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Abstract 

Equilibrium, kinetic (solvent exchange and dissociation of the complex) and relaxometric 

studies (1H and 17O NMR) have been performed with the [M(II)(c-cdta)]2− complexes (c-cdta 

= cis-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid, M(II)= Mn(II), Zn(II), 

Cu(II),Ca(II), Mg(II)) and the physico-chemical data are compared to the isomeric complexes 

with trans-1,2-cdta (t-cdta) with the aim of searching appropriate ligands for Mn(II) 

complexation for safe MRI contrast agents. The total basicity (Σ log Ki
H) of the c-cdta ligand 

appears to be very similar to that of the trans- derivative under the conditions applied (I=0.15 

M NaCl and 25 oC), but the first two protonation constants notably differ. log K1
H is 1.5 log 

units higher, while the log K2
H is 0.8 log units lower than those determined for the trans- 

derivative. Similar basicity of the ligands results in similar complex stability (log K[Mn(L)] 

values are 14.19(2) and 14.32), whereas the conditional stabilities near to physiological pH 

are different (pMn values are 7.82 and 8.68) for the [Mn(c-cdta)]2− and the [Mn(t-cdta)]2− 

derivatives, respectively. Dissociation kinetic studies revealed that the [Mn(c-cdta)]2− 

dissociates 250 times faster than the [Mn(t-cdta)]2− complex. The water exchange rate (kex
298) 

of [Mn(c-cdta)]2– is ca. 60% higher than that of [Mn(t-cdta)]2–. The differences can likely be 

attributed to the different distances between the individual donor atoms, and the arrangement 

of the donor atoms around the metal ions in the cis- and trans- isomers. Interestingly, the 

relaxivity values of the Mn(II) complexes are very close (r1p = 3.79 mM–1s–1 and 3.62 mM–1s–

1; 20 MHz, 25 °C for the cis- and trans-isomers, respectively). DFT calculations were used to 

gain insight into the different properties of the [Mn(c-cdta)]2− and the [Mn(t-cdta)]2− 

complexes. The results gained in our studies confirm that the trans-1,2-cyclohexanediamine 

“building block” displays better features for further ligand development. 

 

Introduction 

The linear and macrocyclic aminopolycarboxylate (APC) complexes are widely used in 

medical diagnosis and therapy for the complexation of metal ions applied in the field of 
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nuclear medicine, optical and magnetic resonance imaging (MRI) [1-7]. These different fields 

have some special claims regarding the properties of complexes, but the general requirements, 

which should be accomplished for all the complexes, are the high stability and kinetic 

inertness. In other words, it means that the complexes must not dissociate in the body of 

patients during or after the examinations are performed. Considering the very complex nature 

of biological fluids which contain a great number of metal ions and complex forming ligands, 

this is a very strict requirement. To prevent any interaction between the APC complexes in 

use and the endogenous metals or ligands, the structure of APC ligands play very important 

role. So the ligands have to be specially designed for the robust complexation of metal ions. 

To design a ligand, the chemical properties of the metal ion, its ionic size, electronic structure 

and coordination number are considered first to find out how many and which kind of donor 

atoms are optimal for the complexation. Some special structural elements may also be 

beneficial e.g. the rigidity of the ligand and/or its degree of pre-organization to bind the metal 

ion, which can be achieved by the use of suitable functional group(s) and/or by introducing 

some cyclic or macrocyclic building blocks. 

In MRI several Gd(III) – APC complexes are clinically used as contrast agents (CAs) to 

increase the contrast between the healthy and diseased tissues or organs by differently 

increasing the relaxation rates of protons (mainly water protons) in the body. The ligands used 

for metal ion complexation in CAs are the linear dtpa, the macrocyclic dota and their 

derivates [6, 7]. Nowadays there are 6 linear and 3 macrocyclic CAs in clinical use, but in the 

last decade some concerns arose with the use of the linear agents. It was recognized that a 

new disease, called nephrogenic systemic fibrosis (NSF), was associated with the use of the 

Gd3+-based CAs. NSF was developed in patients with severe renal impairment, when the 

elimination of the CAs was slow. During the longer residence time of the Gd(III) complex in 

the body of patients a small amount of Gd(III) remained deposited, which presumably 

triggered the development of NSF [8-10]. More recently, the presence of Gd has been 

detected in different organs, including the brain of patients with normal renal function after a 

few repeated MR scans using CAs [11-14]. The presence of traces of non-chelated Gd(III) in 

the body of patients has raised concerns because of the potential toxicity of the Gd(III) ion. 

These problems with the use of the linear Gd(III)-based CAs turned the attention of 

researchers to the complexes of Mn(II) as potential contrast agents [15-16]. The relaxation 

effects of Mn(II) are known to be similar to those of Gd(III), but on the other hand, Mn(II) is 

an essential metal ion and some amount of the intravenously administered Mn(II) can be 
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eliminated relatively rapidly through the hepatobiliary system. Since the coordination number 

of Gd(III) is 8-9, while that of Mn(II) is often 6-7, the ligands used in the Gd(III)-based CAs 

can not be directly used for the complexation of Mn(II). Some examples are known, when the 

Mn(II) complexes with ligands performing well with Gd(III) are stable and inert, but the 

absence of inner sphere water molecule(s) results in negligible enhance in the contrast [17]. 

Another critical point is the lability/inertness of the complexes (the terms lability/inertness in 

this manuscript describe dissociation kinetics parameters of the complexes rather than the 

solvent exchange kinetics). The majority of the open-chain ligands form very labile 

complexes with Mn(II). The most shocking example is that of [Mn(dtpa)]3− which was found 

to dissociate within the dead-time of the stopped-flow instrument (ca. 8 msec) in the presence 

of Cu(II) as a ligand scavenger [18]. In order to find suitable ligands for Mn(II), a number of 

new linear and macrocyclic ligands were synthesized during the last years and the properties 

of their complexes were investigated extensively [15-24]. Amongst the hexadentate linear 

ligands edta forms the relatively stable [Mn(edta)]2− complex in which a water molecule 

occupies the seventh coordination site, but the kinetic inertness of the complex is also low, 

because of the flexible structure of the ligand [18]. The edta analogue trans-1,2-cdta 

(abbreviated as t-cdta through the text, Figure 1) is more rigid and it forms the more stable 

and more inert complex [Mn(t-cdta)]2− which seems to be suitable as a potential CA and 

recently was evaluated even in preclinical studies [25-26]. The behaviour of the cdta 

derivative ligands are likely similar to the parent ligand, so their Mn(II) complexes are 

promising for the preparation of Mn(II)-based MRI CAs [18, 22]. 

