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Abstract: A group of chiral [(salen)Cr(III)]+BF4
– complexes, with

enhanced steric hindrance in 3,3¢-positions of salicylidene moiety,
has been synthesized and applied for the oxo-Diels–Alder reaction
of alkyl glyoxylates with cyclohexa-1,3-diene. A readily accessible
complex that bears bulky adamanthyl substituents revealed its po-
tential, leading to the cycloadducts with excellent selectivity (up to
endo/exo 99:1, 98% ee), considerably better than the classic Jacob-
sen catalyst.
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Enantiomerically pure compounds are of steadily growing
interest for pharmaceutical, agrochemical or fragrance in-
dustry. Asymmetric catalysis opens an economically and
environmentally preferable route to homochiral substanc-
es. The strategy offers a unique possibility for transferring
chiral information from a catalyst to a number of product
molecules. Although thousands of catalytic systems have
been described, only a few of them prove efficient in a
wide variety of reactions. So-called ‘privileged’ chiral
ligands1 such as BINOL,2 BINAP,3 salen4 or
bisoxazoline5 have been successfully applied in numerous
asymmetric transformations including C–C bond forma-
tion. The hetero-Diels–Alder (HDA) reaction is of partic-
ular interest due to high synthetic potential of its
products.6 Vast majority of HDA reactions are cycloaddi-
tions of activated dienes (eg. Danishefsky’s diene) to sim-
ple aldehydes.6 Jørgensen was the first to concern the
reactions of activated aldehydes with non-activated
dienes.7 Although only a few papers have appeared in the
area, high state-of-the-art has been achieved.8

Among products of the reaction of glyoxylates 1 with
non-activated dienes (e.g. cyclohexa-1,3-diene 2) of par-
ticular interest is the cycloadduct 3 (Scheme 1). It is that

useful mainly due to simplicity of conversion to bicyclic
crystalline lactone 47,9 (Scheme 1), a versatile chiral
building block.10

A few years ago, we have published a paper concerning
the classic [(salen)Cr(III)]+-catalyzed cycloadditions of
non-activated dienes to alkyl glyoxylates; the selectivities
that we obtained, however, were usually moderate.11 Re-
cently, we have shown that increase in steric hindrance in
3,3¢-positions of salicylidene moiety of the catalyst exerts
beneficial effect on selectivity of [(salen)Cr(III)]+-cata-
lyzed high-pressure addition of allylstannanes to alde-
hydes.12 The positive effect of such enhancement of steric
hindrance on selectivity has also been observed in other
reactions catalyzed by metallosalen complexes.13

In this paper, we would like to apply the concept of steric
modification of salen complexes to HDA reaction. After
preparation of several sterically modified salen complex-
es of type 5 (Figure 1), we decided to screen their activity
using the [4+2] cycloaddition of 1,3-diene 2 to n-butyl
glyoxylate (1a) as a model reaction (Scheme 2).14 The re-
sults are presented in Table 1. The replacing of one among
the three methyls in tert-butyl groups positioned at 3 and
3¢ of classic Jacobsen catalyst 5a with phenyl resulted in a
significant increase in both diastereo- and enantioselectiv-
ity (entries 1 and 2). Further development of the steric hin-
drance by replacing two remaining methyl groups with
ethyl (entry 3) or even n-propyl (entry 4) caused further
improvement in the selectivity of this reaction.

Extension of steric hindrance may also be achieved by en-
largement of the aromatic group of the discussed substit-
uent. Indeed, replacement of phenyl with 2-methylphenyl
has a beneficial effect on selectivity, contrary to 4-meth-
ylphenyl that caused almost no effect (entries 2, 5, 6). Un-
fortunately, increased steric hindrance lowered the yield
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down to 30% for 5d as a catalyst. Simple introduction of
1-adamanthyl resulted in exceptionally high both endo-
and enantioselectivity of a 95:5 ratio and 95% ee, respec-
tively, when as little as 1 mol% of catalyst was used.15

Noteworthy is the fact, that the complex 5g16 is readily
available on multigram scale in a short and efficient syn-
thesis from commercial and inexpensive materials.17,18

