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Direct C�H bond transformations have received much
attention as ideal and highly efficient methods for the
synthesis of useful organic compounds. However, several
difficulties remain, in particular the issue of regioselectivity.
To solve this problem, directing groups bearing the unshared
electron pair of a heteroatom have been used, resulting in
dramatic development of the chemistry of C�H bond trans-
formations over the last few decades.[1] The directing group
usually acts as a Lewis base to coordinate a transition metal,
and thus, the metal center comes close to an appropriate site
(a C�H bond) for the reaction, and subsequent C�H
activation occurs (Scheme 1a). Herein, we report the ortho-

selective borylation of aromatic C�H bonds with a palladium
catalyst using the interaction between a Lewis basic nitrogen
and Lewis acidic boron atoms.[2, 3] This is a new concept for the
directing group; the group also has an electron pair, but
coordinates to a Lewis acidic main-group metal, and a boron
atom that also bears a hydrogen atom, which is then

converted into a reactive species for C�H activation upon
treatment with a transition metal (Scheme 1b). Until recently,
it was difficult to promote transition-metal-catalyzed ortho-
selective C�H borylation, but several examples of such
transformations have appeared in the last one or two years.[4,5]

In C�H borylation, pinacolborane and bis(pinacolate)di-
boron are usually employed as substrates.[6] Therefore, we
initially investigated the reactions between 2-phenylpyridine
(1a) and various borane reagents in the presence of a catalytic
amount of several transition metal compounds. However, the
desired reaction did not occur at all.[7–9] The reason for the low
reactivity was thought to be that the Lewis acidity of the
borane reagents was not enough to promote the Lewis acid–
base interaction between the pyridyl group of 1a and the
boron atom of pinacolborane or bis(pinacolate)diboron.
Consequently, 9-borabicyclo[3.3.1]nonane (9-BBN, 2 a) was
selected as a promising substrate, because 9-BBN has higher
Lewis acidity than pinacolborane and bis(pinacolate)diboron.
Treatment of 2-phenylpyridine (1a) with 9-BBN (2a) in the
presence of a catalytic amount of a palladium salt, Pd(OAc)2,
in 1,2-dichloroethane at 25 8C for 24 h gave ortho-borylated
2-phenylpyridine 3 a in 87 % yield [Eq. (1)].[10–14] To verify the

existence of the Lewis acid–base interaction, the following
experiment was carried out: a mixture of 2-phenylpyridine
(1a) and 9-BBN (2 a) in CD2Cl2 was stirred at 25 8C for 24 h,
and 11B NMR analysis of the reaction mixture was then
conducted. As a result, a new signal was observed at 0.3 ppm
(vs. 27.7 ppm for 2 a), which is consistent with signals observed
for boranes coordinated to pyridine derivatives.[15] This result
indicates that the borylation reaction proceeded, supported
by Lewis acid–base interaction. Moreover, the reaction
proceeded even in the absence of the palladium catalyst at
higher temperature (135 8C, 73 %). In this reaction, other
regioisomers were not formed to the limits of detection by
1H NMR. This also supports the existence of a Lewis acid–
base interaction between the boron and nitrogen atoms.
Product 3 a exhibited a light blue fluorescence in CDCl3

solution and a reddish purple to blue fluorescence as a solid

Scheme 1. C�H bond functionalization. a) Using the coordination of
a directing group to a metal center. b) By Lewis acid–base interaction.
DG= directing group, LB =Lewis basic heteroatom, [M]= metal cata-
lyst.
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under UV irradiation (254 nm).[16, 17] The result in Eq. (1)
shows that the directing group, a pyridyl group, acts not only
to bring the reactive species close to the C�H bond, but also
as a useful component for fluorescence.

Next, we investigated the scope and limitations of
aromatic compounds with an sp2 nitrogen atom. 2-Phenyl-
pyridine with an electron-donating group at the para-position
of the benzene ring, 1b, produced ortho-borylated 2-phenyl-
pyridine 3b in 83% yield in the presence of a palladium
catalyst, Pd(OAc)2 (Table 1, entry 1). The yield of the ortho-

borylated product decreased when 2-phenylpyridine 1c,
which bears an electron-withdrawing group, was used as
a substrate (Table 1, entry 2). The reaction was not inhibited
by a methyl group at the 2-position, and the desired product
3d was afforded in 93% yield (Table 1, entry 3). The
borylation also proceeded at the C�H bond of a naphthyl

moiety when 2-(1-naphthalenyl)pyridine (1 e) was employed
as a substrate (Table 1, entry 4). In the case of 2-(2-naph-
thalenyl)pyridine (1 f), there are two possible reaction sites.
However, the borylation reaction occurred only at the
a-position of the naphthalene skeleton (Table 1, entry 5).
Treatment of benzo[h]quinoline (1 g) with 9-BBN (2a)
provided the corresponding borylated product 3g in low
yield (Table 1, entry 6). 2-Phenylpyridine having a methyl
group on the pyridyl group, 1h, also gave ortho-borylated
2-phenylpyridine 3h in 89 % yield (Table 1, entry 7). Another
directing group, a pyrazolyl group, was effective for the
borylation, providing the corresponding borylated product 3 i
was in 97 % yield (Table 1, entry 8). 2-Phenyl-4,5-dihydroox-
azole (1j) also provided the borylated product 3j in low yield
(Table 1, entry 9). In the case of reactions at 135 8C without
any catalysts, the yields of the borylated products tended to be
similar to the palladium-catalyzed reactions.[18] The reaction
did not proceed using 2-phenylpyrimidine, 2,6-diphenylpyr-
idine, 2-benzylpyridine, ketimine, benzophenone, methyl
benzoate, or trans-azobenzene.