While the complexation properties of the t-cdta ligand have been studied extensively, 

there is very few knowledge about the complexes of the other stereoisomer, the cis-1,2-cdta 

ligand (abbreviated as c-cdta in the text). The donor atoms of t-cdta form a semi-rigid 

preorganized coordination cage, where metal ions of different size may enter and generally 

form complexes of high stability [27]. The maximum distance between the two N-donor 

atoms in t-cdta is 4 Å, while that in c-cdta is only 3.1 Å [28], so the coordination cage formed 

by the donor atoms of the cis- isomer is relatively small, anticipating a low stability of the 

complexes with c-cdta and large metal ions. Since the size of the Mn(II) ion is not too large 

and there are only very few data in the literature regarding the complexation of c-cdta, we 

decided to study its complexes with Mn(II) and with some other endogenous metal ions. 
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Figure 1. Formulae of the edta, c-cdta, t-cdta, 4-het-t-cdta ligands. 

Results and Discussion 

 

The synthesis of the c-cdta ligand (Scheme 1) was accomplished in a two-step reaction 

sequence starting from cis-cyclohexane-1,2-diamine, which was alkylated by using ethyl 

bromoacetate in the presence of Hünig's base (diisopropylethyl amine, dipea). The 

saponification of the tetraethyl ester with NaOH afforded the product which was purified by 

recrystallization from acidic (pH=2.0) aqueous solution. 

 

 

Scheme 1. The synthesis of the c-cdta chelator: i). 4.2 equivalent of ethyl bromoacetate, dipea, 

MeCN, 7 h reflux; ii). 6 equivalent of NaOH, EtOH, 24 h reflux; iii). cc HCl till pH = 2.0. 

 

Equilibrium studies  

In order to characterize the metal complexes as potential MRI contrast enhancement 

agents, one should consider their equilibrium and kinetic behaviour in biofluids, the proton 

relaxation effects, together with other parameters which determine the proton relaxation rates 

in the presence of these complexes. For the assessment of the equilibrium behaviour we have 
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determined the stability constant of the Mn(II) complex and those of the Mg(II), Ca(II), Zn(II) 

and Cu(II) complexes that may compete with the Mn(II) ion for the c-cdta ligand in biofluids. 

To obtain information about the kinetic inertness of [Mn(c-cdta)]2− complex, the rates of the 

exchange reactions occurring between the complex and the Cu(II) ion have been investigated, 

vide infra. These properties are already known for the [Mn(t-cdta)]2− complex, so the 

comparison of the behaviour of the two complexes is possible. 

The protonation constants of the c-cdta ligand have been determined by pH-

potentiometric titration. The protonation constants (Ki
H) defined by Equation (1), are 

presented in Table 1. 

]H][LH[

]LH[

1i

iH
i +

−

=K   where i=1, 2,    n   (eqn. 1) 

where i = 1, 2, …, 5, [HiL], [Hi-1L] and [H+] are the equilibrium concentrations of the 

HiL and Hi-1L ligand species and the H+ ions, respectively. The stability constants of the ML 

complexes (KML) are defined by Equation (2): 

]L][M[
]ML[

ML =K    (eqn. 2) 

 

In Equation (2) [M], [ML] and [L] are the equilibrium concentrations of the M(II) metal 

ion, ML complex and L4- ligand, respectively (the charges of ions will be used only when it is 

necessary). 

The metal ions and protons compete for the ligand, so at lower pH values protonated 

complexes can be formed. The protonation constants of complexes are defined as follows: 

]H][LMH[

]LMH[

1i

i
LMHi +

−

=K    (eqn. 3) 

where i = 1 or 2, [M(HiL)] and [M(Hi-1L)] are the concentration of the protonated 

complexes. 

Table 1. Protonation constants of the c-cdta, t-cdta and edta ligands and stability 

constants of their Mg(II), Ca(II), Zn(II), Cu(II) and Mn(II) complexes (log K values, 25°C, 

0.15 NaCl). 



  

 7

 

[a] this work; [b] Ref. [27]; [c] 0.15 M NaCl, 25°C from the diploma work of Veronika Józsa, 
2015, University of Debrecen, Debrecen, Hungary; [d] Ref. [18]; [e] calculated by using 
cMn=cLig=0.01 mM at pH=7.4 according Tóth et al. [29]; [d] determined by simultaneous 
fitting of the UV-vis and pH-potentiometic data. 

 

The protonation constants of c-cdta determined in this work at 25°C in 0.15 M NaCl 

solution (Table 1) agree relatively well with those reported in the literature [27] (20°C and 0.1 

M KCl), indicating that the interaction of c-cdta with the Na+ and K+  ions is negligible. The t-

cdta ligand behaves differently, since its logK1
H value in 0.15 M KNO3 is much higher 

(11.70) than in 0.15 M NaCl (9.54), because the stability constant of the [Na(t-cdta)]2− 

complex is relatively high (log KNaL = 4.4) [27], while the interaction of the ligand with K+ is 

very week. The different behaviour of the two ligands indicates that the coordination cage 

  c-cdta[a] c-cdta[b] t-cdta[c] t-cdta[b] edta[c] 

