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Abs t r ac t  

In the presence of  2.5 mol % of  Pd2(dba) 3 and 5 tool % ofPPh 3, nearly eqcimolar mnounts of dimathyl nona- 
2,7-diyne-1,9-dioate derivatives and dimethy! acetylenedicarboxylate (DMAD) were reacted in toluene at 110 "C 
to give indan, phthalin, a~d isoindoline derivatives selectively in moderate to good yield,. The compe~ 
hmno-t~uplings of both the diynedlesters and DMAD were mmplew.ly suplnt~sed. The ester groe~ on the 
alkyne terminus plays an important role; the corresponding diynaliket~e e=d diynemmmmer gave 
unsatisfactory results. The Ixesent Pd(0)-catalyzed cyclminzdmm was further extended to the inUamok=~ 
[2 + 2 + 2] cycloaddition of a triynediester. © 1999 Elsevier Science Ltd. All rights reserved. 

KeTwurds: Palladium catalyst; Cycloadditions; Alk3~s; Bicycfic mmustic compounds 

Transition-metal catalyzed [2 + 2 + 2] cycloaddition of alkynes is a viable tool to 
synthesize highly substituted benzene derivatives [1]. The control of both the chemo- and 
regiochemistry in the cyclotrimerizafion of two or three different alkyne components, 
however, has so far been a cumbersome problem. The intermolecular coupling between a 
diyne and a monoyne is an effective strategy to control the substitution pattern on an arene 
ring [2]. The use of e x c e s s  amount of the monoyne is, however, essential to suppress the 
competing dimerization of the diyne. In  this context, we developed the Pd(0)-catalyzed 
intermolecular coupling of dimethyl nona-2,7-diyn-l+9-dioate derivatives I with dimethyl 
acetylenedicarboxylate (DMAD). Using our method, nearly equimolar amounts of  the diyne 
and DMAD selectively gave highly substituted bicyelic benzenes 4 in moderate to good 
yields (Scheme 1). 
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Scheme I 

Several decades ago, Ishii and Maltlis independently reported that an oligomeric 
palladacyclopentadiene was obtained from the reaction of Pd(dba) 2 (dba: dibenzalacetone) 
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and DMAD [3a-d], and the pailadacycle reacted with DMAD or tolane to give 
hexasubstituted benzene rings. Under catalytic conditions, however, the cross-coupling 
product was not obtained from DMAD with electronically neutral monoalkynes, because 
DMAD was readily trimerized to hexamethyl mellitate [3b,e]. This shows that electron- 
deficient DMAD is selectively coordinated by electron-rich Pd(0) to form the palladacycle 
intermediate, and DMAD is more easily incorporated into this intermediate than neutral 
alkynes. This selectivity i s  in sharp contrast to that in the reported selective co- 
cyclotrimerization of DMAD with a cycioalkene [4]. This fact suggested that cycloalkenes 
bind more strongly to the highly electron-deficient palladacycle than does electron-deficient 
DMAD. Taking these results into account, we envisaged that the selective coupling of 
dimethyl nona-2,7-diyn-l,9-dioate 1 and DMAD could be achieved because the 
bicyclopalladacycle formation from the diyne 1 might be more entropically favorable than 
that from DMAD (2, Scheme 1) and, in turn, DMAD would bind more strongly to the 
bicyclopalladacycle than would the less electron-deficient diyne (3, Scheme 1). 

The reaction conditions of the cycloaddition of l a  with DMAD were optimized as 
summarized in Table 1. In the presence of 2.5 mol% Pd2(dba)3 and 5 mol% PPh3, l a  and 
DMAD (1.1 equiv.) were heated in toluene at 110 °C for 1 h to afford the desired phthalan 
derivative 4a [5] in 61% yield (entry 1). As an extra ligand, an electron-withdrawing 
arylphosphite P(OPh) 3 and an electron-donating, bulky alkylphosphine P(Cy) 3 (Cy = 
cyclohexyl) were less effective for the present cycloaddition (entries 2 and 3). Higher 
dilution of the reaction mixture raised the yield up to 78% (entry 4 vs. 1) [6]. 

