Bioorganic & Medicinal Chemistry Letters xxx (2015) xxx-xxx

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Addressing cytotoxicity of 1,4-biphenyl amide derivatives: Discovery of new potent and selective 17β-hydroxysteroid dehydrogenase type 2 inhibitors

Emanuele Marco Gargano^a, Enrico Perspicace^a, Angelo Carotti^b, Sandrine Marchais-Oberwinkler^{a,C,*}, Rolf W. Hartmann^{a,C,*}

^a Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany ^b Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari, V. Orabona 4, I-70125 Bari, Italy ^c Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, D-66123 Saarbrücken, Germany

ARTICLE INFO

Article history: Received 8 October 2015 Revised 10 November 2015 Accepted 14 November 2015 Available online xxxx

Keywords: 17β-HSD2 Osteoporosis Cytotoxicity Biphenyl 17β-HSD1

ABSTRACT

Four different classes of new 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) inhibitors were synthesized, in order to lower the cytotoxicity exhibited by the lead compound **A**, via disrupting the linearity and the aromaticity of the biphenyl moiety. Compounds **3**, **4**, **7a** and **8** displayed comparable or better inhibitory activity and selectivity, as well as a lower cytotoxic effect, compared to the reference compound **A**. The best compound **4** ($IC_{50} = 160$ nM, selectivity factor = 168, $LD_{50} \approx 25 \mu$ M) turned out as new lead compound for inhibition of 17β-HSD2.

© 2015 Elsevier Ltd. All rights reserved.

Osteoporosis affects more than 75 million people in the United States, Europe and Japan, causing almost 9 million bone fractures annualy.¹ The current available therapies lack of sufficient safety and effectiveness,² and as consequence development of new treatments is needed.

17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) is responsible for the local reduction of the highly biologically active estradiol (E2) and testosterone (T) into the much less active estrone (E1) and androstenedione (A-dione), whereas 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), a target for the treatment of endometriosis,^{3–5} type 3 (17β-HSD3) and type 5 (17β-HSD5) catalyze the opposite reaction (Fig. 1).⁶

The age-related decrease in the local levels of E2 and T is responsible for osteoporosis onset and progression.^{7,8} Therefore the inhibition of 17 β -HSD2, which is present in the bones,⁹ should rebalance the steroid levels in this tissue and represents an appealing strategy for the treatment of this disease. Since 17 β -HSD2 and 17 β -HSD1 were shown to be both expressed in bone tissue,⁹ 17 β -HSD2 inhibitors should be selective over 17 β -HSD1 (Fig. 1). We previously reported on the discovery of compound **A** (Fig. 2), which showed a good 17β-HSD2 inhibitory activity (IC₅₀ = 300 nM) and good selectivity over 17β-HSD1 (IC₅₀ = 13.3 μ M, selectivity factor = 44) as well as an improved metabolic stability in human S9 fraction ($t_{1/2}$ = 107 min) compared to the other 17β-HSD2 inhibitors described so far.¹⁰ However, this lead compound **A** was found to exert some cytotoxicity. Only 34% of the cells were still alive were still alive after treatment with 6.25 μ M of compound **A** in a MTT assay.¹¹

The 1,1'-biphenyl moiety is known for its toxicity.¹² It might partly come from its planarity and the presence of two aromatic rings next to each other which might result in DNA intercalation by interaction with the nucleobases.¹³

Decrease in cytotoxicity should therefore be achieved by disrupting the planarity of the biphenyl moiety and/or avoiding the biphenyl moiety.

We already reported on compound **B** (Fig. 2) showing a 17β-HSD2 inhibitory activity (IC₅₀ = 510 nM) slightly weaker compared to the one of **A**.¹⁴ Whereas **B** and **A** share the biphenyl moiety, compound **B** bears, in place of a carboxamide, a sulfonamide linker. The O of the carbonamide **A** and of the sulfonamide **B** explores different regions of the protein and potentially achieves different H-bond interactions. Therefore the carboxamide of **A** and

* Corresponding authors.

http://dx.doi.org/10.1016/j.bmcl.2015.11.047 0960-894X/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Gargano, E. M.; et al. Bioorg. Med. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.11.047

E. M. Gargano et al. / Bioorg. Med. Chem. Lett. xxx (2015) xxx-xxx

Figure 1. Estrogens (E2) and androgens (T) contribute to the maintenance of the overall bone quality. Blocking the oxidation of estradiol and testosterone by using an inhibitor of 17β -HSD2 should rebalance the steroid level in the bones.

the sulfonamide of **B** were both taken as starting point for the design of the new inhibitors, in order to obtain a greater chemical diversity.

