Reactions of 6-Acetyl-4-methyl-5-(1-pyrrolyl)-2-phenylthieno-[2,3-*d*]pyrimidine in Heterocyclic Synthesis: Convenient Route to Some Schiff's Bases, Chalcones, Pyridines, Pyridin-2(1H)-ones and 2H-Pyran-2-one Derivatives Incorporating a 5-(1-Pyrrolyl)-2-phenylthieno[2,3-*d*]pyrimidine Moiety

Yuh-Wen Ho^a* (何玉文) and Wei-Hua Yao^b (姚薇華) ^aDepartment of Textile Science, Nanya Institute of Technology, Chung-Li 32034, Taiwan, R.O.C. ^bDepartment of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao 22064, Taiwan, R.O.C.

Treatment of 6-acetyl-5-amino-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **3** with 2,5-dimethoxytetrahydrofuran afforded the 6-acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **4**, which can react with appropriate primary amines **5a-f** to yield the corresponding Schiff's base derivatives **6a-f**. The reaction of acetyl compound **4** with appropriate arylaldehydes **14a-k** and arylmethylidenemalononitriles **18a-f** afforded the corresponding 6-(3-substituted-acryloyl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidines **15a-k** and 6-[3-cyano-2-ethoxy-4-(4-substituted-phenyl)-pyridin-6-yl]-5-(1-pyrrolyl)-4-methyl-2phenyl-thieno[2,3-*d*]pyrimidines **21a-f** under basic conditions, respectively. On the other hand, the 6-(3cyano-1,2-dihydro-4-substituted-2-oxopyridin-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidines **26a,b** and 6-(3-substituted-amido-4-substituted-pyran-2-on-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidines **30a-c** were obtained by intramolecular cyclization of 6-(3-dimethylamino-3substituted-acryloyl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidines **23a,b** with cyanoacetamide **24** and N-acylglycines **27a,b**, respectively.

Keywords: 6-Acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine; Schiff's bases; Chalcones; Pyridines; Pyridin-2(1H)-ones; 2H-Pyran-2-one derivatives.

INTRODUCTION

Thienopyrimidines have been the subject of many chemical and biological studies on account of their interesting pharmacological properties.¹⁻⁸ A number of syntheses for substituted derivatives of this thienopyrimidine ring system, featuring a variety of pharmacological effects, have been developed. On the other hand, several series of heterocyclic compounds possessing a bridgehead pyrrolic moiety play a vital role in many biological activities.9-13 Likewise, the pyrrolothione derivatives also possess a variety of pharmacological activities.¹⁴⁻¹⁶ In view of these it was considered of interest to synthesize some new heterocycles containing the pyrrolothienopyrimidine moiety in the hope that they may be biologically active. In a preceding paper¹⁷ we have described the synthesis of some new pyrimido[2,3:4,3]pyrazolo[1,5a]pyrimidines from 5-cyano-1,6-dihydro-4-methyl-2-phenyl-6-thioxopyrimidine 1. In continuation of our studies, we report herein the use of 6-acetyl-5-(1-pyrrolyl)-4-methyl-2phenylthieno[2,3-d]pyrimidine 4 for the synthesis of various Schiff's bases, chalcones, pyridines, pyridin-2(1H)-ones and 2H-pyran-2-one derivatives incorporating a 5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine moiety.

RESULTS AND DISCUSSION

All relevant reactions are depicted in Schemes I-III. The reaction of 5-cyano-1,6-dihydro-4-methyl-2-phenyl-6thioxopyrimidine **1** with chloroacetone **2** in DMF in the presence of excess anhydrous potassium carbonate at room temperature gave the 6-acetyl-5-amino-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **3**¹⁸ (Scheme I). Treatment of compound **3** with 2,5-dimethoxytetrahydrofuran in glacial acetic acid produced the 6-acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **4**,¹⁹ which reaction with appropriate primary amines **5a-d**, **5f** in pyridine and hydrazine hydrate **5e** to afford the corresponding Schiff's bases **6a-e** and/or oxime derivatives **6f**, respectively (Scheme I). The IR spectra of compound **4** indicated the absence of the NH₂

Ho and Yao

Scheme I

group. The ¹H NMR spectra (CDCl₃) of compound **4** revealed two triplets at δ 6.50 (2H, t) and 6.87 (2H, t), which were readily assigned to the hydrogen attached at C₃, C₄ and C₂, C₅ of the pyrrolyl ring,²⁰⁻²¹ respectively. The structures of **6a-f** were established on the basis of their elemental analysis and spectral data. The IR spectra of **6a-f** indicated the absence of the C=O group absorption band, indicating the formation Schiff's base derivatives **6a-f**. Under similar reaction conditions, reaction of compound **4** with aniline **5g** did not produce the desired compound **7**, but led only to the recovery of starting material. Moreover, acetylation of oxime derivative **6f** with acetic anhydride in the presence of pyridine afforded acetoxy derivative **8**. Our attempts to cyclize **6f** in DMF to the compound **9** was unsuccessful.

Furthermore, condensation of compound **4** with malononitrile in glacial acetic acid containing ammonium acetate afforded the 6-(2,2-dicyano-1-methylvinyl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **10**, which Heterogeneous Reactions of [2,3-d]pyrimidine

Scheme II

then reacted with N,N-dimethylaminobenzaldehyde in DMF in the presence of a catalytic amount of piperidine at 100 °C for 10 h yielded the 6-(2-cyano-5-(4-dimethylaminophenyl)-2,4-pentadienenitrile)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **11** (Scheme II). The IR spectra of compounds **10** and **11** indicated the absence of the C=O group absorption band and showed the characteristic absorption bands at 2220-2202 cm⁻¹ for the C=N group. The ¹H NMR spectra (CDCl₃) of compound **11** revealed a sharp singlet at δ 3.09 (6H, s) assigned to the N(CH₃)₂ protons and at δ 6.70 (1H, d) and 7.74 (1H, d) assigned to the -CH=CH- of pentadienonitrile moiety, and a multiplet at δ 8.57-7.51 (9H, m) assigned to the phenyl protons. Attempted cyclization of **4** with ethyl benzylidinecyanoacetate **12** in glacial acetic acid to the compound **13** was unsuccessful and the starting material was recovered.²²⁻²³ In addition, the 6-(3-substituted-acryloyl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidines **15a-k**²⁴ were obtained in good yields by condensation of compound **4** with appropriate aldehydes **14a-k**. The structures of chalcones **15a-k** were established by examining

Scheme III

spectral data and elemental analysis. The IR spectrum of compounds **15a-k** indicated the characteristic absorption bands at 1688-1628 cm⁻¹ for the CO group. The ¹H NMR

spectrum (CDCl₃) of compounds **15a-k** showed signals at δ 5.88-5.47 (1H, d) and 8.15-7.74 (1H, d), which were assigned to the protons -CH=CH- of propenyl moiety, respectively.

