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Summary: Two-coordinate copper(I) acetate and
copper(I) methyl complexes, bearing an N-heterocyclic
carbene (NHC) supporting ligand, have been synthesized
and structurally characterized, and the stability of the
monodentate acetate has been examined by DFT calcula-
tions. The methyl complex readily inserts carbon dioxide
at ambient temperature and pressure, regenerating the
acetate in near-quantitative yield.

The catalytic formation of carbon-carbon bonds from
carbon dioxide presents an ongoing challenge in orga-
nometallic chemistry.1 With the goal of developing new
catalytic reactions, we have been interested in the
insertion of CO2 into alkyl complexes of late transition
metals, particularly Cu.2 Many copper(I) alkyls are quite
unstable, but those complexes supported by bulky,
electron-rich phosphines2b-e are notably robust, and
several phosphine-ligated copper(I) alkyls have been
reported to undergo CO2 insertion.2e-h To avoid poten-
tial side reactions involving binuclear reaction path-
ways, we have sought supporting ligands that would
disfavor ligand redistribution3a or bridged-oligomer
formation.3b-f

Since their discovery by Arduengo and co-workers,4
N-heterocyclic carbenes have become versatile and
prolific ligands in catalysis,5 often supplanting sterically
demanding, electron-rich phosphines. Their use as
ligands for copper complexes, however, remains rela-
tively rare.6 Herein we report the structural character-
ization of a carbene-ligated copper(I) chloride, the
synthesis and structure of a two-coordinate (carbene)-
copper(I) acetate, a computational comparison of mono-

dentate and bidentate acetates, and the synthesis and
structure of a linear (carbene)copper(I) methyl, which
reacts readily with CO2.

The synthetic routes to (carbene)copper(I) complexes
1-3 are shown in Scheme 1.7 Chloride complex 1 was
synthesized as reported previously;8 its crystal structure
(Figure 1) displays a monomeric, two-coordinate geom-
etry, with a Cu-Cl bond distance of 2.106(2) Å.9 Related
(NHC)copper(I) halides, prepared by N-methylation of
(azolyl)chlorocuprates, display very similar geometries
and bond lengths.6d

Attempts to replace the chloro ligand in 1 with a
methyl group, using a variety of methyl nucleophiles,
did not give clean reactions. (Phosphine)copper(I) meth-
yl complexes are often synthesized by addition of Me2-
AlOR (R ) Et, iPr) to Cu(acac)2 in the presence of free
phosphine;2 however, the analogous reaction using the
free ligand IPr afforded a yellow powder that defla-
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Scheme 1a

a Solvents and conditions: (a) THF, room temperature; (b)
PhCH3, room temperature; (c) Et2O, -45 °C; (d) C6H6, room
temperature.
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grated when touched, probably [CuMe]4.10 Prior coor-
dination of the carbene ligand to copper thus appears
necessary.

Reaction of free IPr with copper(I) acetate in benzene
affords (IPr)CuO2CCH3 (2).11 The carbonyl resonance in
the 13C NMR spectrum (128.9 ppm) is well upfield of
other copper(I) acetate carbonyl resonances.12 Complex
2 crystallizes with two molecules in the asymmetric
unit, and slightly different bond distances and angles
are obtained for each. In both molecules, the crystal
structure13 reveals a monodentate acetate ligand.14 This
binding mode is noteworthy, as monodentate copper(I)
carboxylates are relatively rare.15

In the molecule shown in Figure 2, the Cu-O bond
distance (1.850(3) Å) is quite close to that of the linear
bis(acetato)cuprate(I) anion (1.821(8) Å)16 and shorter
than the CuI-O bond distances in three- or four-
coordinate monodentate carboxylates.15 In the other
form of 2 (Figure S5),7 the acetate is somewhat closer
to a κ2-binding mode, with a distortion from linearity
about the copper center and a smaller difference be-
tween the two copper-oxygen distances. However, the
distance from the metal to the proximal oxygen atom

(1.924(5) Å) is shorter, and that to the distal oxygen
atom (2.673(7) Å) considerably longer, than the corre-
sponding distances in the bidentate acetate (Ph3P)2-
CuO2CCH3 (2.166(3) and 2.228(3) Å).17

The relative stabilities of the κ1- and κ2-acetate
binding modes were explored through DFT calculations
on model complexes,7 in which N-methyl groups have
replaced the N-(2,6-diisopropylphenyl) groups of the
carbene ligand in 2. Figure 3 depicts the optimized
geometries of the κ1complex A and κ2 complex B;
bonding distances calculated for A agree favorably with
those determined crystallographically for 2.18 Chelated
isomer B is calculated to be more stable than A by 1.1
kcal/mol, but this difference is smaller than the uncer-
tainty of (5 kcal/mol estimated for the calculation.19

In the κ1 complex A, the calculated distance between
copper and the distal oxygen atom is 2.251 Å, which is
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Figure 1. Representation of 1, shown as 50% ellipsoids.
Hydrogen atoms (calculated) and solvent are omitted
for clarity. Selected bond lengths (Å) and angles (deg):
Cu(1)-C(1) ) 1.881(7), Cu(1)-Cl(1) ) 2.106(2); C(1)-
Cu(1)-Cl(1) ) 176.7(2).