In order to develop new 17β-HSD2 inhibitors with a better toxicity profile and a good 17β-HSD2 inhibitory activity, we applied four strategies: (1) introduction of an ether bridge between the two phenyl rings, compounds 1–7; (2) exchange of the phenyl central ring by a cyclohexane ring, compound 8; (3) the exchange of the central ring by a piperazine ring linked to a sulfonyl group, compounds **9a–11a** and **9–11** and (4) the exchange of the sulfonyl function by an acyl function, compounds **12a–14a** and **12–15** (Fig. 2).

The reaction steps involved in the synthesis of the target compounds **1–8** are shown in Scheme 1. The 4-phenoxybenzoyl chlorides were obtained from the commercially available corresponding 4-phenoxybenzoic acids **1a–6a** and **7b** by reaction with SOCl₂ and subsequently reacted with different anilines, according to the already described procedure,¹⁵ providing compounds **1–6** and **7a**.

Compound **7a** was submitted to ether cleavage, using boron trifluoride–dimethyl sulfide complex $BF_3 \cdot SMe_2$ yielding the hydroxy compound **7**, as previously described.¹⁵

Compound **8** was synthesized using an identical method, starting from the commercially available 4-(4-chlorophenyl)cyclohexane-1-carboxylic acid **8a** (Scheme 1).

The 3-(4-phenylpiperazin-1yl) sulfonyls **9a–11a** were prepared through the sulfonamide bond formation (Scheme 2), achieved by reaction of commercially available 1-phenylpiperazines **9b–11b** with 3-methoxybenzenesulfonyl chloride **9c**, according to a described procedure.¹⁴ The following ether cleavage of **9a–11a**, using BF₃·SMe₂ in presence of triethylamine, as already described,¹⁴ yielded the hydroxy compounds **9–11**.

The synthesis of the phenylpiperazin-1-yl methanones **12–14** and **15a** are depicted in Scheme 3. The amide bond was formed, by reacting the commercially available 1-phenylpiperazines **9b**, **10b**, **12b** and **13b** and 3-methoxybenzoyl chloride **10c**, using triethylamine and dichloromethane as solvent. Compounds **12a–14a** were submitted to ether cleavage using boron trifluoride–dimethyl sulfide complex yielding the hydroxy compounds **12–14**. Conditions of both reactions were previously described.⁷

All final compounds as well as their intermediates were fully characterized (¹H NMR, ¹³C NMR and LRMS) to confirm their chemical structure. The data of the representative compounds **4**, **8**, **9a** and **12** are presented as examples.^{16–19}

The inhibitory activities of compounds **7a**, **10a**, **11a**, **13a–15a** and **1–15** on 17β-HSD2 and 17β-HSD1 obtained from human placental source, were determined as previously described.²⁰

The 4-phenoxybenzamides **7a** and **1–7**, as well as the phenylcyclohexanecarboxamide **8** (Table 1) displayed a good inhibition of 17 β -HSD2. Compound **4**, with a bent shape and **8**, lacking the central aromatic ring, but conserving the overall linear shape, showed an inhibitory activity in the same order of magnitude as compound **A** and significantly improved selectivity against 17 β -HSD1, thus demonstrating that neither the linearity of the biphenyl moiety nor the aromaticity of the central ring are essential for inhibitory activity.

The phenylpiperazin-1-yl sulfonyls **9a–11a** and **9–11** (Table 2) displayed poor inhibition of the 17β-HSD2 enzyme, when compared to compounds **A** and **B**. Compound **10**, which can be directly compared to **B**, is a much weaker inhibitor of 17β-HSD2. Compound **11** is the best in the series. The improvement in activity between **10** and **11** comes from the introduction of the fluorine in *ortho* to the OH group. The F likely positively influences the hydrogen bond on the OH group next to it. In comparison to compound **B**, the sulfonyl derivatives bear a much more hydrophilic central ring, which might explain the loss of activity. They also bear a sulfonamide function condensed in the piperazine ring, which renders the molecules shorter than **B**. This feature might lead to a loss of important interactions with the enzyme, thus further explaining the lower inhibitory activity.

Figure 2. Four different classes of inhibitors derived from the lead compounds A and B.

Please cite this article in press as: Gargano, E. M.; et al. Bioorg. Med. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.11.047

E. M. Gargano et al. / Bioorg. Med. Chem. Lett. xxx (2015) xxx-xxx

Scheme 1. Synthesis of 4-phenoxybenzamide derivatives 1–7 and 7a and 4-phenylcyclohexane carboxamide 8. Reagents and conditions: (a) SOCl₂, DMF cat, toluene, reflux, 4 h; (b) Et₃N, CH₂Cl₂, room temperature, overnight; (c) BF₃·SMe₂, CH₂Cl₂, 0 °C to room temperature, overnight.