Moreover, attempted preparation of compound 17 via condensation of compound 4 with pyrazole 16 also failed.²⁵⁻²⁶

On the other hand, the reaction of compound 4 with arylmethylidene-malononitriles 18a-f were also investigated. Thus, the reaction of compound 4 with benzylidinemalononitrile 18a in refluxing ethanol in the presence of an equimolar amount of sodium ethoxide afforded a product of molecular formula C₃₁H₂₃N₅OS (86% yield, mp 149 °C). Spectroscopic analyses revealed that 6-(3-cyano-2-ethoxy-4phenyl-pyridyl-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-d]pyrimidine 21a was obtained (Scheme III). The IR spectrum of the reaction product showed the characteristic absorption band at 2225 cm⁻¹ for the C=N group. The ¹H NMR spectrum (CDCl₃) of the reaction product, which showed a triplet at δ 1.56 (3H, t) and a quartet at δ 4.64 (2H, q) assigned to the ethoxy group (OCH₂CH₃), a single at δ 7.41 (1H, s) assigned to the proton at the 5-position of the pyridine ring and a multiplet at δ 8.63-7.47 (10H, m) assigned to the phenyl protons, was also confirmed by the mass spectrum m/z513 (M⁺ 100). The mass fragmentation pattern of compound **21a** showed the presence of the ion peaks $[M-CH_3]^+$ at m/z498, $[M-CH_2CH_3]^+$ at m/z 484 and $[M-OCH_2CH_3]^+$ at m/z468. The formation of 21a from the reaction of 4 with 18a is assumed to proceed via initial addition of the methyl anionic center of the acetyl group in 4 to the activated double bond in 18a to yield the non-isolable intermediate Michael adduct 19 then reacts with ethoxide to form the intermediate 20,²⁷⁻²⁸ which then undergoes intramolecular cyclization via loss of water afforded the final product 21a. Under similar reaction conditions, treatment of compound 4 with arylmethylidenemalononitriles 18b-f afforded the corresponding 6-(3-cyano-2-ethoxy-4-(4-substituted-phenyl)-pyridin-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-d]pyrimidines 21b-f, respectively in good yields (Scheme III).

Next, reaction of compound **4** with dimethylformamide dimethylacetal **22a** and N,N-dimethylacetamide dimethylacetal **22b** in refluxing xylene afforded the corresponding 6-(3-substituted-3-dimethylamino-acryloyl)-5-(1-pyrrolyl)-4-methyl-2-phenylthienenylthieno[2,3-*d*]pyrimidines **23a,b**, respectively. (Scheme III). The IR spectrum of compounds **23a,b** indicated the characteristic absorption bands at 1628-1626 cm⁻¹ for the CO group. The ¹H NMR spectra (CDCl₃) of compounds **23a,b** revealed two sharp singlets at δ 2.58 (3H, s) and 3.08-2.71 (3H, s), which were assigned to the N(CH₃)₂ protons. In addition, the ¹H NMR spectra (CDCl₃) of compound **23a** revealed signals at δ 4.41 (1H, d) and 7.15 (1H, d), which were assigned to the protons -CH=CH- of acryloyl moiety, respectively. Moreover, the ¹H NMR spectrum of compound **23b** showed signals at δ 2.07 (3H, s) and 4.77 (1H, s), which were readily assigned to the 3-CH₃ protons and 2-H of acryloyl moiety, respectively. The study was extended to investigate the behavior of enaminone derivatives 23a,b. Intramolecular cyclization of enaminone derivatives 23a,b gave different products depending on reaction conditions. Thus, treatment of enaminone derivatives 23a,b with cyanoacteamide 24 in sodium ethoxide solution afforded the corresponding 6-(3-cyano-1,2-dihydro-4-substituted-2-oxopyridyl-6-yl)-5-(1-pyrrol-yl)-4-methyl-2-phenylthieno[2,3-d]pyrimidines **26a,b**,²⁹ respectively (Scheme III). We propose that the first step of the mechanism involves via initial addition of the active methylene in 24 to the activated double bond in 23a,b to yield the non-isolable intermediate 25, followed by deamination, and subsequent cyclization with loss of water to afford the final products 26a,b. The structures of compounds 26a,b were confirmed on the basis of their elemental analysis and spectral data. The IR spectra of compounds 26a,b showed the characteristic absorption band at $3234-3122 \text{ cm}^{-1}$ for the NH group, at 2217-2193 cm⁻¹ for the $C \equiv N$ group and at 1720-1711 cm⁻¹ for the C=O group. Moreover, the ¹H NMR spectrum (DMSO-d₆) of compound **26a** revealed signals at δ 7.06 (1H, d) and 8.02 (1H, d), which were assigned to the 5-H and 4-H of the pyridone ring, respectively, was also confirmed by the mass spectrum m/z 409 (M⁺ 100). The mass fragmentation pattern of compound 26a showed the presence of a prominent ion peak $[M-CN]^+$ at m/z383. Also, the ¹H NMR spectrum of compound **26b** showed signals at δ 2.13 (3H, s) and 7.87 (1H, s), which were readily assigned to the 4-CH₃ protons and 5-H of the pyridone ring, respectively.

On the other hand, the reactivity of thienopyrimidines 23a,b towards N-acylglycines 27a,b was also investigated. Thus, treatment of compound 23a with N-acetylglycine 27a in refluxing acetic anhydride afforded a product of molecular formula $C_{24}H_{18}N_4O_3S$ (43% yield, mp 243 °C). Spectroscopic analyses revealed that the corresponding 6-(3-acetamidopyran-2-on-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenyl-thieno-[2,3-d]pyrimidine 30a was obtained (Scheme III). The IR spectra of compound 30a revealed characteristic absorption bands at 3266 cm⁻¹ and 1728 cm⁻¹ due to NH group and carbonyl group, respectively. In addition, the structure of compound **30a** was supported by the ¹H NMR spectra, which revealed two doublets at δ 6.87 (1H, d) and 8.10 (1H, d) assigned to the 5-H and 4-H of oxopyran ring, respectively, a singlet at 2.21 (3H, s) assigned to the CH₃ protons of the acetamido group and a broad singlet at δ 8.02 (1H, br) assigned to the NH proton, was also confirmed by the mass

spectra m/z 442 (M⁺). The mass fragmentation pattern of compound 30a showed the presence of the ion peaks [M- CH_3]⁺ at m/z 427, [M-COCH₃]⁺ at m/z 399 and [M-NHCOCH₃]⁺ at m/z 384. The formation of compound **30a** from the reaction of 23a with 27a is assumed that N-acetylglycine generated in situ is cyclised into oxazolone 27a²⁹ which then reacts with thienopyrimidine 23a via initial addition of the active methylene in 27a' to the activated double bond in 23a to yield the intermediate 29. The latter can then rearrange into an insoluble product 30a via an attack of carbonyl on the oxazolone ring²⁹ (Scheme III). Under similar reaction conditions, treatment of compound 23a,b with hippuric acid 27b affords the corresponding 6-(3-benzoylamino-4-substituted-pyran-2on-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenyl-thieno[2,3-d]pyrimidines 30b,c, respectively. The formation of compounds 30a-c from thienopyrimidines 23a,b with either N-acetyl glycine or hippuric acid can thus be considered as an extension of the Kepe pyranone synthesis.³⁰⁻³²

In conclusion, 6-acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **4** has been shown to be a useful building block for the synthesis of some new Schiff's bases **6a-f**, chalcones **15a-k**, pyridines **21a-f**, pyridin-2(1H)-ones **26a,b** and 2H-pyran-2-one derivatives **30a-c**.

EXPERIMENTAL SECTION

All melting points were determined in a capillary tube and are uncorrected. The IR spectra were recorded on potassium bromide pellets on a JASCO FTIR-3 spectrometer. The ¹H NMR spectra were obtained on a Bruker AM-300WB FT-NMR spectrometer and chemical shifts are expressed in δ ppm using TMS as an internal standard. Electron impact mass spectra were obtained at 70 eV by using a Finnigan Mat TSQ-46C spectrometer. Microanalyses for C, H, and N were performed on a Perkin-Elmer 240 elemental analyzer. 6-Acetyl-5-amino-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **3**, 6-acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*] pyrimidine **4** and 6-(3-substituted-acryloyl)-5-(1-pyrrolyl)-4-methyl-2-phenyl-thieno[2,3-*d*]pyrimidines **15a-k** were prepared following the methods in the literature,^{18-19,24} respectively.