H
+
 

log K1
H 11.00(1) 10.70 9.54 11.70 9.28 

log K2
H 5.20(1) 5.21 5.97 6.12 6.04 

log K3
H 3.41(1) 3.50 3.60 3.52 2.72 

log K4
H 2.30(1) 2.44 2.52 2.43 1.99 

log K5
H 1.41(1) − 1.46 − 1.11 

 ∑ log Ki
H 23.32 21.85 23.09 23.77 21.14 

M
g

2
+
 log KML 9.01(2) 8.38 9.14 11.07 7.61 

log KMHL 4.72(6) 4.44 3.53 − − 

C
a

2
+
 log KML 9.65(2) 9.45 10.23 13.15 9.53 

log KMHL 4.55(5) 4.11 3.53 − 2.92 

M
n

2
+

 

log KMnL 14.19(2) − 14.32[d] 17.48 12.46[d] 

log KMnHL 2.85(3) − 2.90[d] 2.8 2.95[d] 

log KMnH2L − − 1.89[d] − −
[d] 

pMn[e] 7.82 − 8.68 − 7.83 

Z
n

2
+
 

log KML 17.06(1) − 16.75 19.37 15.92 

log KMHL 2.76(1) − 2.57 2.9 3.23 

log KMH2L − − − − 1.50 

C
u

2
+
 

log KML
 

18.3(1)[f] − 19.78[f] 22.0 19.02[f] 

log KMHL 3.65(3) − 2.91 3.1 3.15 

log KMH2L − − 1.10 − 2.04 
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formed by the two iminodiacetate (ida) groups of c-cdta is too small to accommodate the 

larger M(I) metal ions, while in the case of t-cdta the coordination cage is larger, where even a 

Na+ ion can enter. 

The stability constant of the Mg(II)- and [Ca(c-cdta)]2− complexes obtained in this work 

are comparable with those published in the literature (Table 1). For the c-cdta complexes of 

Mn(II), Zn(II) and Cu(II) there are not any stability constant data in literature. The stability 

constants of complexes formed with the c-cdta, t-cdta and edta ligands in 0.15 M NaCl (Table 

1) do not differ considerably, because of the formation of the [Na(t-cdta)]3− complex. 

Considering the formation of Na+ complexes, it is more correct to compare the log KML values 

of c-cdta complexes with those log KML values obtained for the t-cdta complexes at 0.1 M KCl 

ionic strength. This comparison shows that the stability constants of the [M(c-cdta)]2− 

complexes are lower by 2-3 log units than those of the [M(t-cdta)]2− complexes (Table 1).  

The paramagnetic metal ions used as a component of the MRI CAs result in high proton 

relaxation rates. Since the free metal ions are toxic, their complexes are used as CAs. The 

longitudinal relaxation rate of water protons (1/T1 where T1 is the longitudinal relaxation time) 

in the presence of Mn(II) ions is significantly higher than in the presence of [Mn(c-cdta)]2− or 

[Mn(t-cdta)]2−. The relaxation effect of paramagnetic ions and complexes are expressed by 

their relaxivity values. The relaxivity (r1p, mM-1s-1) is the enhancement of the longitudinal 

water proton relaxation rate referred to 1.0 mM concentration of the paramagnetic species. 

The relaxivity of the [Mn(H2O)6]
2+ ion at 25°C and 20 MHz is 7.94 mM-1s-1, while that of the 

[Mn(c-cdta)]2− complex is 3.79 mM-1s-1. This latter r1 value is similar to that of the 

[Mn(edta)]2− (3.23 mM-1s-1) and [Mn(t-cdta)]2− (3.62 mM-1s-1) complexes, in which one water 

molecule is coordinated in the inner sphere of Mn(II). 

The formation of [Mn(c-cdta)]2− complexes could be followed by measuring the water 

proton relaxation rates in equilibrium solutions of 1.0 mM Mn(II) and 1.0 mM c-cdta as a 

function of pH. At pH<2 only [Mn(H2O)6]
2+ is present, resulting in high 1/T1 values (Fig. 2). 

With the increase of pH, MnHL and MnL complexes are formed, so that the proton relaxation 

rates decrease because the water molecules are displaced from the inner sphere of Mn2+. Once 

the formation of [Mn(L)] complex is complete (at about pH>5,) the 1/T1 values are constant 

(this constant 1/T1 value is the relaxivity of the MnL complex). In Figure 2 the species 

distribution curves (calculated from the equilibrium data for the 1.0 mM Mn(II) - 1.0 mM c-

cdta system) are also presented (together with the 1/T1 values). The data in Figure 2 indicate 
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that the decrease of the proton relaxation rates with the increase of pH occurs parallel with the 

formation of the MnHL and MnL complexes. The good agreement in the trend of the data 

obtained by pH-potentiometry and relaxometry indicates the reliability of the equilibrium 

data. 
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Figure 2. Species distribution curves and the relaxation rate (1/T1-1/T1w) profile (red points) of 

1.021 mM [Mn(c-cdta)]2− as a function of pH (T = 25 oC, I=0.15 M NaCl, 20 MHz). 

 

As it was underlined several times in the literature, reliable stability data for Cu(II) – 

APC complexes can be obtained either by competition method with the use of auxiliary ligand 

(the equilibrium of the Cu(II) – auxiliary ligand system must be well known), or it can be 

accessed by using multiple methods simultaneously (e.g. UV-vis spectrophotometry 

applicable also in very acidic conditions and pH-potentiometry) [31]. The absorption spectra 

of the [Cu(c-cdta)]2− complex as a function of H+ ion concentration is shown on Figure 3. The 

spectrophotometric data were fitted simultaneously with the pH-potentimetric titration data 

and the stability constants determined are shown in Table 1. In line with the equilibrium data 

obtained for other metal ions studied, the stability constant of the [Cu(c-cdta)]2− complex is 
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lower than the value of the corresponding [Cu(t-cdta)]2− complex determined under identical 

conditions (the difference is ca. 0.7 log units). 
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Figure 3. Absorption spectra of the [Cu(c-cdta)]2− system as a function of [H+]. Conditions: 

[c-cdta4−] = 3.528 mM, [Cu(II)] = 3.410 mM, 25 oC, 1.0 M (Na++H+)Cl-, cH+ in the samples 

are as follows: 12.1; 18.8; 33.9; 49.0; 75.9; 101.0; 156.8; 205.0; 253.3; 349.8 and 462.4 mM 

(from top to bottom). 