Figure 2. Representation of 2, shown as 50% ellipsoids.
For clarity, hydrogens and solvent are omitted, and only
one of the two molecules in the asymmetric unit is shown.7
Selected interatomic distances (Å) and angles (deg) [cor-
responding values for the other molecule]: Cu(1)-O(2) )
1.850(3) [1.924(5)], Cu(1)-O(1) ) 2.868(4) [2.673(7)],
Cu(1)-C(1) ) 1.854(4) [1.850(5)], O(1)-C(28) ) 1.166(6)
[1.157(8)], O(2)-C(28) ) 1.280(6) [1.228(8)]; O(2)-Cu(1)-
C(1) ) 177.19(18) [166.0(2)], O(1)-C(28)-O(2) ) 126.2(5)
[120.2(8)].

Figure 3. Optimized structures calculated for κ1- (A) and
κ2-acetate (B) model complexes. Selected interatomic dis-
tances (Å): for A, Cu(1)-O(2) ) 1.901, Cu(1)-O(1) ) 2.251,
Cu(1)-C(1) ) 1.821, O(1)-H(1) ) 2.435, O(1)-C(2) )
1.251, O(2)-C(2) ) 1.286; for B, Cu(1′)-O(2′) ) 2.014,
Cu(1′)-O(1′) ) 2.039, Cu(1′)-C(1′) ) 1.825, O(1′)-C(2′) )
1.268, O(2′)-C(2′) ) 1.269.
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shorter than those found crystallographically for 2
(2.868(4) and 2.673(7) Å). An atoms-in-molecules analy-
sis20 finds bond critical points between copper and both
oxygen atoms in A, indicating a bonding interaction
between the metal and the distal oxygen, O(1). The
same analysis also finds a bond critical point connecting
O(1) with a methyl hydrogen 2.435 Å away. No such
interaction within the molecule is observed for 2;
however, the extended crystal structure of 2 (Figure S7)7

shows a 2.238-Å approach (2.347 Å, for the other
molecule in the asymmetric unit) of a distal oxygen atom
to the calculated position of a carbene backbone hydro-
gen in an adjacent molecule.7 The preferential crystal-
lization of the κ1isomer could conceivably result from
this intermolecular stabilization.21 Vibrational anima-
tion finds that a hinging motion of the κ1-acetate
corresponds to a 40.7 cm-1 torsional mode, implying that
a slight energy input elicits a large distortion.

Addition of Me2AlOEt to 2 in diethyl ether led to clean
formation of the two-coordinate methyl complex 3
(Figure 4).22,23 The Cu-Cmethyl distance, 1.913(6) Å, is
similar to that found in dimethylcuprates (ca. 1.94
Å),3a,24 slightly shorter than that of [η5-(C5H4SiMe3)2-
Ti(CCSiMe3)2]CuCH3 (1.966(2) Å),25 and appreciably
shorter than that of (Ph3P)3CuCH3 (2.043(12) Å).2a

Exposure of a benzene solution of 3 to ca. 1 atm of
CO2 at room temperature afforded (IPr)CuO2CCH3 (2)
in near-quantitative yield.26,27 The 1H NMR spectrum

of 2 prepared in this manner is identical with that of
authentic 2 prepared from IPr and copper(I) acetate.

In conclusion, an N-heterocyclic carbene ligand sup-
ports monomeric, linear complexes of copper(I), includ-
ing the chloride and the new acetate and methyl
complexes. Calculations suggest that the monodentate
and bidentate binding modes of acetate are of very
similar energies. The neutral, two-coordinate methyl
complex 3 reacts readily and cleanly with CO2 to form
the acetate. The potential of (NHC)copper(I) complexes
to catalyze new carboxylation processes is currently
being explored.
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Figure 4. Representation of 3, shown as 50% ellipsoids;
hydrogens and solvent are omitted for clarity. Selected
bond lengths (Å) and angles (deg): Cu-C(1) ) 1.913(6),
Cu-C(2) ) 1.887(5); C(2)-Cu-C(1) ) 180.000(1).
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