Scheme 2. Synthesis of 3-(4-phenylpiperazin-1yl)sulfonyls 9-11. Reagents and conditions: (a) (Bu₄)N·HSO₄, NaOH 50%, CH₂Cl₂, room temperature, 3 h; (b) BF₃·SMe₂, CH₂Cl₂, Et₃N, 0 °C to room temperature, overnight.

Scheme 3. Synthesis of phenylpiperazine-1-yl methanones 12–14 and 15a. Reagents and conditions: (a) Et₃N, CH₂Cl₂, room temperature, overnight; (b) BF₃·SMe₂, CH₂Cl₂, Et₃N, 0 °C to room temperature, overnight.

Table 1

Inhibitory	/ activities	toward 17	'β-HSD2 and	17β-HSD1	of com	pounds 7	7a and	1 - 8
------------	--------------	-----------	-------------	----------	--------	----------	--------	-------

Compd	R ¹	\mathbb{R}^2	$IC_{50}~(nM)^{a}$ or % Inh. at 1 μM^{a}		s.f. ^{e,f}
			17β-HSD2 ^b	17β-HSD1 ^{c,d}	
А	-	_	75% (300)	13,300	44
1	-H	-Me	59%	n.i.	n.d.
2	2-Me	-Me	55%	n.i.	n.d.
3	3-Me	-Me	300	16,100	54
4	4-Me	-Me	160	26,300	168
5	4-Cl	-OMe	51%	13%	n.d.
6	4-NO ₂	-OMe	43%	n.i.	n.d.
7a	4-OMe	-OMe	310	9600	31
7	4-0H	-OH	43%	n.i.	n.d.
8	-	-	290	60,100	209

^a Mean value of at least two determinations, standard deviation less than 20%.

^b Human placental, microsomal fraction, substrate E2[500 nM], cofactor NAD⁺[1500 μM].

^c Human placental, cytosolic fraction, substrate E1[500 nM], cofactor NADH[500 μM].

^d n.i.: no inhibition.

^e s.f.: selectivity factor.

^f n.d.: not determined.

The phenylpiperazin-1-yl methanones **12a–15a** and **12–14** (Table 3) displayed no or very low 17β -HSD2 inhibitory activity, indicating that the acyl group does not bring any advantage in comparison with the sulfonyl group.

Cell viability in HEK293 cells was determined for the best compounds **3**, **4**, **7a** and **8**, using a MTT assay according to a described procedure.¹¹The results are displayed in Figure 3. In comparison to compound **A** (LD₅₀ less than 6.25 μ M), all four compounds showed a better safety profile, with a LD₅₀ around 25 μ M for **3**, **4** and **7a** and above 12.5 μ M for compound **8**. Compound **4** displays improved 17 β -HSD2 inhibitory activity and much better selectivity against 17 β -HSD1 as well as significantly decrease in cytotoxicity, when compared to compound **A**. These results confirm compound **4** as new lead compound for inhibition of 17 β -HSD2.

3

4	. 4	
-	/1	
	_	

Table 2	
Inhibitory activities toward 178-HSD2 and 178-HSD1 of compounds 9a-11a and 9-1	1

Compd	R ¹	\mathbb{R}^2	% Inh. at 1 µMª	
			17β -HSD2 ^{b,c}	17β -HSD $1^{d,c}$
В	_		66%	22%
9a	3-Me	-OMe	16%	n.i.
9	3-Me	-OH	27%	n.i.
10a	3-OMe	-OMe	n.i	n.i.
10	3-0H	-OH	25%	n.i.
11a	4-F, 3-OMe	-OMe	15%	n.i.
11	4-F, 3-OH	-OH	48%	n.i.

^a Mean value of at least two determinations, standard deviation less than 20%.
^b Human placental, microsomal fraction, substrate E2[500 nM], cofactor NAD⁺[1500 μM].

^c n.i.: no inhibition.

 $^{\rm d}$ Human placental, cytosolic fraction, substrate E1[500 nM], cofactor NADH [500 μM].

Table 3

Inhibitory activities toward 17 $\beta\text{-HSD2}$ and 17 $\beta\text{-HSD1}$ of compounds 12a--15a and 12--14

Compd	\mathbb{R}^1	\mathbb{R}^2	% Inh. at 1 μM^a	
			17β -HSD2 ^{b,c}	17β -HSD $1^{d,c}$
12a	-H	-OMe	14%	n.i.
12	-H	-OH	27%	n.i.
13a	3-Me	-OMe	n.i	n.i.
13	3-Me	-OH	16%	n.i.
14a	4-Me	-OMe	16%	n.i.
14	4-Me	-OH	n.i.	n.i.
15a	3-OMe	-OMe	n.i.	n.i.

