0 ml) in dry THF (20 ml) at -78 °C under Ar. The mixture was gradually warmed to rt. Stirring was continued for 14 h, the mixture was poured into a cool H₂SO₄ solution (1.0 M, 150 ml), and the product was extracted with hexane (3 × 100 ml). After the usual work-up, the extract was chromatographed over SiO₂ (90 g) impregnated with AgNO₃ (10 g) with elution by hexane and benzene to give **2** (4.5 g, 17 mmol, 94%). ¹H-NMR δ : 0.84 (3H, d, *J* = 6.5 Hz, CH₃CH), 0.89 (3H, t, *J* = 6.5 Hz, CH₃CH₂), ~1.1 (2H, m), ~1.25 (22H, m), ~1.35 (3H, m), 2.04 (2H, dt, *J* = 7, 7 Hz, CH₂CH=C), 4.92 (1H, d, *J* = 10.5 Hz, CH=CHH), 4.99 (1H, d, *J* = 17 Hz, CH=CHH), 5.81 (1H, ddt, *J* = 17, 10.5, 6.5 Hz, CH=CH₂). IR ν_{max} cm⁻¹: 3078, 2924, 2854, 1641, 1466, 991, 908. GC-MS: t_R 12.78 min; m/z 266 (M⁺, 1%), 97 (66%), 57 (100%).

Benzyl ether of propargyl alcohol (8). To a mixture of NaH (60%, 2.0 g, 50 mmol) and NaI (0.75 g, 5 mmol), propargyl alcohol (2.8 g, 50 mmol) in dry DMF (30 ml) was added dropwise while stirring at 0°C under Ar. After stirring for 30 min, benzyl bromide (8.6 g, 50 mmol) was added dropwise to the mixture while stirring. The reaction mixture was stirred at 0 °C for 30 min and at rt for 2 h, and then poured into water (300 ml). The product was extracted with hexane/EtOAc (1:1, 3×100 ml). After the usual work-up, the extract was chromatographed over SiO2 (150g) with elution by hexane/ EtOAc (10:1) to give 8, which was further purified by distillation (6.3 g, 43 mmol, 86%; boiling point, 190 °C at 80 mm Hg). ¹H-NMR δ : 2.45 (1H, t, J = 2.5 Hz, $HC \equiv C$), 4.15 (2H, d, J = 2.5 Hz, $CH_2C \equiv C$), 4.59 (2H, s, OCH₂Ph), ~7.3 (5H, m). ¹³C-NMR δ: 57.0, 71.5, 74.7, 79.6, 127.9, 128.1 (×2), 128.4 (×2), 137.2. IR $\nu_{max} \text{ cm}^{-1}$: 3292, 3032, 2856, 2117, 1454, 1356, 1074, 742, 698. GC-MS: t_R 11.32 min; m/z $145 ([M - 1]^+, 11\%), 91 (100\%).$

Benzyl ether of 6-methyl-2-decyn-1-ol (9). To a solution of 1-alkyne 8 (3.8 g, 26 mmol) in dry THF (25 ml), BuLi (a 1.6 M hexane solution, 16 ml) was added dropwise while stirring at $-35\,^\circ\text{C}$ under Ar. After additional stirring for 30 min, B_2 (6.2 g, 26 mmol) dissolved in hexamethylphosphoramide (HMPA, 6 ml) was added to the mixture. The reaction mixture was stirred at $-35 \degree C$ for 30 min and at rt for 1 h, and then poured into water (300 ml). The product was extracted with EtOAc $(3 \times 100 \text{ ml})$. After the usual work-up, the extract was chromatographed over SiO2 (200g) with elution by hexane/EtOAc (10:1) to give 9 (6.2 g, 24 mmol, 92%). ¹H-NMR & 0.87 (3H, d, J = 6.5 Hz, CH₃CH), 0.88 (3H, t, J = 6.5 Hz, CH₃CH₂), ~1.1 (1H, m), ~1.3 (6H, m), 1.55 (2H, m), 2.24 (2H, m, C=CCH₂CH₂), 4.15 (2H, t, J = 2 Hz, C=CCH₂O), 4.58 (2H, s, OCH₂Ph), ~7.3 (5H, m). ¹³C-NMR δ: 14.2, 16.5, 19.2, 23.0, 29.1, 31.9, 35.7, 36.3, 57.7, 71.3, 75.6, 87.4, 127.7, 128.1 (×2), 128.3 (×2), 137.6. IR ν_{max} cm⁻¹: 3030, 2927, 1454, 1354, 1072, 737, 698. GC-MS: t_R 20.19 min; m/z 257 $([M - 1]^+, 2\%), 145 (79\%), 91 (100\%).$