 

Dissociation kinetics of [Mn(c-cdta)]
2−−−− complex 

The fate of the MRI CAs in biological fluids is strongly influenced by their kinetic 

inertness, that is an important property in determining the extent of dissociation of the 

complex while present in the body. For the Gd(III)-based CAs it was generally assumed that 

the deposition of Gd in the body was the result of the dissociation of Gd(III) complexes, that 

occurred through transmetallation reactions with endogenous metal ions like Zn(II), Cu(II) 

and Ca(II) [33, 34]. To obtain information about the kinetic properties of CAs, the rates of the 

metal-exchange reactions are generally studied between the Gd(III) or Mn(II) complex and an 

exchanging metal ion, very often Cu(II), because in this case the reaction can easily be 
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followed by spectrophotometry. The kinetic behaviour of [Mn(c-cdta)]2− was studied similarly 

by following the exchange reactions depicted in Equation (4):  

[Mn(c-cdta)]2− + Cu(II)                 [Cu(c-cdta)]2− + Mn(II)    (eqn. 4) 

 

Since the stability constant of [Cu(c-cdta)]2− is much higher than that of [Mn(c-cdta)]2− 

(Table 1), reaction (4) takes place to completeness in the presence of Cu(II) excess (10-40 

fold of Cu(II) excess was used). Under such conditions the reactions can be treated as pseudo-

first-order processes kinetically. The rate of the exchange reaction (4) is directly proportional 

to the concentration of the complex and can be expressed as follows: 

tobs
t )]L(Mn[

dt

)]L(Mn[d
k=−    (eqn. 5) 

In Equation (5) kobs is a pseudo-first-order rate constant, [Mn(L)]t is the total 

concentration of complexes containing the [Mn(c-cdta)]2− species. The rates of the exchange 

reactions (4) have been studied at four different Cu(II) concentrations in the pH range 4.03 – 

5.03. The kobs values obtained are shown in Figure 4. 
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Figure 4. The rate constants (kobs) characterizing the exchange reactions of [Mn(c-cdta)]2− (0.4 

mM) with Cu(II) measured by stopped-flow method. The Cu(II) concentrations are 4.0 mM 

(red), 8.0 mM (green), 12.0 mM (blue) and 16.0 mM (wine-red) (25°C, 0.15 M NaCl). 

 

The kinetic data shown in Figure 4 reveal that the kobs values are directly proportional to 

[H+], the exchange reactions showing first-order dependence on the H+ ion concentration. The 

dependence of the kobs values on the Cu(II) concentration is surprising, because the increase in 

the Cu(II) concentration results in a slight decrease in the reaction rates, so that Cu(II) ions 

depress the rate of the exchange reactions. Similar phenomena were observed previously for 

the reaction of [Mn(t-cdta)]2− with Cu(II) and for the reactions between [Cd(t-cdta)]2− and 

Pb(II) or Cu(II) ions [18, 35]. The effect of the Cu(II) ions on the reaction rates can be 

interpreted by the formation of dinuclear [Mn(c-cdta)Cu] complexes, where presumably one 

acetate group of [Mn(c-cdta)]2− is coordinated to the Cu(II) ion and so the probability of 

protonation decreases (in fact [Mn(c-cdta)Cu] is a “dead-end” complex). Since the reaction 

rate does not increase with the increase of the Cu(II) concentration, the exchange reactions do 

not take place with the direct attack of the Cu(II) ion. On the basis of the experimental data 

we came to the conclusion that the exchange reactions between the [Mn(c-cdta)]2− and Cu(II) 

ion occur through the dissociation mechanism. After the rate determining dissociation of the 

complex, the released c-cdta ligand rapidly reacts with the Cu(II) ions with the formation of 

[Cu(c-cdta)]2−. The dissociation of the [Mn(c-cdta)]2− complex can take place spontaneously 

and by the assistance of H+ ions. The spontaneous dissociation is presumably very slow, while 

the proton assisted dissociation occurs relatively rapidly at pH values around 4-5. The 

protonation of [Mn(c-cdta)]2− presumable occurs at a carboxylate group (log KMHL = 2.85), 

but for the dissociation of the complex the proton must be transferred to a N atom, when the 

protonated iminodiacetate (ida) group is not coordinated anymore and this intermediate may 

dissociate (or the complex may be re-formed by the dissociation of the proton). Considering 

the possible reaction pathways, the rate of dissociation of the complex can be expressed by 

Equation (6) 

[Mn(HL)][Mn(L)]
td

[Mn(L)]
MnHL0

t kk +=−    (eqn. 6) 
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where k0 and kMnHL are the rate constants characterizing the dissociation of the MnL and 

MnHL complexes, respectively. 

 

Comparing the total concentration of the complex [Mn(c-cdta)]2− ([Mn(L)]t = [Mn(L)] + 

[Mn(HL)] + [Mn(L)Cu]), Equation (5) and (6), for the kobs value Equation (7) is obtained: 

 
][Cu][H1

][H
2

MnLCuMnHL

MnHLMnHL0
obs ++

+

++

⋅⋅+
=

KK

Kkk
k    (eqn. 7) 

 

The term KMnHL [H+] in the denominator of Equation (7) is very small in the pH range 

4.03 – 5.03, so it can be neglected. For the calculation of the unknown parameters Equation 

(7) has been used as follows: 

][Cu1

][H
2

MnLCu

10
obs +

+

+

⋅+
=

K

kk
k    (eqn. 8) 

 

where k1 = kMnHL KMnHL. 

By fitting the kobs values presented in Figure 4 to Equation (8) the k0, k1 and KMnLCu 

values have been calculated and presented in Table 2. The k0 value is very low, so it can be 

neglected. 

 

Table 2. Rate and equilibrium constants characterizing the dissociation rates of the [Mn(c-

cdta)]2−, [Mn(t-cdta)]2− and [Mn(edta)]2− complexes. 

 c-cdta t-cdta[a,b] edta[a,b] 

k1 (M
-1s-1) (1.02±0.09)×105 4.0×102 5.2×104 

k2 (M
-2s-1) −−−− −−−− 2.3×108 

k3 (M
-1s-1) −−−− −−−− 45±8 

KMnLCu 79±23 79 −−−− 
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log KH 2.85[c] 2.90[c] 2.65[c] 

t1/2
[d]

 (h) 0.47 12 0.076 

[a] Ref [18]; [b] for [Mn(t-cdta)]2- k1 = 3.2×102 M–1s–1 and t1/2 = 15 h while for [Mn(edta)]2- k3 
= 3.0×10-1 M–1s–1, k4 = ~4.8×101 M–2s–1 and log KMnHL =3.10 were found in Ref. [36]; [c] 
determined by pH-potentiometry and fixed in the data fitting; [d] calculated at pH = 7.4 in the 
presence of cCu2+ = 1×10-5 M. 