^a Mean value of at least two determinations, standard deviation less than 20%. ^b Human placental, microsomal fraction, substrate E2[500 nM], cofactor NAD⁺[1500 μ M].

^c n.i.: no inhibition.

 $^{\rm d}$ Human placental, cytosolic fraction, substrate E1[500 nM], cofactor NADH [500 $\mu\text{M}].$

Figure 3. Cytotoxicity of selected compounds is displayed in the order of increasing 17 β -HSD2 inhibitory activity. Incubation was carried out at the indicated inhibitor concentrations for 66 hours at 37 °C. 100%-values were determined without inhibitor.

Acknowledgments

We would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (Grants HA1315/12-1). Help in the synthesis of compounds by Matheus Pontiak and in performing the biological assays by Ms. Arcangela Mazzini and Dr. Chris Van Koppen is also greatly appreciated.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2015.11. 047. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- 1. Montes, Del Pino J. Rev. Osteoporos. Metab. Miner. 2010, 2, S8.
- Ettinger, B.; Black, B. H.; Mitlak, R. K.; Knickerbocker, T.; Nickelsen, H. K.; Genant, C.; Christiansen, P. D.; Delmas, J. R.; Zanchetta, J.; Stakkestad, C. C.; Glüer, K.; Kruger, F. J.; Cohen, S.; Eckert, K. E.; Ensrud, L. V.; Avioli, P.; Lips, S. R.; Cummings, J. J. Am. Med. Assoc. 1999, 282, 637.
- Marchais-Oberwinkler, S.; Kruchten, P.; Frotscher, M.; Ziegler, E.; Neugebauer, A.; Bhoga, U.; Bey, E.; Müller-Vieira, U.; Messinger, J.; Thole, H.; Hartmann, R. W. J. Med. Chem. 2008, 51, 4685.
- Bey, E.; Marchais-Oberwinkler, S.; Negri, M.; Kruchten, P.; Oster, A.; Klein, T.; Spadaro, A.; Werth, R.; Frotscher, M.; Birk, B.; Hartmann, R. W. J. Med. Chem. 2009, 52, 6724.
- Bey, E.; Marchais-Oberwinkler, S.; Kruchten, P.; Frotscher, M.; Werth, R.; Oster, A.; Algül, O.; Neugebauer, A.; Hartmann, R. W. *Bioorg. Med. Chem.* 2008, 16, 6423.
- Marchais-Oberwinkler, S.; Henn, C.; Möller, G.; Klein, T.; Negri, M.; Oster, A.; Spadaro, A.; Werth, R.; Wetzel, M.; Xu, K.; Frotscher, M.; Hartmann, R. W.; Adamski, J. J. Steroid Biochem. Mol. Biol. 2011, 125, 66.
- 7. Bodine, P. V. N.; Komm, B. S. Vitam. Horm. 2002, 64, 101.
- Vanderschueren, D.; Gayant, J.; Boonen, S.; Venken, K. Diabetes Obes. 2008, 15, 250.
- 9. Dong, Y.; Qiu, Q. Q.; Debear, J.; Lathrop, W. F.; Bertolini, D. R.; Tamburini, P. P. J. Bone Miner. Res. 1998, 13, 1539.
- Gargano, E. M.; Allegretta, G.; Perspicace, E.; Carotti, A.; Van Koppen, C.; Frotcher, M.; Marchais-Oberwinkler, S.; Hartmann, R. W. PLoS One 2015, 10, e0134754. http://dx.doi.org/10.1371/journal.pone.0134754.
- Kruchten, P.; Werth, R.; Bey, E.; Oster, A.; Marchais-Oberwinkler, S.; Frotscher, M.; Hartmann, R. W. J. Steroid Biochem. Mol. Biol. 2009, 114, 200.