A natural consequence of the above studies was to opti-
mize the reaction conditions (Table 2). Among the inves-
tigated solvents (entries 1–5), toluene appeared to be the
most efficient in terms of stereoselectivity (endo/exo 95:5,
95% ee for endo). Better yields, though, were obtained
when the reaction was carried out in dichloromethane, but
the selectivities were significantly lower (entry 2). The
Lewis base type solvents, like acetonitrile, seemed to be
completely ineffective, probably due to strong coordina-
tion to catalyst. Of interest was the fact that the reaction
proceeded quite well without any solvent (entry 6), which
constitutes a definite advantage of this procedure. The re-
action also does not require strictly anhydrous conditions
and addition of molecular sieves (the latter usually causes
decrease in stereoselectivity).

Lowering the temperature caused only an insignificant
improvement in stereoselectivity, at a cost of decrease of
yield – slight when temperature was decreased to 4 °C or
even marked for –25 °C (entries 7 and 8). Increase in the
amount of diene used enhanced the yield, but slightly
hampered both diastereo- and enantioselectivity (entries 9
and 10). On the other hand, dilution of the reaction mix-
ture had no effect on selectivity, but lowered the yield
markedly (entry 11). Finally, we examined the effect of
catalyst loading on the reaction performance (entries 12–
14). Augmentation of the amount of catalyst used exerted
a beneficial effect not only on the yield but also on the se-
lectivity. When the reaction was run with 5 mol% of cat-
alyst 5g, the product was isolated in 83% yield as an
almost pure endo-adduct (endo/exo 99:1) having 98%
enantiomeric purity (entry 13). However, decrease in cat-
alyst loading to 0.5 mol% diminished both yield and se-
lectivity (entry 14).

Having the optimal parameters in hand, we decided to per-
form the [4+2] cycloaddition of cyclohexa-1,3-diene (2)
with various alkyl glyoxylates of type 1 (Table 3).19 The
reactions were carried out at room temperature in toluene
with 2 mol% of complex 5g as a catalyst, which seemed
to be the best balance between catalyst loading and reac-
tion results. For primary (n-Bu and Et, entries 1 and 2) as
well as for secondary (i-Pr, entry 3) alkyl groups the re-
sults were very similar. In the case of the bulky alkyl
groups (t-Bu, entry 4), both yield and selectivities were
lower.

Prompted by excellent results of the model reaction cata-
lyzed by 5g we decided to investigate the possibility of us-
ing other dienes, e.g. 2,3-dimethylbuta-1,3-diene.
Unfortunately, the obtained results were much worse than
those for classic Jacobsen catalyst 5a.

Table 1 Results of the Model Reaction as a Function of Catalyst 
Structurea

Entry Catalyst Yield of 3a 
(%)

endo/exob ee for endo 
(%)b

1 5a 62 66:34 71

2 5b 50 83:17 92

3 5c 47 93:7 94

4 5d 30 95:5 95

5 5e 42 91:9 96

6 5f 48 82:18 91

7 5g 48 95:5 95

a Conditions: 1 mol% of the catalyst, n-butyl glyoxylate (1 mmol), cy-
clohexa-1,3-diene (1.5 mmol) in 1 mL of toluene, 20 °C, 24 h.
b The endo/exo ratio and ee were determined by GC on a chiral capil-
lary b-dex 120 column (30 m × 0.25 mm); nitrogen – 100 kPa, oven 
temp. 150 °C (see ref. 19).
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The absolute configuration of major endo-3a–d products
were determined by their correlation with bicyclic lactone
4 (Scheme 1).7a,b In all cases, when (1S,2S)-salen com-
plexes 5a–g were applied for the reaction of 1 with 2, cy-
cloadduct (1R,3S,4S)-endo-3, corresponding to the
levorotatory lactone 4, was obtained.7a,b

It was consistent with our previous observations of vari-
ous metallosalen-catalyzed reactions of aldehydes.11,12,20

The results also supported the recently presented model of
chirality transfer in metallosalen-catalyzed cycloadditions
and additions to aldehydes.20

Concluding, we have shown that extension of steric prop-
erties of the Jacobsen catalyst has beneficial effects on
diastereo- and enantioselectivity of the HDA reaction of 1
with 2. Employing of readily available catalyst 5g opened
a simple and economic route to the cycloadduct 3 of
particular interest in synthesis.
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