6-Acetyl-5-amino-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (3)

To a solution of 5-cyano-1,6-dihydro-4-methyl-2-phenyl-6-thioxopyrimidine **1** (2.27 g, 0.01 mol) in DMF (50 mL), potassium carbonate anhydrous (2.76 g, 0.02 mol) and chloroacetone **2** (0.93 g, 0.01 mol) were added. The reaction mixture was stirred at room temperature for 4 h and then diluted with cold water (50 mL). The resulting solid product was collected by filtration, washed with water and recrystallized from ethyl acetate/ethanol to give 2.66 g of yellow needles (94% yield), mp 210 °C; IR: v 3424, 3295 (NH₂), 1663 (CO) cm⁻¹; ¹H NMR (CDCl₃): δ 2.47 (3H, s, COCH₃), 3.07 (3H, s, CH₃), 3.76 (2H, br, NH₂), 8.58-8.55, 7.60-7.55 (5H, m, phenyl-H); MS: 283 (M⁺, 100), 268 (95), 240 (20), 212 (2), 165 (5), 160 (10), 137 (34), 110 (18), 77 (9). Anal. Calcd. for C₁₅H₁₃N₃OS: C, 63.60; H, 4.59; N, 14.84. Found: C, 63.63; H, 4.50; N, 14.77%.

6-Acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (4)

A mixture of 6-acetyl-5-amino-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine **3** (2.83 g, 0.01 mol), 2,5-dimethoxytetrahydrofuran (1.26 g, 0.01 mol), in glacial acetic acid (20 mL) was refluxed for 12 h. After cooling, the resulting solid product was collected by filtration, washed with water, and the crude product recrystallized from ethanol/glacial acetic acid to give 2.96 g of gray white needles (89% yield), mp 204 °C; IR: v 1660 (CO) cm⁻¹; ¹H NMR (CDCl₃): δ 2.09 (3H, s, COCH₃), 2.20 (3H, s, CH₃), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.87 (2H, t, 2,5-H of pyrrolyl), 8.56-8.54, 7.51-7.49 (5H, m, phenyl-H); MS: 333 (M⁺, 100), 318 (35), 290 (36), 277 (4), 223 (4), 185 (8), 166 (10), 160 (14), 116 (10), 103 (20), 77 (19), 51 (5). Anal. Calcd. for C₁₉H₁₅N₃OS: C, 68.46; H, 4.50; N, 12.61. Found: C, 68.33; H, 4.52; N, 12.59%.

Reactions of 6-acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine 4 with the primary amines 5a-d, 5f

General Procedure: A mixture of acetyl compound 4 (0.33 g, 1 mmol) and the primary amines **5a-d**, **5f** (1.1 mmol), namely, methylamine, ethylamine, propylamine butylamine and hydroxylamine hydrochloride, in pyridine (5 mL), was refluxed for 10 h, and cooled. The separated solid was filtered and recrystallized from an appropriate solvent into the corresponding Schiff's bases **6a-d**, **6f** respectively. The physical constants and spectral data of compounds **6a-d**, **6f** are recorded in Tables 1, 2.

Reactions of 6-acetyl-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine 4 with the hydrazine hydrate 5e

A mixture of acetyl compound **4** (0.33 g, 1 mmol) and an excess of hydrazine hydrate **5e** (4 mL, 85% solution 0.04 mol) was refluxed in absolute ethanol (10 mL) for 24 h. After

Compound	R	Yield %	Mp °C	Molecular Formula -	Element Analysis (%) Calcd/Found		
		(recrystallization solvent)			С	Н	Ν
6a	CH ₃	97	179	$C_{20}H_{18}N_4S$	69.36	5.20	16.18
		pyridine/DMF			69.46	5.55	16.22
6b	C_2H_5	93	220	$C_{21}H_{20}N_4S$	70.00	5.55	15.55
		pyridine/DMF			70.16	5.58	15.32
6c	C_3H_7	64	192	$C_{22}H_{22}N_4S$	70.58	5.88	14.97
		pyridine/DMF			70.56	5.78	15.01
6d	C_4H_9	77	198	$C_{23}H_{24}N_4S$	71.13	6.18	14.43
		pyridine/DMF			71.12	6.36	14.44
6e	NH_2	78	164	C19H17N5S	65.70	4.89	20.17
	-	DMF/ethanol			65.52	4.91	20.30
6f	OH	98	264	$C_{19}H_{16}N_4OS$	65.51	4.59	16.09
		DMF/H ₂ O			65.48	4.52	16.22

Table 1. Physical and analytical data of compounds 6a-f

Table 2. Spectral data of compounds 6a-f

Compound	MS (M ⁺)	¹ H NMR (CDCl ₃) δ (ppm)
6a	346 (36), 333 (100), 318 (35), 290 (44), 277 (4), 228 (30), 187 (14), 160 (14), 116 (8), 103 (20), 77 (18), 56 (29),	1.66 (3H, s, CH ₃), 2.07 (3H, s, CH ₃), 2.20 (3H, s, CH ₃), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.87 (2H, t, 2,5-H of pyrrolyl), 8.56-8.53, 7.52-7.48 (5H, m, phenyl-H).
6b	360 (52), 333 (100), 318 (41), 301 (50), 290 (8), 277 (4), 228 (20), 199 (14), 160 (8), 116 (8), 103 (18), 77 (19), 68 (22).	1.31 (3H, t, <i>J</i> = 1.5 Hz, CH ₃), 1.65 (3H, s, CH ₃), 2.06 (3H, s, CH ₃), 3.49 (2H, q, <i>J</i> = 1.5 Hz, CH ₂), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.88 (2H, t, 2,5-H of pyrrolyl), 8.56-8.53, 7.51-7.48 (5H, m, phenyl-H).
6с	374 (100), 359 (38), 345 (52), 332 (85), 318 (82), 302 (98), 290 (22), 275 (25), 251 (39), 213 (38), 172 (28), 116 (22), 103 (54), 77 (50), 68 (36), 52 (20)	1.02 (3H, t, <i>J</i> = 1.5 Hz, CH ₃), 1.65 (3H, s, CH ₃), 1.78-1.71 (2H, m, CH ₂), 2.15 (3H, s, CH ₃), 3.40 (2H, t, <i>J</i> = 1.4 Hz, CH ₂), 6.42 (2H, t, 3,4-H of pyrrolyl), 6.83 (2H, t, 2,5-H of pyrrolyl), 8.54-8.52, 7.52-7.47 (5H, m, phenyl-H).
6d	388 (98), 373 (60), 359 (24), 345 (48), 332 (78), 318 (74), 302 (100), 290 (18), 275 (24), 251 (36), 213 (34), 172 (24), 128 (16), 116 (18), 103 (50), 77 (44), 56 (43).	0.98 (3H, t, <i>J</i> = 2.1 Hz, CH ₃), 1.50-1.42 (2H, m, CH ₂), 1.65 (3H, s, CH ₃), 1.73-1.68 (2H, m, CH ₂), 2.14 (3H, s, CH ₃), 3.44 (2H, t, <i>J</i> = 1.4 Hz, CH ₂), 6.42 (2H, t, 3,4-H of pyrrolyl), 6.83 (2H, t, 2,5-H of pyrrolyl), 8.54-8.51, 7.48-7.47 (5H, m, phenyl-H).
бе	347 (28), 331 (100), 316 (10), 290 (18), 282 (30), 253 (8), 228 (16), 213 (6), 165 (4), 122 (3), 103 (21), 77 (16), 56 (6)	1.76 (3H, s, CH ₃), 2.09 (3H, s, CH ₃), 6.53 (2H, t, 3,4-H of pyrrolyl), 6.84 (2H, t, 2,5-H of pyrrolyl), 8.27-8.14, 7.72-7.58 (5H, m, phenyl-H). ^a
6f	348 (6), 331 (100), 317 (4), 290 (4), 239 (4), 228 (16), 213 (8), 165 (4), 103 (21), 77 (16), 56 (3).	1.65 (3H, s, CH ₃), 2.08 (3H, s, CH ₃), 6.35 (2H, t, 3,4-H of pyrrolyl), 7.09 (2H, t, 2,5-H of pyrrolyl), 8.46-8.44, 7.55-7.52 (5H, m, phenyl-H), 12.12 (1H, s, OH). ^b