6-Methyl-1-decanol (10). A mixture of alkyne 9 (6.2 g, 24 mmol), Pd-C (10%, 700 mg), and MeOH (100 ml) was stirred for two days under H₂ at rt. After filtering off the catalyst, the solvent was evaporated. The product was chromatographed over SiO₂ (150 g) with elution by hexane/EtOAc (from 10:1 to 2:1) to give 10 (3.1 g, 18 mmol, 75%). ¹H-NMR δ: 0.84 (3H, d, J = 6.5 Hz, CH₃CH), 0.89 (3H, t, J = 6.5 Hz, CH₃CH₂), ~1.1 (2H, m), ~1.3 (11H, m), 1.56 (2H, m, CH₂CH₂OH), 3.63 (2H, t, J = 6.5 Hz, CH₂OH). ¹³C-NMR δ: 14.2, 19.7, 23.1, 26.1, 26.9, 29.3, 32.7, 32.9, 36.8, 37.0, 63.0. IR ν_{max} cm⁻¹: 330, 2931, 1464, 1377, 1055, 729. GC-MS: $t_{\rm R}$ 11.67 min; m/z 154 ([M – 18]⁺, 1%), 97 (66%), 55 (100%).

1-Bromo-6-methyldecane (11). A mixture of the alcohol **10** (2.1 g, 12 mmol), HBr (48%, 5.1 g, 30 mmol), and H₂SO₄ (590 mg, 6 mmol) was stirred under a refluxing condition at 120 °C for 6 h. The reaction mixture was added dropwise to a saturated aqueous solution of NaHCO₃ (100 ml) and extracted with hexane (3 × 100 ml). After the usual work-up, the product was chromatographed over SiO₂ (100 g) with elution by hexane to give **11** (2.6 g, 11 mmol, 92%). ¹H-NMR δ : 0.84 (3H, d, J = 6.5 Hz, CH₃CH), 0.89 (3H, t, J = 6.5 Hz, CH₃CH₂), ~1.1 (2H, m), ~1.3 (11H, m), 1.86 (2H, tt, J = 7, 7 Hz, CH₂CH₂Br), 3.41 (2H, t, J = 7 Hz, CH₂Br). ¹³C-NMR δ : 14.2, 19.7, 23.1, 26.2, 28.5, 29.3, 32.7, 32.9, 34.1, 36.7, 36.8. IR ν_{max} cm⁻¹: 2925, 1464,

1377, 1252, 729, 648, 565. GC-MS: t_R 10.40 min; m/z 221 and 219 ([M - 15]⁺, 1%), 151 and 149 (63%), 85 (100%).