 

In Table 2, the k1 rate constants and KMnLCu stability constants obtained for the [Mn(c-

cdta)]2− complex are compared with those of the [Mn(t-cdta)]2−. The presented data indicate 

that the k1 dissociation rate constant of [Mn(c-cdta)]2− is approximately 250 times higher than 

that of [Mn(t-cdta)]2−. This difference is shown in the values of the half-life of dissociation, 

that is much longer for complex [Mn(t-cdta)]2−. The results of these studies indicate that the 

kinetic inertness of the Mn(II) complex formed with the c-cdta isomer is significantly lower 

than that of the t-cdta isomer. 

 

17O and NMRD measurements 

The nuclear magnetic relaxation dispersion (NMRD) profile of the [Mn(c-cdta)]2– was 

measured at three different temperatures (298, 310 and 323 K) in the frequency range 0.01-80 

MHz to gain information on the relaxation properties of the complex (Figure 5). The NMRD 

profiles show a single dispersion at 1-10 MHz which is typical of low molecular weight Mn2+ 

complexes. Their temperature dependence indicates that the relaxivity of the complex is 

limited by fast rotation. Several physicochemical parameters affect the relaxivity of a 

paramagnetic metal complex, such as the water exchange rate, the electron spin relaxation 

parameters and the rotational correlation time. The temperature dependence of the transverse 

and longitudinal 17O relaxation rates can provide information on the water exchange rate (kex) 

and the rotational correlation time (τR), respectively, while the chemical shift is related to the 

number of the water molecules directly coordinated to the paramagnetic metal center (q). 

Variable temperature transverse and longitudinal relaxation rates and chemical shifts were 

measured for an aqueous solution of [Mn(c-cdta)]2– and for a diamagnetic reference at 9.4 T. 

The T1 values showed negligible difference between the Mn(II) complex and the reference, 

thus were not included in the analysis. The reduced 17O transverse relaxation rates, 1/T2r, and 

chemical shifts, ∆ωr, have been fitted according to the Swift-Connick equations, by assuming 
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a simple exponential behaviour for the electron spin relaxation. The water exchange rate, 

kex
298, its activation enthalpy, ∆H≠, and 1/T1e

298 were calculated (the activation energy of 

electron spin relaxation was fixed to 1 kJ/mol). The hydration number was fixed to q=1 based 

on analogy to [Mn(t-cdta)]2– and on the relaxivity value measured at 20 MHz (r1p=3.79 mM-1s-

1, r1,[Mn(t-cdta)]2–=3.62 [18]) We have attempted to determine the hydration number of the complex 

by using Gale’s method based on the maximum value of the transverse 17O relaxation rate 

however the q obtained (q = 0.50±0.20) seems to be an underestimation since the relaxivity of 

the given complex as well as the results of DFT calculations (vide supra) are being consistent 

with q=1.[37] To characterize the rotational dynamics of the complex, the 1H NMRD data 

were analyzed by the Solomon-Bloembergen-Morgan (SMB) [38] and Freed models [39] 

(inner- (IS) and outer-sphere (OS) relaxation mechanisms) and the Swift-Connick [40, 41] 

equations related to solvent exchange (see Supporting Information). The parameters for water 

exchange were fixed to those determined from the 17O NMR study. The distances between the 

metal ion and the inner and outer sphere water protons were also fixed (rMnH = 2.83 Å and 

aMnH = 3.6 Å), as well as the diffusion coefficient and its activation energy (DMnH = 26 × 10-10 

m2s-1 and EMnH = 18 kJ/mol-1 [29]) and the activation energy of the modulation of the zero-

field-splitting (Ev = 1.0 kJ/mol). The values of the electron relaxation parameters τv

298 and ∆2 

were found to be 21±2 ps and (1.0±0.1)×1020 s–2, respectively. The best-fit parameters 

obtained are given in Table 3 and compared with those of [Mn(t-cdta)]2– and [Mn(4-het-

cdta)]2– complexes [42, 43]. The experimental data and the fitted curves are shown in Figures 

5 and 6. 
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Figure 5. Variable temperature reduced transverse 17O relaxation rates (top) and chemical 

shifts (bottom) recorded for [Mn(c-cdta)]2– (B = 9.4 T). The solid lines correspond to the fit of 

the data. 

 

Table 3. Parameters obtained from the analysis of 17O NMR and 1H NMRD data for the 
[Mn(c-cdta)(H2O)]2– complex. 



  

 17

Parameter [Mn(c-cdta)]2– [Mn(t-cdta)]2– [c] [Mn(4-het-cdta)]2– [d] 

kex

298 (x107 s–1) [a] 22.5 ± 0.5 14.0 17.6 

∆H‡ (kJ mol–1) [a] 42.0 ± 0.8 42.5 36.2 

∆S‡ (J K-1 mol–1) [a] +56 ± 4 – – 

AO/� (106 rad s–1) [a] -42.7 ± 0.9 -26.4 -40 

1/T1e

298 (x107/ s–1) [a] 27.0 ± 0.5 0.65 7 

ErH (kJ mol–1) [b] 20.4 ± 0.7 – 26.2 

τrH

298 (ps) [b] 74 ± 2 – 104.9 

[a] from 17O NMR; [b] from NMRD; [c] Ref. [42]; [d] Ref. [44]. 

 

As Figure 5 shows, the reduced transverse 17O relaxation rates undergo a changeover 

at ~290 K between the fast and intermediate water exchange regime. Importantly, the water 

exchange rate has a significant contribution to the overall correlation time (1/τc = kex + 1/T1e; 

kex varying from 10 to 80% in the temperature range 273-338 K), which makes possible to 

accurately determine kex. The kex

298 value characterizing the water exchange of [Mn(c-cdta)]2– 

is ca. 60% higher than that of [Mn(t-cdta)]2–. The high positive activation entropy points to a 

dissociative mechanism, as would be expected for a seven-coordinated Mn(II) complex. 