^{a 1}H NMR in CF₃COOD ^{b 1}H NMR in DMSO-d₆

cooling, the resulting solid product was collected by filtration and washed with water. The physical constants and spectral data of compound **6e** is recorded in Tables 1, 2.

Reaction of oxime derivative 6f with acetic anhydride

A mixture of oxime derivative **6f** (0.35 g, 1 mmol), pyridine (10 mL) and acetic anhydride (10 mL) was refluxed for 4 h. After cooling, the resulting solid product was collected by filtration, washed with water. and recrystallized from acetic acid/ethanol to give 0.25 g of gray white needles **8** (64% yield), mp 225 °C; IR: v 1701 (CO) cm⁻¹; ¹H NMR (CDCl₃): δ 1.84 (3H, s, CH₃), 2.22 (3H, s, COCH₃), 2.27 (3H, s, CH₃), 6.44 (2H, br, 3,4-H of pyrrolyl), 6.82 (2H, br, 2,5-H of pyrrolyl), 8.55, 7.51-7.50 (5H, m, phenyl-H); MS: 390 (M⁺, 23), 347 (2), 331 (80), 317 (9), 302 (10), 290 (4), 264 (3), 225 (40), 185 (8), 213 (45), 199 (38), 165 (31), 116 (38), 104 (70), 77 (100), 51 (38). Anal. Calcd. for C₂₁H₁₈N₄O₂S: C, 64.61; H, 4.61; N, 14.35. Found: C, 64.56; H, 4.72; N, 14.32%.

6-(2,2-Dicyano-1-methylvinyl)-5-(1-pyrrolyl)-4-methyl-2phenylthieno[2,3-*d*]pyrimidine (10)

A mixture of compound **4** (0.33 g, 1 mmol), malononitrile (0.07 g, 1 mmol) and ammonium acetate (0.82 g, 1.1 mmol) was refluxed in glacial acid (8 mL) for 5-6 h. After cooling, the resulting solid product was collected by filtration, washed with water, and the crude product recrystallized from ethanol/acetic acid to give 0.25 g (66% yield), mp 173 °C; IR: v 2220, 2200 (CN) cm⁻¹; ¹H NMR (CDCl₃): δ 2.08 (3H, s, CH₃), 2.21 (3H, s, CH₃), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.87 (2H, t, 2,5-H of pyrrolyl), 8.57-8.55, 7.52-7.50 (5H, m, phenyl-H); MS: 381 (M⁺, 15), 355 (20), 333 (100), 317 (26), 302 (2), 290 (19), 264 (4), 237 (4), 229 (7), 186 (10), 160 (14), 116 (8), 103 (44), 77 (38), 51 (9). Anal. Calcd. for C₂₂H₁₅N₅S: C, 69.29; H, 3.93; N, 18.37. Found: C, 69.33; H, 3.72; N, 18.32%.

6-[2-Cyano-5-(4-dimethylaminophenyl)-2,4-pentadienenitrile)]-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (11)

To a mixture of compound **10** (0.25 g, 0.65 mmol) and 4-(dimethylamino)benzaldehyde (0.10 g, 0.65 mmol) in dry DMF (5 mL), a few drops of piperidine was added. The reaction mixture was heated at 100 °C for 10 h. After cooling, the mixture was poured into water, acidified with hydrochloric acid, and the precipitated product was collected by filtration, washed with water, and the crude product recrystallized from ethanol/THF to give 0.30 g of red violet needles **11** (90%

yield), mp 138 °C; IR: v 2202 (CN) cm⁻¹; ¹H NMR (CDCl₃): δ 2.08 (3H, s, CH₃), 3.09 (6H, s, N(CH₃)₂), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.88 (2H, t, 2,5-H of pyrrolyl), 6.70 (1H, d, *J* = 2.0 Hz, -CH=), 7.74 (1H, d, *J* = 2.0 Hz, =CH-), 8.57-8.55, 7.52-7.51 (9H, m, phenyl-H); MS: 512 (M⁺,10), 464 (100), 421 (8), 397 (2), 332 (52), 318 (18), 290 (14), 232 (5), 146 (10), 134 (46), 78 (17). Anal. Calcd. for C₃₁H₂₄N₆S: C, 72.65; H, 4.68; N, 16.40. Found: C, 72.49; H, 4.60; N, 16.48%.

General procedure of 6-(3-substituted-acryloyl)-5-(1pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidines (15a-k)

A mixture of compound 4 (0.33 g, 1 mmol), appropriate aldehydes **14a-k** (1.0 mmol) and NaOH (2.2 mmol) in absolute ethanol (10 mL) was stirred at room temperature for 24 h. The mixture was acidified with dilute acetic acid and the precipitated product was collected by filtration, washed with water, and the crude product recrystallized from THF/ethanol. The physical constants and spectral data of compounds **15a-k** are recorded in Tables 3, 4.

General procedure of 6-[3-cyano-2-ethoxy-4-(4-substituted-phenyl)-pyridin-6-yl]-5-(1-pyrrolyl)-4-methyl-2phenylthieno[2,3-*d*]pyrimidines (21a-f)

A mixture of compound 4 (0.33 g, 1 mmol), arylmethylidenemalononitrile 18a-f (1 mmol) and sodium ethoxide (0.07 g, 1 mmol) was refluxed in absolute ethanol (10 mL) for 10 h. After cooling, the mixture was poured into water, acidified with hydrochloric acid, and the precipitated product was collected by filtration, washed with water, and the crude product recrystallized from THF/ethanol. The physical constants and spectral data of compounds 21a-f are recorded in Tables 5, 6.