- 12. http://www.epa.gov/chemfact/biphe-sd.pdf.
- 13. Johar, Z.; Zahn, A.; Leumann, C. J.; Jaun, B. Chemistry 2008, 14, 1080.
- 14. Perspicace, E.; Giorgio, A.; Carotti, A.; Marchais-Oberwinkler, S.; Hartmann, R. W. Eur, J. Med. Chem. 2013, 69, 201.
- Gargano, E. M.; Perspicace, E.; Hanke, N.; Carotti, A.; Marchais-Oberwinkler, S.; Hartmann, R. W. Eur. J. Med. Chem. 2014, 87, 203.
- Data for *N*-methyl-*N*-(*m*-tolyl)-4-(*p*-tolyloxy)benzamide (compound **4**): yellow oil; C₂₂H₂₁NO₂; ¹H NMR-300 MHz (acetone-*d*₆, *δ*, ppm) 2.25 (s, 3H), 2.30 (s, 3H), 3.39 (s, 3H), 6.71–6.76 (m, 2H), 6.84–6.92 (m, 3H), 6.98–7.01 (m, 2H), 7.12–7.20 (m, 3H), 7.27–7.32 (m, 2H); ¹³C NMR-75 MHz (acetone-*d*₆, *δ*, ppm) 20.8, 21.3, 38.6, 117.5, 120.4, 125.1, 127.9, 128.5, 129.8, 131.4, 131.7, 132.0, 134.5, 139.9, 146.5, 154.9, 159.8, 169.9; LRMS (*m*/*z*) calcd for C₂₂H₂₂NO₂ [M+H]⁺ 332.16, found 332.18.
- 17. Data for 4-(4-chlorophenyl)-*N*-(3-methoxyphenyl)-*N*-methylcyclohexane-1-carboxamide (compound **8**): yellow solid; m.p. = 108–109 °C; $C_{21}H_{24}CINO_2$. ¹H NMR-500 MHz (acetone- d_6 , δ , ppm) 1.18–1.25 (m, 2H), 1.62–1.71 (m, 2H), 1.77–1.82 (m, 4H), 2.38 (br s, 1H), 2.48–2.54 (m, 1H), 3.18 (s, 3H), 3.84 (s, 3H), 6.89–6.97 (m, 2H), 6.96–6.98 (m, 1H), 7.17 (d, *J* = 9 Hz, 2H), 7.32–7.25 (m, 2H), 7.39 (t, *J* = 8 Hz, 1H); ¹³C NMR-125 MHz (acetone- d_6 , δ , ppm) 30.5, 34.0, 37.4, 41.4, 43.9, 55.9, 114.0, 114.2, 120.4, 129.1, 129.4, 131.3, 131.9, 146.8, 147.1, 161.7, 175.5; LRMS (*m*/*z*) calcd for $C_{21}H_{25}CINO_2$ [M+H]* 358.16, found 358.21.
- 18. Data for 1-((3-methoxyphenyl)sulfonyl)-4-(m-tolyl)piperazine (compound **9a**): white solid; m.p. = 129–130 °C; $C_{18}H_{22}N_2O_3S$; ¹H NMR-300 MHz (acetone- d_6 , δ , ppm) 2.24 (s, 3H), 3.11–3.14 (m, 4H), 3.22–3.25 (m, 4H), 3.91 (s, 3H), 6.63–6.66 (m, 1H), 6.70–6.76 (m, 2H), 7.08 (t, J = 8 Hz, 1H), 7.25–7.30 (m, 2H), 7.36–7.40 (m, 1H), 7.58 (t, J = 8 Hz, 1H); ¹³C NMR-75 MHz 21.7, 47.1, 49.7, 56.1, 113.7, 114.6, 118.2, 119.7, 120.7, 121.8, 129.7, 131.2, 137.9, 139.3, 151.9, 161.0; LRMS (m/z) calcd for $C_{18}H_{23}N_2O_3S$ [M+H]* 346.14, found 346.89.
- 19. Data for (3-hydroxyphenyl)(4-phenylpiperazin-1-yl)methanone (compound **12**): white solid; m.p. = 174–175 °C; $C_{17}H_{18}N_2O_2$; ¹H NMR-300 MHz (acetone- d_6 , δ , ppm) 4.00–4.14 (m, 8H), 6.94–6.97 (m, 1H), 6.95–7.02 (m, 3H), 7.30 (t, *J* = 8 Hz, 1H), 7.56–7.68 (m, 3H), 7.83–7.86 (m, 1H), 8.64 (br s, 1H); ¹³C NMR-75 MHz (acetone- d_6 , δ , ppm) 56.5, 115.1, 118.0, 119.1, 122.0, 130.6, 131.0, 131.4, 137.1, 142.9, 158.4, 170.4; LRMS (*m*/*z*) calcd for $C_{17}H_{19}N_2O_2$ [M +H]⁺ 283.14, found 283.20.
- Kruchten, P.; Werth, S.; Marchais-Oberwinkler, S.; Frotscher, M.; Hartmann, R. W. Mol. Cell. Endocrinol. 2009, 301, 154.