On the other hand, kex
298 is half of the value determined for [Mn(edta)]2- (47.1×107 s-1) 

[45]. This is related to the more rigid structure of the cdta4− ligands which detains the 

rearrangement of the coordination environment during the water exchange process. The water 

exchange is also several times slower on [Mn(c-cdta)]2– than on the 1,4-do2a or do1a 

complexes, having a very different, macrocyclic structure [46]. The rotational correlation time 

(τrH

298) obtained from the analysis of the relaxivity data is in the usual order of magnitude of 

typical low molecular weight complexes. 
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Figure 6. 1H NMRD profiles of [Mn(c-cdta)]2– at 25 °C (♦), 37 °C (�) and 50 °C (�). 

 

DFT study 

 

Aiming shed light on the reasons behind the different behaviour of the [Mn(c-

cdta)(H2O)]2– and [Mn(t-cdta)(H2O)]2– complexes, we carried out a theoretical DFT study. 

These calculations were performed with the explicit inclusion of two second-sphere water 

molecules, which were previously found to be necessary for an accurate determination of 

Mn-Owater bond distances and 17O hyperfine coupling constants AO/� [47]. The X-ray structure 

of the ammonium salt of [Mn(t-cdta)(H2O)]2– was reported [48]. Our DFT calculations 

(M062X/TZVP, see details below) provide bond distances of the metal coordination 

environment in excellent agreement with the solid state data (Supporting Information). The 

structure obtained using DFT for [Mn(c-cdta)(H2O)]2– is very similar to that of the trans 

analogue, with the bond distances in the two complexes differing by > 0.035 Å (Figure 7). An 

overlay of the two calculated structures corroborates the very similar coordination 

environments of the two structures (Supporting Information). In spite of the minor differences 

in the metal coordination environments, DFT calculations indicate that the [Mn(t-

cdta)(H2O)]2– complex is considerably more stable than the cis analogue. The free energy 
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difference between the two complexes favors the trans isomer by 35.4 kJ mol-1, which is 

compatible with a higher stability of [Mn(t-cdta)(H2O)]2– by several orders of magnitude. This 

is likely the consequence of the more strained geometry of the ligand in [Mn(c-cdta)(H2O)]2– 

to accommodate the relatively large Mn2+ ion. 

 

 

Figure 7. Structures of the [Mn(c-cdta)(H2O)]2–·2H2O (left) and [Mn(t-cdta)(H2O)]2–·2H2O 

(right) systems obtained with DFT calculations. 

 

 The bond distances involving the metal ion and the coordinated water molecule 

(Mn-O5) obtained for the two systems are very similar (2.264 and 2.271 Å for the cis and 

trans complexes, respectively). Since the water exchange reaction in these complexes is 

expected to follow a dissociative mechanism, one would expect similar activation enthalpies 

for the two systems, as the rupture of the Mn-O5 bond to reach the six-coordinated transition 

state should require similar energies. Thus, we explored the potential energy surface of the 

[Mn(c-cdta)(H2O)]2–·2H2O and [Mn(t-cdta)(H2O)]2–·2H2O systems by increasing the Mn-O5 

distances, which eventually led to the six coordinated systems [Mn(c-cdta)]2–·3H2O and 

[Mn(t-cdta)]2–·3H2O. The enthalpy difference of the seven- and six-coordinated forms favours 

the q = 1 structures by very similar values (24.0 and 23.4 kJ mol-1 for the c-cdta and t-cdta 

complexes, respectively), as would be expected considering the similar Mn-O5 bond 

distances. However, the corresponding relative free energies differ significantly (15.1 and 

16.8 kJ mol-1 for the c-cdta and t-cdta complexes, respectively), and suggest a higher free 

energy barrier for the water exchange in [Mn(t-cdta)(H2O)]2–, which agrees with the 

experimental evidence. Thus, the faster water exchange rate of [Mn(c-cdta)(H2O)]2– obtained 
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from 17O NMR measurements appears to be related to entropy factors rather than to important 

differences in the environments around the coordinated water molecules. 

 DFT calculations give values of the hyperfine coupling constants AO/� of -44.9×106 

and -44.6×106 rad s-1 for the [Mn(c-cdta)(H2O)]2– and [Mn(t-cdta)(H2O)]2– complexes, 

respectively. The first value is in excellent agreement with the one obtained from 17O NMR 

measurements in this study (AO/� = -42.7×106 rad s-1), while the second is somewhat higher 

than the experimental value reported for [Mn(t-cdta)]2– using only T2 relaxation data 

(-26.4×106 rad s-1) [42]. The close agreement between the experimental and calculated 

hyperfine coupling constant of [Mn(c-cdta)(H2O)]2– confirms that the assumption of q = 1 is 

correct. 

 

Summary 

Our efforts to find suitable ligand for Mn(II) complexation started from equilibrium, 

kinetic and relaxometric characterization of Mn(II) complexes formed with commercially 

available open-chain ligands a few years ago [18]. The studies performed revealed that the 

rigid t-cdta forms relatively inert complex with Mn(II) ion (the half-life of the dissociation is 

expected to be 12 hours near to physiological conditions). However, to best of our knowledge 

Mn(II) complexes of other rigid edta derivative ligands such as cis-1,2-cyclohexanediamine 

or o-phenylenediamine tetraacetates (e.g. c-cdta or phdta) were not studied in detail in this 

respect. The combined experimental and DFT study presented in this work show that the 

[Mn(c-cdta)(H2O)]2– and [Mn(t-cdta)(H2O)]2– complexes present very similar solution 

structures in terms of the geometry around the metal coordination environment. However, the 

better pre-organization of the trans derivative for the coordination of relatively large metal 

ions such as Mn2+ results in rather different properties.  

The thermodynamic, kinetic (solvent and dissociation kinetic data) and relaxation 

parameters expressed in terms of water exchanges rates and relaxivity values (at 25 °C) are 

collected in the following table. The data collected for these hexadentate chelators indeed 

indicate that the Mn(II) complexes of these ligands differ notably. The most pronounced 

difference is seen for the dissociation kinetic data as the Mn(II) complex formed by the cis- 

derivative ligand shows properties similar to those seen for other labile complexes of linear 

edta-type ligands [18] whereas the t-cdta forms relatively inert Mn(II) complex. Moreover, 

the stability (especially the conditional stability) behaves alike by making the trans-1,2-
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cyclohexanediamine unit to be an excellent “building block” when tailoring inert Mn(II) 

complexes for safe MRI applications. 

 

Table 4. Comparison of the most important physico-chemical data of the Mn(II) complexes 

formed with t-cdta and c-cdta ligands. 