6-(3-Dimethylamino-acryloyl)-5-(1-pyrrolyl)-4-methyl-2phenylthieno[2,3-*d*]pyrimidine (23a)

To a solution of compound **4** (3.3 g, 0.01 mol) in dry xylene (40 mL), dimethylformamide dimethylacetal **22a** (1.20 g, 0.01 mol) was added. The reaction was heated under reflux for 6 h. The solvent was removed by evaporation under reduced pressure and the remainder was left to cool. The solid product so formed was collected by filtration, washed with petroleum ether (bp 40-60 °C), and the crude product was recrystallized from ethanol to give 3.22 g (83% yield) of **23a**, mp 212 °C; IR: v 1628 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.23 (3H, s, CH₃), 2.58 (3H, s, NCH₃), 3.08 (3H, s, NCH₃), 4.41 (1H, d, *J* = 2.3 Hz, -COCH=), 6.50-6.43 (2H, m, 3,4-H of pyrrolyl), 6.87 (2H, t, 2,5-H of pyrrolyl), 7.75 (1H, d, *J* = 2.4

Compd.	R	Yield	Mp	Molecular	Element Analysis (%) Calcd/Found		
		%	·C	Formula	С	Н	Ν
15a	phenyl	93	169	C26H19N3OS	74.10	4.51	9.97
					74.18	4.55	10.09
15b	$4-CH_3C_6H_4$	96	165	$C_{27}H_{21}N_3OS$	74.48	4.82	9.65
					74.16	4.58	9.66
15c	$4-CH_3OC_6H_4$	95	245	$C_{27}H_{21}N_3O_2S$	71.84	4.65	9.31
					71.56	4.78	9.33
15d	$(CH_3)_2NC_6H_4$	87	263	$C_{28}H_{24}N_4OS$	72.41	5.17	12.06
					72.12	5.36	12.14
15e	$(C_2H_5)_2NC_6H_4$	93	229	$C_{30}H_{28}N_4OS$	73.17	5.69	11.38
					73.11	5.74	11.30
15f	furyl	92	130	$C_{24}H_{17}N_3O_2S$	70.07	4.13	10.21
					70.11	4.21	10.30
15g	thienyl	98	262	$C_{24}H_{17}N_3OS_2$	67.44	3.98	9.83
					67.35	4.01	9.88
15h	$2,4,6-(CH_3)_3C_6H_2$	93	152	$C_{29}H_{25}N_3OS$	75.16	5.39	9.07
					75.22	5.45	9.08
15i	biphenyl	95	148	$C_{32}H_{23}N_3OS$	77.26	4.62	8.45
					77.22	4.65	8.56
15j	$(C_6H_5)_2NC_6H_4$	94	286	$C_{38}H_{28}N_4OS$	77.55	4.76	9.52
					77.48	4.52	9.22
15k	pyrenyl	95	278	$C_{36}H_{23}N_3OS$	79.26	4.22	7.70
					79.33	4.62	7.79

Table 3. Physical and analytical data of compounds 15a-k

$$\begin{split} &Hz,=CH-), 8.56-8.53, 7.51-7.49~(5H,m,phenyl-H); MS: 388\\ (M^{+}, 30), 371~(19), 357~(10), 344~(10), 322~(11), 289~(22), 274\\ (12), 239~(5), 187~(4), 160~(8), 142~(8), 116~(8), 104~(18), 98\\ (100), 77~(22), 55~(28). Anal. Calcd. for C_{22}H_{20}N_4OS: C, 68.04; H, 5.15; N, 14.43. Found: C, 68.23; H, 5.23; N, 14.49\%. \end{split}$$

6-(3-Dimethylamino-3-methyl-acryloyl)-5-(1-pyrrolyl)-4methyl-2-phenyl-thieno[2,3-*d*]pyrimidine (23b)

This compound was synthesized from compound **4** (3.3 g, 0.01 mol) and N,N-dimethylacetamide dimethylacetal **22b** (1.34 g, 0.01 mol) in a manner similar to that described for the preparation of **23a**. It was recrystallized from ethanol/THF to give 3.09 g (77% yield), mp 260 °C; IR: v 1626 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.07 (3H, s, CH₃), 2.20 (3H, s, CH₃), 2.58 (3H, s, NCH₃), 2.71 (3H, s, NCH₃), 4.77 (1H, s, -COCH=), 6.50-6.40 (2H, m, 3,4-H of pyrrolyl), 6.88-6.83 (2H, m, 2,5-H of pyrrolyl), 8.56-8.52, 7.52-7.47 (5H, m, phenyl-H); MS: 402 (M⁺, 18), 369 (9), 331 (22), 304 (17), 289 (12), 239 (5), 187 (6), 160 (8), 116 (4), 111 (18), 70 (18), 56 (25). Anal. Calcd. for C₂₃H₂₂N₄OS: C, 68.65; H, 5.47; N, 13.93. Found: C, 68.53; H, 5.33; N, 14.01%.

6-(3-Cyano-1,2-dihydro-2-oxopyridin-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (26a)

A mixture of compound 23a (0.39 g, 1 mmol), cyanoacetamide 24 (0.084 g, 1 mmol) and sodium ethoxide (0.14 g, 2.0 mmol) was refluxed in absolute ethanol (10 mL) for 10 h. After cooling, the mixture was poured into water, acidified with hydrochloric acid, and the precipitated product was collected by filtration, washed with water, and the crude product recrystallized from ethanol to give 0.4 g (98% yield) of 26a, mp 245 °C; IR: v 3243 (NH), 2193 (C≡N), 1720 (C=O) cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.06 (3H, s, CH₃), 6.50-6.48 (2H, m, 3,4-H of pyrrolyl), 6.97 (2H, m, 2,5-H of pyrrolyl), 7.06 (1H, d, J = 1.0 Hz, 5-H of oxopyridyl), 8.02 (1H, d, J = 1.0 Hz, 4-H of oxopyridyl), 8.45-8.44, 7.53-7.51 (5H, m, phenyl-H); MS: 409 (M⁺, 100), 383 (50), 355 (41), 333 (37), 290 (46), 250 (13), 185 (7), 116 (8), 104 (18), 77 (19), 56 (4). Anal. Calcd. for C₂₃H₁₅N₅OS: C, 67.48; H, 3.66; N, 17.11. Found: C, 67.23; H, 3.66; N, 17.01%.

6-(3-Cyano-1,2-dihydro-4-methyl-2-oxopyridin-6-yl)-5-(1pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (26b)

This compound was synthesized from compound **23b** (0.40 g, 1.0 mmol) cyanoacetamide **24** (0.084 g, 1 mmol) and