Although there is no direct evidence for the reaction
mechanism, we propose the mechanism for the palladium-
catalyzed ortho-selective borylation shown in Scheme 2a.

Step a1) Lewis acid–base interaction between a boron atom
of 9-BBN (2a) and a nitrogen atom of 2-phenylpyridine 1.
Step a2) Oxidative addition of a B�H bond to palladium(0)
(the oxidation state of the palladium atom is II).[19, 20]

Step a3) C�H bond activation by the elimination of H2

(s-bond metathesis). Step a4) Reductive elimination to give
3 and regenerate the palladium(0) species. In step a2, the
palladium(0) species, which is formed by the reduction of
Pd(OAc)2 with 9-BBN, is likely the active catalytic species

Table 1: Reactions between several N-heteroaromatic compounds 1 and
9-BBN (2a).[a]

Entry 1 3 Yield [%][b]

1 1b : R1 = 4-MeO 83 (69)
2 1c : R1 = 4-CF3 41 (0)
3 1d : R1 = 2-Me 93 (59)

4 1e 77 (68)

5 1 f 50[c] (52)

6 1g 19 (0)

7 1h 89 (69)

8 97 (0)

9 27 (0)

[a] 2a (0.70 equiv). [b] Yields shown are for reactions using Pd(OAc)2

(3.0 mol%) at 25 8C. Data given in parentheses are for reactions
conducted at 135 8C without catalyst. [c] Reaction conducted at 50 8C.

Scheme 2. Proposed mechanism for the formation of ortho-borylated
2-phenylpyridines.
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because black precipitates, presumably palladium black, were
observed.

For borylation without the palladium catalyst, we propose
another reaction mechanism (Scheme 2b). As the reactivity
decreases under light shielding, the borylation reaction likely
occurs via a radical process. The metal-free process was
completely inhibited by radical inhibitors such as 2,2,6,6-
tetramethylpiperidine 1-oxyl (TEMPO) and galvinoxyl, lead-
ing to the recovery of 89% and 99 % of 2-phenylpyridine
(1a), respectively. These results also support the radical
pathway. The proposed reaction mechanism is as follows:
Step b1) Lewis acid–base interaction between a boron atom
of 9-BBN (2a) and a nitrogen atom of 2-phenylpyridine 1.
Step b2) Formation of a boryl radical by the elimination of
a hydrogen radical.[21] Step b 3) Intramolecular addition. Step
b4) Elimination of a hydrogen radical (the hydrogen radical
is combined with that formed from another hydrogen radical
to generate H2) to give product 3.

This reaction also proceeded well on a gram scale
[Eq. (2)]. As a result, 1.5 g of the borylated product 3a was
obtained (88 % yield).[22]

The desired product 5 was not formed upon treatment of
2,3-diphenylpyrazine (4) with 9-BBN (2a) in the presence of
a catalytic amount of a palladium salt, Pd(OAc)2; instead,
a complex mixture was generated. However, when the
catalyst was changed to a rhenium complex, [{ReBr(CO)3-
(thf)}2] , the double borylation reaction proceeded at both
ortho-positions and the corresponding product 5 was obtained
in 51% yield [Eq. (3)].[23, 24]

In summary, we have succeeded in the palladium-cata-
lyzed regioselective borylation of 2-phenylpyridine deriva-
tives. This reaction proceeded even at room temperature. The
regioselectivity arises from Lewis acid–base interaction
between the nitrogen and boron atoms. Using this method,
the borylated product can be obtained on a gram scale. As the
ortho-borylated 2-phenylpyridines exhibit fluorescence under
UV irradiation, the products will be useful as functional
materials. In addition, the p-conjugated systems could be
expanded by double borylation. We hope that this reaction

will provide useful insight into transformations through C�H
bond activation.

Experimental Section
Typical procedure for the palladium-catalyzed synthesis of ortho-
borylated product 3a : A mixture of 2-phenylpyridine (1a, 77.6 mg,
0.500 mmol), 9-BBN dimer (2a, 85.4 mg, 0.35 mmol), and Pd(OAc)2

(3.4 mg, 0.015 mmol) in 1,2-dichloroethane (1.0 mL) was stirred at
25 8C for 24 h under an argon atmosphere. After purification by silica
gel column chromatography (n-hexane/benzene = 5:1), 2-[2-(9-
borabicyclo[3.3.1]-9-nonyl)phenyl]pyridine (3a) was isolated in
87% yield (60.0 mg).
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