6,14-Dimethyl-1-octadecene (3) from bromide 11. In a similar manner to that for the preparation of 2, a Grignard reagent prepared from 11 (2.4 g, 10 mmol) and Mg turnings (490 mg, 20 mmol) was coupled with A₁ (1.5 g, 5.0 mmol). The crude product was chromatographed over SiO₂ (90 g) impregnated with AgNO₃ (10 g) with elution by hexane/benzene to give 3 (1.3 g, 4.6 mmol, 46% from 11, 92% from A₁). ¹H-NMR δ : 0.84 (3H, d, J = 6.5 Hz, CH₃CH), 0.85 (3H, d, J = 6.5 Hz, CH₃CH), 0.88 (3H, t, J = 6.5 Hz, CH₃CH₂), ~1.1 (4H, m), ~1.25 (17H, m), ~1.35 (5H, m), 2.02 (2H, dt, J = 7, 7 Hz, CH₂CH=C), 4.93 (1H, d, J = 10.5 Hz, CH=CHH), 4.99 (1H, d, J = 17 Hz, CH=CHH), 5.82 (1H, ddt, J = 17, 10.5, 6.5 Hz, CH=CH₂). IR ν_{max} cm⁻¹: 3078, 2925, 2856, 1639, 1460, 993, 908. GC-MS: t_{R} 13.11 min; m/z 280 (M⁺, 1%), 97 (100%), 57 (94%).

Wacker oxidation of 1-alkenes 1-3. PdCl₂ (89 mg, 0.50 mmol) and CuCl (0.50 g, 5.0 mmol) were added to a solution of 1 (1.3 g, 5.0 mmol) in DMF (17.5 ml) and water (2.5 ml). The mixture was stirred at rt, and then O_2 was bubbled into it for 22 h. After the reaction, the mixture was poured into an HCl solution (1.0 M, 50 ml) and extracted with Et₂O $(3\times100\,\text{ml}).$ After the usual work-up, the crude product was chromatographed over SiO_2 (180g) with elution by hexane/EtOAc (from 10:1 to 5:1) to give I (0.98 g, 3.5 mmol, 70%). IR λ_{max} cm⁻¹: 2924, 2854, 1720, 1464, 1383, 1165. GC-MS: t_R 19.13 min; m/z 282 $(M^+, 2\%), 264 ([M - 18]^+, 37\%), 58 (100\%)$. In the same manner, 2 (1.0 g, 3.8 mmol) and **3** (0.56 g, 2.0 mmol) were oxidized to **II** (0.81 g, 3.8 mmol)2.9 mmol, 76%) and III (0.41 g, 1.4 mmol, 70%), respectively. IR $\lambda_{\text{max}} \text{ cm}^{-1}$ II: 2924, 2854, 1720, 1466, 1383, 1161; III: 2926, 2854, 1720, 1464, 1377, 1165. GC-MS II: t_R 19.32 min; m/z 282 (M⁺, 11%), 264 ($[M - 18]^+$, 8%), 58 (100%); III: t_R 19.68 min; m/z 296 (M⁺, 2%), 278 ($[M - 18]^+$, 32%), 58 (100%).

3-Chloro-1-propyl tosylate (12). 3-Chloro-1-propanol (3.8 g, 40 mmol) was tosylated with TsCl (9.2 g, 48 mmol) and DMAP (200 mg) in a similar manner to that for the preparation of **4**. The crude product was chromatographed over SiO₂ (150 g) with elution by hexane/EtOAc (10:1) to give **12** (9.4 g, 38 mmol, 95%). ¹H-NMR δ : 2.09 (2H, tt, *J* = 6, 6 Hz, CH₂CH₂Cl), 2.46 (3H, s, CH₃Ph), 3.57 (2H, t, *J* = 6 Hz, CH₂Cl), 4.19 (2H, t, *J* = 6 Hz, TsOCH₂), 7.36 (2H, d, *J* = 8.5 Hz), 7.80 (2H, d, *J* = 8.5 Hz). ¹³C-NMR δ : 21.7, 31.7, 40.3, 66.8, 127.9 (×2), 129.9 (×2), 132.7, 145.0. IR ν_{max} cm⁻¹: 2968, 1599, 1448, 1360, 1176, 1097, 1001, 935, 816, 667, 575, 555.