Compd.	IR	MS	¹ H NMR
	$v (cm^{-1})$	(M ⁺)	(CDCl ₃)
			δ (ppm)
15a	1667 (C=O)	421	2.20 (3H, s, CH ₃), 5.80 (1H, d, <i>J</i> = 3.1 Hz, COCH=), 6.63-6.42 (2H, m, 3,4-H of pyrrolyl), 6.87-6.80 (2H, m, 2,5-H of pyrrolyl), 8.57-8.55, 7.55-7.21 (11H, m –CH- and phenyl-H)
15b	1663 (C=O)	435	2.27 (3H, s, CH ₃), 2.39 (3H, s, CH ₃), 6.02 (1H, d, $J = 3.0$ Hz, COCH=), 6.61- 6.51 (2H, m, 3,4-H of pyrrolyl), 7.09-6.87 (2H, m, 2,5-H of pyrrolyl), 7.79 (1H, d, $J = 3.0$ Hz, -CH,) 8.59, 8.58, 7.81, 7.33 (9H, m, phenyl, H)
15c	1688 (C=O)	451	(11, d, $J = 3.0$ Hz, $-C1P$, $0.57-0.50$, $7.0177.55$ (11, d, $J = 3.1$ Hz, $COCH=$), 6.60 (2H, t, 3,4-H of pyrrolyl), 6.87 (2H, d, $J = 1.0$ Hz, 3,5-H of phenyl), 6.99 (2H, t, 2,5-H of pyrrolyl), 7.28 (2H, d, $J = 1.0$ Hz, 2,6-H of phenyl), 7.76 (1H, d, $J =$
15d	1628 (C=O)	464	3.0 Hz, =CH-), 8.59-8.55, 7.52-7.51 (5H, m, phenyl-H). 2.27 (3H, s, CH ₃), 3.06 (6H, s, N(CH ₃) ₂), 5.70 (1H, d, <i>J</i> = 3.1 Hz, COCH=), 6.59-6.50 (2H, m, 3,4-H of pyrrolyl), 6.98-6.87 (2H, m, 2,5-H of pyrrolyl), 6.70 (2H, d, <i>J</i> = 1.0 Hz, 3,5-H of phenyl), 7.25 (2H, d, <i>J</i> = 1.5 Hz, 2,6-H of phenyl 1), 7.75 (1H, d, <i>J</i> = 3.1 Hz, =CH-), 8.57-8.54, 7.51-7.50 (5H, m, phenyl- U).
15e	1628 (C=O)	492	1.21 (6H, t, $J = 1.4$ Hz, CH ₃), 2.27 (3H, s, CH ₃), 3.41 (4H, q, $J = 1.4$ Hz, CH ₂), 5.68 (1H, d, $J = 3.1$ Hz, COCH=), 6.59-6.49 (4H, m, 3,4-H of pyrrolyl and 3,5- H of phenyl), 6.98-6.87 (2H, m, 2,5-H of pyrrolyl), 7.24 (2H, d, $J = 1.0$ Hz, 2,6-H of phenyl), 7.74 (1H, d, $J = 3.0$ Hz, =CH-), 8.56-8.53, 7.50-7.49 (5H, m,
15f	1667 (C=O)	411	2.28 (3H, s, CH ₃), 5.88 (1H, d, $J = 3.1$ Hz, COCH=), 6.59-6.48 (3H, m, 3,4-H of pyrrolyl and 4-H of furyl), 6.87 (2H, m, 2,5-H of pyrrolyl), 7.00 (1H, d, $J = 2.0$ Hz, 3-H of furyl), 8.15 (1H, d, $J = 3.0$ Hz, =CH-), 8.63-8.54, 7.58-7.48 (6H,
15g	1641 (C=O)	427	m, 5-H of furyl and phenyl-H). 2.11 (3H, s, CH ₃), 5.47 (1H, d, $J = 3.2$ Hz, COCH=), 6.63-6.39 (3H, m, 3,4-H of pyrrolyl and 4-H of thienyl), 7.06-7.03 (2H, m, 2,5-H of pyrrolyl), 7.13 (1H, d, $J = 1.0$ Hz, 3-H of thienyl), 7.80 (1H, d, $J = 3.0$ Hz, =CH-), 8.48-8.45, 7.54-
15h	1643 (C=O)	463	7.44 (6H, m, 5-H of thienyl and phenyl-H). 2.10 (3H, s, CH ₃), 2.22 (3H, s, CH ₃), 2.28 (3H, s, CH ₃), 2.42 (3H, s, CH ₃), 5.88 (1H, d, <i>J</i> = 4.0 Hz, COCH=), 6.51-6.45 (2H, m, 3,4-H of pyrrolyl), 6.88-6.84 (2H, m, 2,5-H of pyrrolyl), 7.39 (1H, d, <i>J</i> = 1.2 Hz, =CH-), 8.58-8.53, 7.54- 7.51 (7H, m, phenyl H)
15i	1667 (C=O)	497	2.18 (3H, s, CH ₃), 5.75 (1H, d, $J = 3.0$ Hz, COCH=), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.86 (2H, t, 2,5-H of pyrrolyl), 8.65-8.54, 7.63-7.38 (15H, m, =CH-and phenyl-H)
15j	1631 (C=O)	588	2.30 (3H, s, CH ₃), 5.71 (1H, d, $J = 3.0$ Hz, COCH=), 6.55 (2H, t, 3,4-H of pyrrolyl), 6.98-6.94 (4H, m, 3,5-H of phenyl and 2,5-H of pyrrolyl), 7.74 (1H, d, $J = 3.0$ Hz =CH-), 8.59-8.57, 7.53-7.13 (17H m phenyl-H)
15k	1679 (C=O)	545	2.06 (3H, s, CH ₃), 5.79 (1H, d, <i>J</i> = 3.1 Hz, COCH=), 6.51 (2H, m, 3,4-H of pyrrolyl), 6.90 (2H, m, 2,5-H of pyrrolyl), 8.62-8.42, 8.32-8.05 (15H, m, =CH-, phenyl-H and pyrenyl-H).

 Table 4. Spectral data of compounds 15a-k

sodium ethoxide (0.14 g, 2.0 mmol) in a manner similar to that described for the preparation of **26a**. It was recrystallized from ethanol/THF to give 0.18 g (43% yield), mp 146 °C; IR: v 3122 (NH), 2217 (C=N), 1711 (C=O) cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.10 (3H, s, CH₃), 2.13 (3H, s, CH₃), 6.40-6.26 (2H, m, 3,4-H of pyrrolyl), 6.93-6.84 (2H, m, 2,5-H of pyrrolyl), 7.87 (1H, s, 5-H of oxopyridyl), 8.47-8.45, 7.47-7.41 (5H, m, phenyl-H); MS: 423 (M⁺, 60), 385 (71),

356 (42), 333 (100), 290 (90), 246 (14), 228 (20), 202 (34), 187 (18), 160 (24), 104 (79), 77 (62), 56 (28). Anal. Calcd. for $C_{24}H_{17}N_5OS$: C, 68.08; H, 4.01; N, 16.54. Found: C, 68.23; H, 4.12; N, 16.55%.

6-(3-Acetamidopyran-2-on-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (30a)

A mixture of N-acetylglycine 27a (0.12 g, 1 mmol) in

Compd.	Ar	Yield %	Mp °C	Molecular Formula	Element Analysis (%) Calcd/Found		
					С	Н	Ν
21a	phenyl	86	149	C ₃₁ H ₂₃ N ₅ OS	72.51	4.48	13.64
					72.46	4.55	13.42
21b	$4-CH_3C_6H_4$	84	151	C32H25N5OS	72.86	4.74	13.28
					72.99	4.58	13.32
21c	$4-ClC_6H_4$	71	147	C ₃₁ H ₂₂ ClN ₅ OS	67.94	4.01	12.78
					67.88	4.11	12.69
21d	$4-CNC_6H_4$	95	199	$C_{32}H_{22}N_6OS$	71.37	4.08	15.61
					71.12	4.36	15.44
21e	$(CH_3)_2NC_6H_4$	88	163	$C_{33}H_{28}N_6OS$	71.22	5.03	15.10
					71.52	4.91	15.30
21f	biphenyl	93	132	C37H27N5OS	75.38	4.58	11.88
					75.48	4.52	11.97

