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Warfarin (1) was discovered in the USA 30 years ago and is 

the most widely-used oral anticoagulant for the prevention and 

treatment of thrombosis in humans globally.
1
 Despite its 

prevalence in society, warfarin has a number of drawbacks which 

have yet to be adequately addressed. Although the introduction of 

monitoring systems and improved dose management have made 

it easier for practitioners to navigate its narrow therapeutic 

index,
2
 warfarin is still ranked among the top 10 pharmaceuticals 

with serious adverse drug events.
3
 Its continued popularity can be 

attributed to problems with developments in warfarin 

pharmacogenetics
4
 associated with its target enzyme, vitamin K 

epoxide reductase (VKOR),
5
 as well as shortcomings of a 

number of warfarin replacements.
6
 The controversy regarding the 

usefulness of treating individual VKOR genotypes
7
 and reports 

of emerging resistance to warfarin
8
 compound these unmet 

medical needs and make the drug an obvious candidate for 

further scrutiny by the medicinal chemistry community. 

Since its seminal synthesis in 1964, cubane has enjoyed a 

wealth of attention in the areas of medicinal chemistry, material 

design and fundamental bonding and reactivity.
9
 A recent line of 

enquiry in our laboratories has been into Eaton’s 1992 conjecture 

that cubane can act as a phenyl ring (bio)isostere.
10

 Having 

successfully validated the relationship between the two scaffolds 

using a portfolio of known pharmaceutical and agrochemical 

templates,
11

 an obvious question arose as to the ability of cubane 

to confer suitable π-character, an electronic property important 

for both pharmacodynamic
12

 and pharmacokinetic
13

 interactions. 

1,3,5,7-Cyclooctatetraene (COT) was postulated as a viable 

(bio)motif in this regard and was subsequently evaluated against 

its cubane and phenyl counterparts.
14

 It was in this context that 

warfarin (1) first came to our attention, where it was 

demonstrated that a racemic mixture of COT-warfarin (2) was a 

2-fold more active inhibitor of VKOR than (S)-warfarin (the 

more active enantiomer of the two), whereas (S)-cubane warfarin 

(3) was 10-fold less active than racemic warfarin. Encouraged by 

the increased activity of COT-warfarin relative to warfarin itself 

(i.e. 3-phenyl substituent), a study to further investigate the 

importance of annulene conferred π-interactions was initiated 

with the corresponding saturated systems [e.g. cyclohexyl-(4) 

and cyclooctyl-warfarin (5) (Figure 1)] and analogues. The 

synthesis and evaluation of these analogues against VKOR is 

herein disclosed.  
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Despite the difficulty in administering a safe dose regimen and reports of emerging resistance, 

warfarin (1) remains the most widely-used oral anticoagulant for the prevention and treatment of 

thrombosis in humans globally. Systematic substitution of the warfarin phenyl ring with either 

1,3,5,7-cyclooctatetraene (COT) (2), cubane (3), cyclohexane (4) or cyclooctane (5) and 

subsequent evaluation against the target enzyme, vitamin K epoxide reductase (VKOR), 

facilitated interrogation of both steric and electronic properties of the phenyl phar-macophore. 

The tolerance of VKOR to further functional group modification (carboxylate 14, PTAD adduct 

15) was also investigated. The results demonstrate the importance of both annulene conferred π-

interactions and ring size in the activity of warfarin. 

2019 Elsevier Ltd. All rights reserved. 
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Figure 1: Warfarin [phenyl- (1)] along with cyclooctatetraenyl- (2), 

cubyl- (3), cyclohexyl- (4) and cyclooctyl-warfarin (5). 

Warfarin (1) was purchased from Sigma-Aldrich, whilst COT-

warfarin (2) was readily accessible from cubyl-warfarin (3),
14

 via 

valence isomerisation methodology.
15

 Synthesis of cyclohexyl-

warfarin (4) began with a Wittig olefination between the 

commercially available cyclohexanecarbaldehyde (6) and 1-

(triphenylphosphoranylidene)-2-propanone (7), and was 

completed using D-proline mediated conjugate addition between 

the resulting Wittig alkene 8 and 4-hydroxycoumarin. 

Cyclooctyl-warfarin (5) was accessed in a similar manner starting 

from the known cyclooctanecarbaldehyde (9)
16

 (Scheme 1). 

Phenyl-(1), cubyl-(3), cyclohexyl-(4) and cyclooctyl-warfarin (5) 

all existed partially in the hemi-ketal form in solution (
1
H NMR, 

CDCl3), whereas COT-warfarin (2) existed solely as the hemi-

ketal form (
1
H NMR, CDCl3 or DMSO:D2O 3:7). All analogues 

were isolated and evaluated as racemic mixtures. 

Scheme 1: Synthesis of cyclohexyl- (4) and cyclooctyl-warfarin (5); (a) 7, 

DCM, 40 ℃, 66%; (b) 4-hydroxycoumarin, D-proline, DMSO, 72%; (c) 7, 

toluene, 110 ℃, 53%; (d) 4-hydroxycoumarin, D-proline, DMSO, 60%. 