1-Chloro-6-methyldecane (13). In a similar manner to that for the preparation of bromide 11, alcohol 7 was converted to 1-bromo-3methylheptane in an 88% yield. To Mg turnings (0.97 g, 40 mmol) in dry Et₂O (30 ml), this bromide (3.5 g, 18 mmol) in dry Et₂O (4 ml) was added while stirring at 0 °C under Ar. After stirring at 0 °C for 1 h, the mixture was warmed to rt. The produced Grignard reagent B3 was taken up in a syringe and added dropwise to a solution of tosylate 12 (4.0 g, 16 mmol) and Li₂CuCl₄ (a 0.1 M THF solution, 1.0 ml) in dry THF (40 ml) at -78 °C under Ar. The mixture was gradually warmed to rt. Stirring was continued for 14 h, the mixture was poured into a cool H₂SO₄ solution (1 M, 150 ml), and the product was extracted with hexane $(3 \times 100 \text{ ml})$. After the usual work-up, the extract was chromatographed over SiO_2 (150 g) with elution by hexane to give **13** (2.7 g, 14 mmol, 88%). ¹H-NMR δ : 0.84 (3H, d, J = 6.5 Hz, CH₃CH), 0.89 (3H, t, J = 6.5 Hz, CH₃CH₂), ~1.1 (2H, m), ~1.3 (11H, m), 1.62 (2H, tt, J = 7, 7 Hz, CH₂CH₂Cl), 3.43 (2H, t, J = 7 Hz, CH₂Cl). ¹³C-NMR δ: 14.2, 19.7, 23.2, 26.5, 27.2, 29.4, 33.1, 32.7, 32.8, 36.7, 45.0. IR ν_{max} cm⁻¹: 2923, 1466, 1309, 723, 654. GC-MS: t_R 8.55 min; m/z 107 (6%), 105 (20%), 93 (31%), 91 (100%).

6,14-Dimethyl-1-octadecene (3) from chloride 13. To Mg turnings (0.49 g, 20 mmol) in dry THF (20 ml), a catalytic amount of MeMgBr (a 2.0 M Et₂O solution, two drops) was added under Ar *via* a syringe. Next, chloride 13 (1.9 g, 10 mmol) in dry THF (4.0 ml) was added while stirring at 0 °C under Ar. After stirring at 0 °C for 2 h, the reaction mixture was warmed to rt, and stirring continued for 2 h. This Grignard reagent was taken up in a syringe and added to a solution of A₁ (1.5 g, 5.0 mmol) and Li₂CuCl₄ (a 0.1 M THF solution, 1.0 ml) in

dry THF (40 ml) in another flask at -78 °C under Ar. The mixture was gradually warmed to rt. Stirring was continued for 14 h, the mixture was poured into an H₂SO₄ solution (1.0 M, 150 ml), and the product was extracted with hexane (3 × 100 ml). After the usual work-up, the extract was chromatographed over SiO₂ (90 g) impregnated with AgNO₃ (10 g) with elution by hexane and hexane/benzene (3:1) to give **3** (0.57 g, 2.0 mmol, 20% from **13**, 40% from **A**₁).

tert-Butyl 7-methyl-3-oxoundecanoate (14). Into a suspension of NaH (60% in oil, 0.80 g, 20 mmol) with dry THF (15 ml) and HMPA (3.5 ml), tert-butyl acetoacetate (3.2 g, 20 mmol) was added dropwise under Ar. The mixture was refluxed at 85 °C for 1 h. After cooling, BuLi (1.65 M, 13 ml, 21 mmol) was added, and the mixture was stirred at rt for 30 min. Next, iodide B₂ (4.8 g, 20 mmol) in dry THF (5 ml) was added at 0 °C. After stirring at rt for 1 h, the mixture was poured into a saturated NH₄Cl solution. The crude product was extracted with EtOAc $(3 \times 50 \text{ ml})$ and chromatographed over SiO₂ (200 g) after the usual work-up. Elution with hexane/EtOAc (30:1) yielded 14 (3.8 g, 14 mmol, 70%). ¹H-NMR δ : 0.85 (3H, d, J = 6.5 Hz, CH₃CH), 0.88 $(3H, t, J = 6.5 \text{ Hz}, CH_3CH_2), \sim 1.25 (11H, m), 1.47 (9H, s, C(CH_3)_3),$ 2.45 (2H, t, J = 7.5 Hz, CH₂CH₂C=O), 3.34 (2H, s, O=CCH₂C=O). ¹³C-NMR δ: 14.2, 19.5, 21.0, 23.0, 28.0 (×3), 29.2, 32.6, 36.4, 36.5, 43.3, 50.7, 81.9, 166.6, 203.6. IR ν_{max} cm⁻¹: 2929, 1738, 1716, 1643, 1458, 1369, 1252, 1149.