Table 5. Physical and analytical data of compounds 21a-f

Table 6. Spectral data of compounds 21a-f

Compd.	$\frac{IR}{v (cm^{-1})}$	$\begin{array}{c} \mathbf{MS} \\ (\mathbf{M}^{+}) \end{array}$	¹ H NMR (CDCl ₃) δ (ppm)
21a	2225 (CN)	513 (100), 498 (5), 484 (36), 468 (4), 423 (2), 357 (1), 290 (3), 242 (2), 213 (1), 140 (1), 103(1)	1.56 (3H, t, <i>J</i> = 1.8 Hz, CH ₃), 2.35 (3H, s, CH ₃), 4.64 (2H, q, <i>J</i> = 2.1 Hz, OCH ₂), 6.53-6.49 (2H, m, 3,4-H of pyrrolyl), 6.98-6.87 (2H, m, 2,5-H of pyrrolyl), 7.41 (1H, s, 5-H of pyridyl), 8.63-8.54, 7.53-7.47 (10H, m, phenyl-H)
21b	2225 (CN)	527 (100), 512 (30), 498 (44), 487 (10), 472 (8), 393 (3), 357 (2), 335 (10), 290 (11), 249 (8), 185 (1), 105 (5), 77 (1).	1.56 (3H, t, $J = 1.7$ Hz, CH ₃), 2.33 (3H, s, CH ₃), 2.44 (3H, s, CH ₃), 4.62 (2H, q, $J = 2.1$ Hz, OCH ₂), 6.66-6.39 (4H, m, 3,4-H of pyrrolyl and 3,5-H of phenyl), 6.97-6.87 (2H, m, 2,5-H of pyrrolyl), 8.62-8.54, 7.51-7.17 (8H, m, 5-H of pyridyl and phenyl-H).
21c	2217 (CN)	547.5 (100), 532 (5), 518 (40), 507 (18), 493 (12), 477 (4), 363 (1), 335 (5), 290 (9), 242 (22), 162 (1), 104 (2), 77 (1).	1.54 (3H, t, $J = 2.3$ Hz, CH ₃), 2.34 (3H, s, CH ₃), 4.63 (2H, q, $J = 2.1$ Hz, OCH ₂), 6.65-6.39 (4H, m, 3,4-H of pyrrolyl and 3,5-H of phenyl), 6.97-6.86 (2H, m, 2,5-H of pyrrolyl), 8.61-8.51, 7.51-7.27 (8H, m, 5-H of pyridyl and phenyl-H).
21d	2217 (CN)	538 (10), 531 (100), 516 (36), 502 (20), 484 (10), 451 (5), 422 (16), 381 (10), 316 (22), 290 (80), 263 (4), 185 (4), 160 (1), 128 (16), 104 (4).	1.46 (3H, t, $J = 1.4$ Hz, CH ₃), 2.18 (3H, s, CH ₃), 4.53 (2H, q, $J = 2.0$ Hz, OCH ₂), 6.53-6.27 (4H, m, 3,4-H of pyrrolyl and 3,5-H of phenyl), 7.03-6.92 (2H, m, 2,5-H of pyrrolyl), 8.46-8.42, 7.47-7.39 (8H, m, 5-H of pyridyl and phenyl-H). ^a
21e	2217 (CN)	556 (100), 541 (9), 527 (16), 511 (5), 466 (5), 422 (1), 333 (3), 316 (10), 290 (2), 264 (4), 147 (1), 134 (11), 77 (1).	1.53 (3H, t, <i>J</i> = 1.4 Hz, CH ₃), 2.30 (3H, s, CH ₃), 3.06 (6H, s, N(CH ₃) ₂), 4.60 (2H, q, <i>J</i> = 2.0 Hz, OCH ₂), 6.56-6.38 (2H, m, 3,4-H of pyrrolyl), 6.88-6.85 (2H, m, 2,5-H of pyrrolyl), 6.74 (2H, d, <i>J</i> = 2.0 Hz, 3,5-H of phenyl), 7.40 (2H, d, <i>J</i> = 1.8 Hz, 2,6-H of phenyl), 8.55-8.52, 7.50-7.46 (6H, m, 5-H of pyridyl and phenyl-H).
21f	2208 (CN)	589 (100), 574 (4), 564 (83), 560 (38), 549 (24), 535 (16), 512 (4), 423 (2), 380 (3), 330 (2), 312 (18), 290 (5), 280 (4), 178 (2), 167 (16), 152 (4), 77 (2).	1.56 (3H, t, <i>J</i> = 1.3 Hz, CH ₃), 2.33 (3H, s, CH ₃), 4.65 (2H, q, <i>J</i> = 2.1 Hz, OCH ₂), 6.60-6.39 (4H, m, 3,4-H of pyrrolyl and 3,5-H of phenyl), 6.92-6.86 (2H, m, 2,5-H of pyrrolyl), 8.64-8.50, 7.70-7.41 (13H, m, 5-H of pyridyl and phenyl-H).

^{a 1}H NMR in DMSO-d₆

acetic anhydride (5 mL) was heated for ten minutes; compound 23a (0.39 g, 1 mmol) was added. The reaction mixture was refluxed for 10 h. After cooling, the resulting solid product was collected by filtration, washed with ethanol and water, and the crude product was recrystallized from ethanol/acetic acid to give 0.19 g (43% yield), mp 243 °C; IR: v 3266 (NH), 1728 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.21 (3H, s, CH₃), 2.32 (3H, s, CH₃), 6.53-6.50 (2H, m, 3,4-H of pyrrolyl), 6.78 (2H, t, 2,5-H of pyrrolyl), 6.87 (1H, d, *J* = 1.4 Hz, 5-H of pyranyl), 8.02 (1H, br, NH), 8.10 (1H, d, *J* = 1.6 Hz, 4-H of pyranyl), 8.56-8.54, 7.52-7.47 (5H, m, phenyl-H); MS: 442 (M⁺, 22), 427 (5), 399 (24), 384 (71), 355 (13), 331 (32), 318 (71), 290 (22), 246 (14), 232 (18), 222 (100), 208 (54), 194 (28), 179 (21), 121 (43), 106 (88), 77 (59), 56 (19). Anal. Calcd. for C₂₄H₁₈N₄O₃S: C, 65.15; H, 4.07; N, 12.67. Found: C, 65.19; H, 4.12; N, 12.55%.

6-(3-Benzolyaminopyran-2-on-6-yl)-5-(1-pyrrolyl)-4-methyl-2-phenylthieno[2,3-d]pyrimidine (30b)

This compound was synthesized from hippuric acid **27b** (0.18 g, 1.0 mmol), acetic anhydride (5 mL) and compound **23a** (0.39 g, 1 mmol) in a manner similar to that described for the preparation of **30a**. It was recrystallized from ethanol/acetic acid to give 0.16 g (32% yield), mp 345 °C; IR: v 3388 (NH), 1711, 1671 (C=O) cm⁻¹; ¹H NMR (CF₃COOD): δ 2.81 (3H, s, CH₃), 6.28 (1H, d, *J* = 2.0 Hz, 5-H of pyranyl), 6.89 (2H, m, 3,4-H of pyrrolyl), 7.07 (2H, m, 2,5-H of pyrrolyl), 8.75 (1H, d, *J* = 1.6 Hz, 4-H of pyranyl), 8.47, 8.06-7.73 (10H, m, phenyl-H); MS: 504 (M⁺, 18), 486 (10), 371 (6), 331 (12), 253 (2), 213 (3), 105 (100), 77 (46), 51 (3). Anal. Calcd. for C₂₉H₂₀N₄O₃S: C, 69.04; H, 3.96; N, 11.11. Found: C, 69.31; H, 3.72; N, 11.12%.

6-(3-Benzolyamino-4-methylpyran-2-on-6-yl)-5-(1-pyr-rolyl)-4-methyl-2-phenylthieno[2,3-*d*]pyrimidine (30c)

This compound was synthesized from hippuric acid **27b** (0.18 g, 1 mmol), acetic anhydride (5 mL) and compound **23b** (0.40 g, 1 mmol) in a manner similar to that described for the preparation of **30a**. It was recrystallized from ethanol/ acetic acid to give 0.15 g (29% yield), mp 186 °C; IR: v 3126 (NH), 1720 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.08 (3H, s, CH₃), 2.21 (3H, s, CH₃), 6.50 (2H, t, 3,4-H of pyrrolyl), 6.87 (2H, t, 2,5-H of pyrrolyl), 8.57-8.55, 7.52-7.51 (11H, m, 5-H of pyranyl and phenyl-H); MS: 518 (M⁺, 10), 413 (3), 396 (2), 332 (100), 318 (23), 290 (9), 246 (14), 229 (2), 202 (34), 160 (3), 104 (8), 77 (9), 56 (3). Anal. Calcd. for C₃₀H₂₂N₄O₃S: C, 69.49; H, 4.24; N, 10.81. Found: C, 69.44; H, 4.12; N, 10.55%.

