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Naturally occurring dimeric alkaloids often show distinct and/
or improved biological activities compared with those of their
monomers. To investigate the details of their biogenesis and
bioactivity, it is attractive to synthesize dimeric natural
products from their monomers, in the same way as nature
may do.[1,2] This approach is even more challenging when the
dimer is unsymmetrical, because it requires position-con-
trolled union of the two monomers.

Complanadines, isolated from the club moss Lycopodium
complanatum by Kobayashi et al. , are dimeric Lycopodium
alkaloids (Scheme 1).[3, 4] These compounds are unsymmet-

rical as a result of a C2�C3’ bipyridyl linkage and/or different
oxidation levels of the lycodine units.[5, 6] Complanadines A
(1), B (2), D, and E have been reported to induce secretion of
neurotrophic factors (NTFs) from 1321N1 human astrocy-
toma cells, thus they are lead compounds for the development
of drugs for treating Alzheimer�s disease.[3b–d] Because of their
challenging unsymmetrical structures and intriguing biologi-
cal activities, complanadines have attracted much attention
from organic chemists.[2] Two groups reported a total synthesis
of complanadine A in 2010.[7,8] In these pioneering studies, the
2,3’-bipyridyl framework was elegantly constructed, but there
are still no reports of efficient and versatile ways of assem-
bling unsymmetrical structures like that of complanadine B
(2).[9] Herein, we report the total syntheses of 1 and 2 by
straightforward coupling of the monomeric units, which were
prepared from a single N-protected lycodine, and the
subsequent correction of the reported specific rotation
([a]D) of natural complanadine A (1) to levorotatory.

Retrosynthetically, pyridine mono-N-oxide 4 could be
a common intermediate for 1 and 2 (Scheme 2). Reduction of
4 would afford 1. Regioselective benzylic oxidation using the

N-oxide functionality would lead to ketone 2. The mono-N-
oxide 4 could be constructed by direct C2 arylation of
pyridine N-oxide 5[10,11] with 3-bromopyridine 6. Enantiopure
5 and 6 could both be prepared by chemo- and regioselective
functionalization of a single N-protected lycodine 7. So far,
there are no examples of the direct arylation of such a complex
pyridine N-oxide system.[10, 11] It was therefore essential to
optimize the direct arylation reaction.

Our syntheses commenced with the preparation of 7 in
enantiopure form. After a number of experiments, racemic
ketone 8[6c] was found to be readily resolved on an amylose
chiral column (Daicel Chiral-Pak AS) when a mixture of

Scheme 1. Complanadines A, B, D, and E, and lycodine.

Scheme 2. Retrosynthesis of complanadines A and B. Cbz = benzylox-
ycarbonyl.
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ethanol/n-hexane/diethylamine (5.8 %/94%/0.2 %) was used
as the eluent (Scheme 3), thus providing (+)- and (�)-8 in
48% and 47% yields, respectively. Thioketalization of (+)-8,
and subsequent treatment with Raney nickel, afforded (�)-
lycodine (3). The 1H and 13C NMR data and specific rotation
of the synthetic sample are fully consistent with those of the
natural product.[5a,c]

Furthermore, the absolute configuration of (�)-3 was
unambiguously determined by X-ray crystallography of
synthetic HBr salt of (�)-3 (Figure 1). To our knowledge,
the absolute configuration of natural (�)-lycodine (3) was
directly and rigorously established for the first time.[12a,b]

With the enantiodefined and enantiopure (�)-3 and
(+)-7[13] in hand, we could synthesize (+)-N-Cbz-lycodine
N’-oxide (5) and (+)-N-Cbz-bromolycodine (6) and inves-
tigate the assembly of the unsymmetrical dimer by a Pd-
catalyzed coupling reaction (Scheme 3).[13,14] Before conduct-
ing the direct arylation of these complex molecules, we
examined the reaction between model compounds 9 and 10
(Table 1). When 9 and 10 were treated with a catalytic amount

of Pd(OAc)2, tBu3P·HBF4, and potassium carbonate in
mesitylene at 120 8C, according to the method reported by
Fagnou and co-workers,[10a,c,e] bipyridine mono-N-oxide 11
was formed in 33% yield (entry 1). With the sterically more-
demanding phosphine ligand Cy3P·HBF4 a slightly higher
yield was achieved (entry 2). The use of the more electron-
rich and bulkier ligand, 2-di-tert-butyl-phosphino-2’-(N,N-