The half-maximal inhibition concentration (IC50) values for 

VKOR of cyclohexyl-(4) and cyclooctyl-warfarin (5) were 

measured using a mammalian cell-based assay
17

 and plotted 

against previously acquired values for phenyl-(1) and COT-

warfarin (2) (Figure 2). 

 

Figure 2: IC50 values of phenyl- (1), COT- (2), cyclohexyl- (4) and 

cyclooctyl-warfarin (5) against VKOR using FIXgla-PC/HEK293 reporter 

cells. 

Comparing phenyl-(1) to cyclohexyl-warfarin (4), complete 

saturation of the phenyl ring resulted in a 10-fold decrease in 

VKOR inhibition. This is consistent with the prior observation 

that removing π-character decreases VKOR inhibition [i.e. (±)-

cubyl-warfarin (3) was 15-fold less active than (±)-phenyl-

warfarin (1)].
14

 The same trend was observed by comparing 

COT-(2) to cyclooctyl-warfarin (5), where complete saturation of 

the COT ring resulted in a 13-fold decrease in VKOR inhibition 

between the two analogues. 

To further delineate the relationship between structure and 

VKOR inhibition of the annulene pharmacophore, the ring 

system of the most active analogue [i.e. COT-warfarin (2)] was 

elaborated to incorporate additional polar functionality. COT-

warfarin carboxylate 14 was chosen as a suitable target, and was 

reached in a synthetic sequence beginning with the commercially 

available dimethyl 1,4-cubanedicarboxylate (11).
18

 Half-

hydrolysis
19

 of 11 followed by borane reduction gave cubane 

alcohol 12. Application of our recent developments
20

 in the Ley-

Griffith oxidation
21

 and tandem Wittig
22

 reaction to 12 gave an 

intermediate α,β-unsaturated ketone, which underwent L-proline 

catalysed
23

 conjugate addition of 4-hydroxycoumarin to give 

coumarin 13. Finally, rhodium(I) norbornadiene chloride dimer 

(i.e. [Rh(nbd)Cl]2) mediated valence isomerisation
15

 followed by 

saponification gave the target COT-warfarin carboxylate 14. 

PTAD adduct 15, synthesised as part of our previous study,
14

 was 

also included for testing (Scheme 2). COT-warfarin carboxylate 

existed solely as the ketone in solution (
1
H NMR, CDCl3) and 

was isolated and evaluated as a racemic mixture. PTAD adduct 

15 was obtained and used as a single enantiomer.
14

  

Scheme 2: Synthesis of additional warfarin analogue 14, and previously 

disclosed PTAD adduct 15: (a) MeOH/NaOH, THF, 95%; (b) BH3•SMe2, 

THF, 0 ℃ → rt 91%; (c) i) TPAP, NMO, 4Å MS, DCM; ii) 7, DCM, 40 ℃, 

40% (two steps); (d) 4-hydroxycoumarin, L-proline, DMSO, 70%; (e) 

[Rh(nbd)Cl]2, PhMe, 110 ℃, 80%; (f) MeOH/NaOH, THF, 60%. 

The IC50 values for VKOR of warfarin carboxylate 14 and 

PTAD adduct 15 were measured and plotted against COT-

warfarin (2) (Figure 3). 
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Figure 3: IC50 values of warfarin carboxylate 14, PTAD adduct 15 and 

COT-warfarin (2) against VKOR using FIXgla-PC/HEK293 reporter cells. 

Incorporation of additional polar functionality in the form of 

COT-warfarin-carboxylate (14) resulted in a 430-fold decrease in 

VKOR inhibition compared to COT-warfarin (2). Interestingly, 

this observation is contrary to that observed with acenocoumarol, 
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which only differs from warfarin by the inclusion of a p-nitro 

group on the phenyl ring, but is much more active than 

warfarin.
24

 Furthermore, preventing the 4-hydroxycoumarin and 

ketone moieties from undergoing enolization was not tolerated, 

as demonstrated by the PTAD adduct 15, which was 13-fold less 

active than COT-warfarin (2). 

In summary, π-character contained within the eastern portion, 

whether aromatic of alkenic, seems essential to mimic the 

activity of warfarin, as demonstrated by the decreased VKOR 

inhibition observed for both warfarin analogues with full 

annulene saturation. Activity against VKOR was enhanced by 

replacing the phenyl ring for COT as previously reported, a 

modification that both increased steric bulk and modulated π-

character from aromatic to non-aromatic, an improvement which 

is likely also attributed to the dynamic equilibrium of COT.
14

 

Overall, modifications of the warfarin scaffold continue to reveal 

inhibition improvements and subtilties associated with VKOR, 

and underpin the importance of developing phenyl ring 

(bio)isosteres, or (bio)motifs, capable of conferring suitable π-

character. 
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