Under the optimized conditions, a variety of diyne esters lb - f  were reacted with 
DMAD. The substituents at the alkyne terminus plays an important role. A diethyl ester l b  
selectively gave the corresponding coupling product 4b, but the yield was slightly lower 
compared to that of 4a (entry 5). More electron-withdrawing acetyl groups on a diyne l e  
considerably decreased the yield of the desired cycloadduct 4c (18%; entry 6). The 
substitution of one of the two methoxycarbonyl groups in l a  with a methyl group retarded 
the desired coupling (entry 7). After the reaction with DMAD for 15 h, diynemonoester l d  
gave an unsymmetrical product 4d in 23% yield together with hexamethyl mellitate (31%). 
In contrast, the parent dipropargyl ether gave only a complex product mixture. 

An N-benzyl isoindoline 4e was obtained by the reaction of a dipropargylamine l e  in 
62% yield (entry 8). In addition to the above heterocycles, an indan derivative was also 
synthesized. A malonate derivative I f  was reacted with DMAD for 5 h to give 4f in 67% 
yield (entry 9). In sharp contrast to the above 1,6-diynes, a 1,7-octadiyne 5 did not give the 
corresponding coupling product under the same reaction conditions. 

The present Pd(0)-cataiyzed co-cyclotrimerization can be extended to the intramolecular 
cyclization of a triynediester 6 (Scheme 2). In the presence of 2.5 mol % Pd2(dba) 3 and 5 
mol % of PPh 3, 6 was heated in toluene at 110 °C for 30 min to afford the expected tricycle 
7 [7] in g5% yield. 
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Scheme 2 
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Table 1, INl(O)-Catalyzed Co-¢ydotrimerimtioa of Diynm la4  w4th DMAi~ 

entry diyne additive cone. time product mellilate 
L (M) (h) (yV~d ~t)* (yielder)* 

--- oo2Me ° ~ o _  ~L . ~ 
1 O ~ -  C~321~ PPh3 0.5 1 ] ~  4a (61) 0 

CO2Me 
la  OO2Me 

2 la P(OPh)3 0.5 10 4a (17) 14 

3 la PCy3 0.5 18 4a (27) 6 

4 la PPh3 0.1 0.5 411 (78) 0 

/ --- C02Et ~ ~02E't 

5 O ~ C02Et PPh3 0.1 0.5 O ~ C 0 2 M e ~ [  4b (66) 0 

lb C02Et 

COMe 
6 O; = COMe :,,~,~CO=lde 

COMe PPh3 0.1 1 O~ ~ ~J,~ 4¢ (18) 0 - " V "  oo2Me 
lc COMe 

co, Me 
/ "-- 0OaMe IC~Me 

7 O . . -  Me PPh3 O.l 15 O~ / "~e~ '  "~r" -< 4d (23) 31 
ld ~ " ~ ' C 0 2 M e  

Me 

C02Me 
t ~ C02 Me _ J~ _ ~  

8 BnN ~ C02Me PPh3 0.1 0.5 B n N ~  4e (62) O 
- ,p-co=Me 

le  C02M e 

,co, Me 
Meo.~/  = ¢o2Me 0.1 5 M e ° ~ 3 ~ / ' ~  c°2Me 

4f (67) 9 M e o ~  ~ M e  PPh3 ' , ~ : ~  ' ~ ' - , ~ c c ~ M e  0 

I f  co2Me 
/ - - ¢  

aCondifions: Pd2(dba) 3 (2.5 tool %), DMAD (1.1 equiv.), L (5 mol %),-toluene, 110 "C. blsolated yields. 

0 / ~ C02Me 
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In conclusion, we developed the Pd(O)-catalyzed intermolecular [2 + 2 + 2] cycloaddition 
of  nona-2,7-diyne-l,9-dioate derivatives and dimethyl acetylenedicarboxylate. In the 
presence of 2.5 mol % Pd2(dba)3 and 5 mol % PPh 3, highly substituted phthalans, an 
isoindolin, and an indan were selectively synthesized in good yields from the diynediesters 
and nearly equimolar amounts of DI~LAD. This is in striking contrast to other known 
examples, which requires excess amounts of monoynes in order to supress the competing 
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dimerization o f  diynes. The ester groups on the alkyne terminus plays an important role; the 
corresponding diynediketone and diynemonoester gave unsatisfactory results. The  present 
Pd(0)-catalyzed cyclotr imerization was further  extended to the intramolecular [2 + 2 + 2] 
cycloaddition of  a triynediester. Further application of  this method and the mechanistic 
elucidation are now underway.  
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