Scheme 3. Total syntheses of (�)-lycodine and (�)-complanadines A and B. Reaction conditions: a) HSCH2CH2SH, BF3·OEt2, CH2Cl2, 88 %;
b) Ph3SnH, AIBN, toluene, 110 8C, 86 %; c) HSCH2CH2SH, BF3·OEt2, CH2Cl2; d) Raney Ni (W-2), EtOH, reflux, 70% (2 steps); e) mCPBA, CH2Cl2,
0 8C to RT, 92 %; f) [{Ir(cod)(OMe)}2], tBudpy, [B(pin)]2, THF, reflux; g) CuBr2, MeOH/H2O (1:1), reflux, 60% (2 steps); h) Pd(OAc)2,
tBuDavePhos, Cs2CO3, pivalic acid, mesitylene, 130 8C, 62% (see text for details and optimization of the reaction conditions); i) Pd(OH)2/C,
HCO2NH4, MeOH, 67%; j) Ac2O, 125 8C, d.r. = 3:1; k) K2CO3, MeOH; l) DMP, CH2Cl2, 76%, (3 steps) ; m) 6m aq. HCl, 70 8C, 78%. AIBN= 2,2’-
azobisisobutylnitrile, tBudpy=4,4’-di-tert-butyl-2,2’-bipyridyl, [B(pin)]2 = bis(pinacolato)diboron, Cbz= benzyloxycarbonyl, cod = cyclooctadiene,
mCPBA= meta-chloroperbenzoic acid, DMP =Dess–Martin periodinane, pin= pinacolato, THF = tetrahydrofuran.

Figure 1. X-ray structure of HBr salt of (�)-3. Counter-anions are
omitted for clarity. Thermal ellipsoids are shown at the 50% probability
level.[12c]

Table 1: Direct arylation of pyridine N-oxide 9 and bromopyridine 10.

Entry Ligand Additive Base Yield [%][a]

1 tBu3P·HBF4 None K2CO3 33%
2 Cy3P·HBF4 None K2CO3 37%
3 tBuDavePhos None K2CO3 41%
4 tBuDavePhos PivOH K2CO3 46%
5 tBuDavePhos PivOH Cs2CO3 56%

[a] Yield of the isolated product.
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dimethylamino)biphenyl (tBuDavePhos),[15] increased the
yield to 41% (entry 3). Addition of pivalic acid (PivOH)
resulted in an increased yield (46%; entry 4).[10e,f] We found
that using cesium carbonate as the base improved the yield to
56% (entry 5).

(+)-N-Cbz-lycodine N’-oxide (5) was synthesized by
mCPBA oxidation of (+)-7. Miyaura–Hartwig borylation[16]

of (+)-7, which was carried out by using the procedure of
Sarpong and Fischer,[7] and subsequent bromination with
CuBr2,

[17] provided (+)-N-Cbz-bromolycodine (6) regioselec-
tively. The optimized reaction conditions (Pd(OAc)2

(20 mol %), tBuDavePhos (24 mol%),[15] Cs2CO3 (3 mol
equiv) and pivalic acid (0.3 mol equiv) in mesitylene at
130 8C) were applicable the coupling of (+)-5 and (+)-6 to
give the desired key intermediate (+)-4 in 62% yield.

The mono-N-oxide (+)-4 was first converted into com-
planadine A (1). Reduction of the N-oxide and Cbz groups
with ammonium formate in the presence of Pd(OH)2

furnished (�)-complanadine A (1; Scheme 3).[13] The 1H and
13C NMR, and high resolution mass spectra of synthetic
complanadine A were identical to those of the natural
product. However, the specific rotation of the synthetic
complanadine A purified by HPLC turned out to be levo-
rotatory ( a½ �25

D¼�168 (c = 0.16, MeOH)), which was the
opposite of that reported for the natural product ( a½ �24

D¼+

148 (c = 0.3, MeOH))[3a,b] and those of synthetic samples
reported by Siegel co-workers ( a½ �24

D¼+ 14.58 (c = 0.3,
MeOH))[8] and by Sarpong and Fischer ([a]D =+ 22.28 (c =

0.85, CHCl3)).[7] We therefore re-examined the [a]D of natural
complanadine A, which was gifted by Kobayashi and co-
workers,[18] and found that the natural product purified by
HPLC has a½ �25

D¼�168 (c = 0.04, MeOH), which is consistent
with that of our synthetic sample.[19] The reported [a]D values
for complanadine A therefore need to be corrected.

The regioselective benzylic oxidation of (+)-4 by proto-
tropy and subsequent Claisen-type rearrangement of O-
acetylated pyridine N-oxide, achieved by heating in acetic
anhydride,[20] gave acetate 12 as a 3:1 epimeric mixture.
Methanolysis of the acetate of 12, subsequent oxidation using
Dess–Martin periodinane,[21] and removal of the N-Cbz group
under acidic conditions completed the first total synthesis of
(�)-complanadine B (2). Its 1H and 13C NMR spectra, high
resolution mass spectra, and a½ �25

D of �288 (c = 0.11, MeOH)
are identical to those of the natural product ( a½ �23

D¼�138 (c =

0.5, MeOH).
In summary, we have accomplished the total syntheses of

dimeric alkaloids complanadines A and B, the unsymmetrical
motif of which was concisely constructed by Pd-catalyzed
direct arylation of pyridine N-oxide with a bromopyridine
derivative. We confirmed their absolute configurations, and,
furthermore, the [a]D of complanadine A was corrected. The
present synthetic strategy could be applied not only to the
syntheses of other complanadine congeners that possess
monomeric units with different oxidation levels, but also to
the syntheses of other dimeric alkaloids. This synthesis
strongly suggests an intermediacy of an mono-N-oxide, such
as 4, in the biosynthesis of dimeric alkaloids; this interesting
finding requires further clarification. Investigation of the

biological activities of the enantiomers of natural complana-
dines A and B will be reported in due course.
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