Parameter [Mn(c-cdta)]2– [Mn(t-cdta)]2– [a] 

log K[Mn(L)] 14.19 14.32 

pMn[b] 7.82 8.68 

t1/2 (h)[c] 0.47 12 

kex

298 (x107 s–1) 22.5 14.0[d] 

r1p

298 [e] 3.79 3.62 

[a] Ref. [18]; [b] pMn values were calculated at pH=7.4 by using 0.01 mM Mn(II) and ligand 
concentration as suggested by É. Tóth and co-workers [29]; [c] the half-lives (h) of 
dissociation were extrapolated to pH=7.4 by using 0.01 mM Cu(II) ion concentration; [d] 
form Ref. [43]; [e] at 25 oC and 20 MHz. 

 

Experimental section 

Synthesis 

All commercially purchased reagents (Sigma-Aldrich) and solvents (Scharlab) were 

used as received and without further purification. NMR spectra were acquired on Bruker 

Avance 360 and 400 MHz spectrometers and processed/analyzed using MestreNova 8.1 

(Mestrelab Research) or Topspin (Bruker) softwares. The ESI QTOF (Electro Spray 

Ionization Quadrupole Time of Flight) spectrometry was performed at the Department of 

Applied Chemistry of the University of Debrecen. 

a). Synthesis of cis-1,2-CDTA-tetraethyl ester: Ethyl-bromoacetate (6.14 g, 36.8 mmol, 4.2 

equiv.) was dissolved in dry acetonitrile and added dropwise to the mixture of 1.00 g (8.76 

mmol) cis-1,2-diaminocyclohexane, 5.66 g N,N-diisopropylethylamine (43.8 mmol, 5.0 

equiv.) and 1.31 g (8.76 mmol, 1.0 equiv.) of NaI prepared in dry acetonitrile (30 ml). The 

reaction mixture was then heated to reflux in N2 atmosphere and kept at this temperature for 7 

hours. The precipitate formed in the course of reaction was filtered off from the hot solution 

and the filtrate was evaporated under reduced pressure. The resulting oily residue was 

dissolved in 40 mL of bi-distilled water and extracted with portions of chloroform (3×40 mL). 

The combined organic fraction was dried over anhydrous Na2SO4 and evaporated under 
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reduced pressure. The purification of the title product by flash chromatography on silica gel 

by using petrolether and ethyl acetate (increasing the ethyl acetate content of the eluent 

gradually form 10:1 to 5:1 by volume) yielded the pure substance (0.82 g which corresponds 

to 20 % yield). Rf in 5:1 petrolether : ethyl acetate is 0.38. 

1H-NMR: (360.13 MHz, CDCl3): δ = 1.23 (12H, t, J = 7.11 Hz, -O-CH2-CH3); 1,29 (2H, m, -

CH2-); 1.43 (2H, m, -CH2-); 1.62 (2H, m, -CH2-); 1.79 (2H, m, -CH2-); 3.16 (2H, d, J = 6.88 

Hz, -CH-); 3.70 and 3.79 (8H, AB doublet, 2JAB = 17.90 Hz, -N-CH2-COO-); 4.11 (8H, q, J = 

7.11 Hz, -O-CH2-CH3). 
13C-NMR: (90.55 MHz, CDCl3): δ = 14.34 (4C, s, -O-CH2-CH3); 

23.44 (2C, s, -CH2-CH2-); 26.88 (2C, s, -CH2-); 53.08 (4C, s, -N-CH2-COO-); 60.27 (4C, s, -

O-CH2-CH3); 60.55 (2C, s, -CH-); 172.58 (-N-CH2-COO-). MS (ESI-Q-TOF): m/z [M+] 

calculated for C22H38N2ONa: 481.252; found: 481.251 

 

b). Synthesis of cis-1,2-CDTA: 0.40 g NaOH (10 mmol, 6 equiv.) was dissolved in 1,0 mL 

of bi-distilled water and was added portionwise to the solution of 0.75 g (1.64 mmol) cis-1,2-

CDTA-tetraethyl ester dissolved in 15 mL of ethanol. The reaction mixture was heated to 78 

◦C and refluxed at this temperature for 24 h. The white precipitate formed during the reaction 

(Na4(c-cdta)) in the reaction mixture was filtered off and washed twice with cold ethanol 

(2×10 mL), diethyl ether (2×10 mL) and dried to constant weight. The solid obtained was 

dissolved in minimal amount of water required to dissolve it (3.0 mL) and pH of the sample 

was set to pH=2.02 by addition of concentrated HCl. The white precipitate formed as a result 

of acid addition was filtered off and washed with small portions of acidified distilled water 

(pH=2.50), cold ethanol (2×5 mL), diethyl ether (2×5 mL) and dried until the weight of the 

product become constant. Yield: 0.22 g (39 %). 
1H-NMR: (360.13 MHz, D2O): δ = 1,51 (2H, m, -CH2-); 1.74 (2H, m, -CH2-); 1.83 (2H, m, -

CH2-); 2.00 (2H, m, -CH2-); 3.51 (2H, m, -CH-); 3.83 and 4.01 (8H, AB doublet, 2JAB = 

17.39 Hz, -N-CH2-COO-). 13C-NMR: (90.55 MHz, D2O): δ = 22.11 (2C, s, -CH2-CH2-); 

23.19 (2C, s, -CH2-); 54.76 (4C, s, -N-CH2-COO-); 61.26 (2C, s, -CH-); 172.81 (-N-CH2-

COO-). MS (ESI-Q-TOF): m/z [M+] calculated for C14H21N2O8NaNa: 391.109; found: 

391.109 

 

Equilibrium studies 

The chemicals (MCl2 salts) used in the studies were of the highest analytical grade. 

The concentration of the stock solutions was determined by complexometric titration using a 



  

 23

standardized Na2H2edta solution and appropriate indicators (Patton & Reeder (CaCl2), 

Eriochrome Black T (MgCl2 and MnCl2), xylenol orange (ZnCl2), murexid (CuCl2)) [49].  