6,14-Dimethyl-1-octadecene (3) from ketoester 14. A mixture of potassium tert-butoxide (1.6 g, 14 mmol) and tert-butanol (20 ml) was stirred and heated at 100 °C. After complete dissolution of the base, ketoester 14 (3.2 g, 12 mmol) was added to the solution, which was stirred at 100 °C for 15 min. Iodide A_2 (3.0 g, 12 mmol) was then added to the mixture, which was stirred under the same condition for 6 h. After evaporation of most of the solvent, the residue was poured into a saturated NH₄Cl solution. The crude product was extracted with EtOAc (3 × 50 ml) and chromatographed over SiO₂ (100 g) after the usual work-up. While characterization of the contamination of some unknown compounds, a fraction expected to include 15 was treated with *p*-toluenesulfonic acid monohydrate (700 mg) and stirred at 100 °C for 30 min on neat condition. The dealkoxycarbonylation of 15

was indicated by the appearance of many small bubbles. After cooling, the crude product was dissolved in diethylene glycol (DEG, 40 ml), and KOH (2.81 g, 50 mmol) and NH₂NH₂·H₂O (1.6 g, 50 mmol) were added to the solution. The mixture was stirred at 200 °C for 4 h, and the mixture was poured into water (300 ml) after cooling. The crude product was extracted with hexane (3×100 ml) and chromatographed over SiO₂ (100 g) after the usual work-up. Elution with hexane yielded **3** (1.31 g, 4.7 mmol, 39%).

References

- Ando T, Inomata S, and Yamamoto M, *Top. Curr. Chem.*, 239, 51–96 (2004).
- 2) Ando T, Internet database (2009), http://www.tuat.ac.jp/ ~antetsu/LepiPheroList.htm
- 3) El-Sayed AM, Internet database (2009), http://www.pherobase.
- 4) Yamamoto M, Kamata T, Do ND, Adachi Y, Kinjo M, and Ando T, *Biosci. Biotechnol. Biochem.*, **71**, 2860–2863 (2007).
- 5) Do ND, Kinjo M, Taguri T, Adachi Y, Yamakawa R, and Ando T, *Biosci. Biotechnol. Biochem.*, **73**, 1618–1622 (2009).
- 6) Tsuji J, Synthesis, 369–384 (1984).
- 7) Fouquet G and Schlosser M, *Angew. Chem. Int. Ed. Engl.*, **13**, 82–83 (1974).
- 8) Wadsworth WS, Org. React., 25, 73–253 (1977).
- 9) Schwarz M and Waters RM, Synthesis, 567–568 (1972).
- 10) Huckin SN and Weller L, J. Am. Chem. Soc., **96**, 1082–1087 (1974).
- 11) Krapcho AP, Synthesis, 805–822 (1982).
- 12) Mori K, Tetrahedron, 65, 2798-2805 (2009).
- 13) Sugie H, Tamaki Y, Sato R, and Kumakura M, *Appl. Entomol. Zool.*, **19**, 323–330 (1984).
- 14) Manabe Y, Minamikawa J, Otsubo J, and Tamaki Y, Agric. Biol. Chem., **49**, 1205–1206 (1985).
- 15) Mori K and Kato M, Liebigs Ann. Chem., 2083–2087 (1985).
- 16) Kato M and Mori K, Agric. Biol. Chem., 49, 2479–2480 (1985).
- Yamamoto A and Fukumoto T, Agric. Biol. Chem., 53, 1183– 1184 (1989).