ACKNOWLEDGEMENT

We are grateful to the Nanya Institute of Technology for financial support.

Received June 28, 2004.

REFERENCES

- Brown, D. J.; Katritzky, A. R.; Rees, C. W. In *Comprehensive Heterocyclic Chemistry*; Boulton, A. J.; McKillop, A., Eds.; 1984; Vol. 3, p 57.
- Dave, C. G.; Shah, P. R.; Dave, K. C.; Patel, V. J. J. Indian Chem. Soc. 1989, 66, 48.
- (a) Bousquet, E.; Romero, G.; Guerrera, F.; Caruso, A.; Roxas, M. A. *Farmaco Ed. Sci.* **1985**, *40*, 869. (b) Bousquet, E.; Guerrera, F.; Siracusa, N. A.; Caruso, A.; Roxas, M. A. *Farmaco Ed. Sci.* **1984**, *39*, 110.
- Vieweg, H.; Leistner, S.; Wagner, G.; Boehm, N.; Krasset, U.; Grupe, R.; Lohmann, D.; Loban, G., East German Patent DD **1988**, 257830.; *Chem. Abstr.* **1989**, *110*, 95262p.
- (a) Chaykovsky, M.; Lin, M.; Rosowsky, A.; Modest, E. J. J. Med. Chem. 1973, 10, 188. (b) Elsager, E. F.; Jacob, P.; Werbel, L. M. J. Heterocyclic Chem. 1972, 9, 775.
- Madding, G. D.; Thompson, M. D. J. Heterocyclic Chem. 1987, 24, 581.
- Cheng, C. C. In *Progress in Medicinal Chemistry*; Ellis, G. P.; West, G. B. Eds.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1989; vol 25, p 35.
- Shishoo, C. J.; Devani, M. B.; Bhadti, V. S. Indian Patent 1983, 151; Chem. Abstr. 1984, 100, 209858p.
- Almerico, A.; Diana, P.; Barraja, P.; Dattolo, G.; Mingoia, F.; Loi, A.; Scintu, F.; Milia, C.; Puddu, I.; Lacolla, P. *Farmaco* 1998, 53, 33.
- 10. Obniska, J.; Kulig, K.; Zejc, A. Acta Pol. Pharm. **1998**, 55, 223.
- Baucke, D.; Lange, U.; Mack, H.; Seitz, W.; Zierke, T.; Hoffken, H. W.; Hornberger, W. *Chem. Abstr.* **1998**, *128*, 192940n.
- Lihamh, T.; Hagiwara, K.; Maruge, S.; Sano, S.; Shimoda, S.; Horikoshi, Y. Japan patent 1998, 10,324,687.; *Chem. Abstr.* 1999, 13081399q.
- 13. Reed, B. L.; Farlow, R. Chem. Abstr. 1999, 130169743h.
- (a) Robba, M.; El Kashef, H. J. Heterocyclic Chem. 1980, 17, 923. (b) El Kashef, H.; Rault, S.; Cugnon de Sevricourt, M.; Touzot, P.; Robba, M. J. Heterocyclic Chem. 1980, 17, 1189. (c) Laduree, D.; El Kashef, H.; Robba, M. Heterocycles 1984, 22, 299. (d) Rioult, J. P.; Cugnon de Sevricourt, M.; Rault, S.; Robba, M. J. Heterocyclic Chem. 1984, 21, 1449. (e) Lancelot, J. C.; Landelle, H.; Robba, M. Chem.

Heterogeneous Reactions of [2,3-d]pyrimidine

Pharm. Bull. 1984, 32, 902.

- (a) Leimgruber, W.; Batcho, A. D.; Schenker, F. D. J. Am. Chem. Soc. 1965, 87, 5793. (b) Duceppe, J. S.; Gauthier, J. J. Heterocyclic Chem. 1985, 22, 305. (c) Ong-Lee, A.; Sylvester, L.; Wasley, J. W. F. J. Heterocyclic Chem. 1983, 20, 1565. (d) Boyer, S. K.; Fitchett, G.; Wasley, J. W. F.; Zanius, G. J. Heterocyclic Chem. 1984, 21, 833.
- (a) Rault, S.; Cugnon de Sevricourt, M.; Robba, M.; Nguyen-Huy-Dung. *Tetrahedron Letters*. **1979**, 643. (b) Laduree, D.; El Kashef, H.; Robba, M. *Heterocycles* **1984**, 22, 299.
- 17. Ho, Y. W. J. Chin. Chem. Soc. 2003, 50, 283.
- Khalil, Z. H.; Geies, A. A. *Phosphorus Sulfur Silicon*. 1991, 60, 223.
- 19. Kamal El-Dean, A. M. J. Chem. Research (S). 1997, 260.
- Cugnon de Sevricourt, M.; El-Khashef, H.; Rault, S.; Robba, M. Synthesis. 1981, 710.
- 21. (a) Geies, A. A. J. Chem. Research (S). 1998, 290. (b) Geies,
 A. A. J. Chem. Research (M). 1998, 1248.
- 22. Kambe, S.; Saito, K.; Sakurai, A.; Hayashi, T. *Synthesis*. **1979**, 841.
- 23. Chen, J. J.; Wang, I. J. Dyes and Pigments. 1995, 29, 305.

- 24. Bard, M. Z. A.; Mahmoud, A. M.; Mahgoub, S. A.; Hozien, Z. A. Bull. Chem. Soc. Jpn. **1988**, 61, 1339.
- 25. Abdou, S.; Fahmy, S. M.; Aadek, K. U.; Elnagdi, M. H. *Heterocycles* **1981**, *16*, 2177.
- Ruiter, D. J.; Carter, D. A.; Arledge, W. S.; Sullivan, P. J. J. Heterocyclic Chem. 1987, 24, 149.
- 27. (a) Al-Omran, F.; Al-Awadi, N. J. Chem. Research (S). 1995, 392. (b) Al-Omran, F.; Al-Awadi, N. J. Chem. Research (M). 1995, 2201.
- Sayed, S. M.; Khalil, M. A.; Ahmed, M. A.; Raslan, M. A. Synthetic Communications 2002, 32, 481.
- 29. (a) Al-Omran, F.; Al-Awadi, N.; Khalik, M. M. A.; Kaul, K.; EL-Khair, A. A.; Elnagdi, M. H. *J. Chem. Research (S)*. **1997**, 84. (b) Al-Omran, F.; Al-Awadi, N.; Khalik, M. M. A.; Kaul, K.; EL-Khair, A. A.; Elnagdi, M. H. *J. Chem. Research (M)*. **1997**, 0601.
- 30. Kepe, V.; Kocevar, M.; Polanc, S. *Heterocycles* **1995**, *41*, 1299.
- Kocevar, M.; Polanc, S.; Vercek, B.; Tisler, M. *Liebigs Ann. Chem.* **1990**, 501.
- 32. Kepe, V.; Kocevar, M.; Polanc, S.; Vercek, B.; Tisler, M. *Tetrahedron* **1990**, *46*, 1081.