The pH-potentiometric titrations were carried out with a Methrohm 888 Titrando titration 

workstation, using a Metrohm 6.0233.100 combined electrode. The titrated solutions (6.00 

mL) were thermostated at 25 °C. The samples were stirred and kept under inert gas 

atmosphere (N2) to avoid the effect of CO2. The calibration of the electrode was performed by 

two point calibration (KH-phthalate (pH = 4.005) and borax (pH = 9.177) buffers). The 

calculation of [H+] from the measured pH values was performed with the use of the method 

proposed by Irving et al. [50] by titrating a 0.01 M HCl solution (I = 0.15 M NaCl) with a 

standardized NaOH solution. The differences between the measured (pHread) and calculated 

pH (-log [H+]) values were used to obtain the equilibrium H+ concentrations from the pH-data 

obtained in the titrations. The ion product of water was determined from the same experiment 

in the pH range 11.4 – 12.0. 

The concentration of the c-cdta ligand was determined by pH-potentiometric titration, 

comparing the titration curves obtained in the presence and absence of moderate Mn(II) 

excess. The protonation constants of c-cdta as well as the stability and protonation constants 

of the complexes formed with Mg(II) Ca(II), Mn(II), Cu(II) and Zn(II) were also determined 

by pH-potentiometric titration. The metal-to-ligand concentration ratio was 1:1 (the 

concentration of the ligand was generally 2.50 − 3.00 mM). The pH-potentiometric titrations 

curves were measured in the pH range 1.8 − 11.8 and 44 − 205 mL NaOH–pH data pairs were 

collected and fitted. 

The stability constant and solution speciation of the [Mn(c-cdta)]2− complex was 

confirmed using 1H relaxometry in order to support the stability constant value obtained by 

pH-potentiometry (for details about T1 measurements, see the “Relaxivity determination” 

section below). 3.00 mL of a 1.02 mM [Mn(c-cdta)]2− sample were titrated with solid NaOH 

or gasous HCl (in order to avoid sample dilution) to adjust the pH in the range 1.97 − 7.12, 

followed by recording and averaging of 5 − 6 T1 values for each pH data point. 

Owing to the high conditional stability of [Cu(c-cdta)]2-, the formation of the complex 

was complete (nearly 100%) even at pH = 1.54 (starting point of the pH-potentiometric 

titration). For this reason, 12 out-of-cell (batch) samples containing a slight excess of ligand 

and the Cu(II) ion were prepared (cL = 3.528 mM, cCu2+ = 3.410 mM, 25 oC, 0.5 M 

(Na++H+)Cl-). The samples, whose acidity was varied in the concentration range of 12.1 − 462 

mM, were equilibrated for 1 day before recording the absorption spectra at 25 oC in Peltier 
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thermostated semi-micro 1 cm Hellma® cells using a Varian CARY 1E, UV-Vis 

spectrophotometer. The molar absorptivity of the [Cu(c-cdta)]2-, complex was determined at 

21 wavelengths (600 − 800 nm range) by recording the spectra of 1.72×10-3, 2.55×10-3 and 

3.48×10-3 M complex solutions, while for the Cu(II) ion, previously published molar 

absorptivity values (determined under identical conditions) [51] were used for the data fitting. 

The molar absorption coefficients of monoprotonated [CuH(c-cdta)]2- were calculated during 

the simultaneous data refinement (UV-vis and pH-potentiometric titration curves). The 

protonation (ligand and complexes) and stability constants (complexes) were calculated from 

the titration data with the PSEQUAD program [52]. 

 

Kinetic studies 

The dissociation rates of the [Mn(c-cdta)]2− chelate were studied at 25 oC (Peltier 

thermostated) and 0.15 M NaCl ionic strength by stopped-flow method monitoring the 

formation of the Cu(II) complex at 300 nm using an Applied Photophysics DX-17MV 

instrument. All dissociation reactions were performed under pseudo-first order conditions 

where the exchanging metal ion (Cu(II)) was in 10–40-fold excess relative to the complex 

(ccomplex = 2.0×10–4 M, pH range 4.25–5.10). The kinetic studies were carried out in a non-

coordinating buffer to maintain the pH in the samples constant (0.05 M N,-methylpiperazine 

(nmp) with log K2
H = 4.34 under the conditions applied). The pseudo-first-order rate constants 

(kobs) were calculated by fitting the absorbance-time data series to equation 9: 

ee0t )( AAAA +−=
− tkobse    (eqn. 9) 

where At, A0 and Ae are the absorbance at time t, at the start and at the equilibrium of the 

reaction, respectively. The calculations were performed with the computer program 

Micromath Scientist, version 2.0 (Salt Lake City, UT, USA) by using a standard least-squares 

procedure [53]. 

 
1H-, and 17O-NMR relaxometry  

Longitudinal (1/T1) and transverse (1/T2) relaxation rates and chemical shifts of an 

aqueous solution of the Mn(II) complex (pH=7.4, 10.3 mM) and of a diamagnetic reference 

(HClO4 acidified water, pH = 3.3) were measured in the temperature range 273 – 338 K using 

a Bruker Avance 400 (9.4 T, 54.2 MHz) spectrometer. The temperature was determined 

according to previous calibration by means of ethylene glycol and methanol as standards [54]. 
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1/T1 and 1/T2 values were determined by the inversion - recovery and the Carr − Purcell − 

Meiboom −Gill spin − echo technique, respectively [55]. The technique of the 17O NMR 

measurements has been described previously [56]. To avoid susceptibility corrections of the 

chemical shifts, a glass sphere fitted into an 10 mm NMR tube was used to contain the 

samples. To improve sensitivity, 17O enriched water (10% H2
17O, CortecNet) was added to 

the solutions to reach around 1% enrichment. 

Proton NMRD profiles of the [Mn(c-cdta)]2– complex (1.00 mM, pH = 7.4) were 

recorded in aqueous solution on a Stelar SMARTracer Fast Field Cycling relaxometer (0.01 − 

10 MHz) and a Bruker WP80 NMR electromagnet adapted to variable field measurements (20 

− 80 MHz) and controlled by a SMARTracer PC-NMR console. The temperature was 

monitored by a VTC91 temperature control unit and maintained by a gas flow. The 

temperature was determined by previous calibration with a Pt resistance temperature probe. 

The least-squares fit of the 17O NMR and of the NMRD data was performed using 

Visualiseur/Optimiseur [57, 58] running on a MATLAB 8.3.0 (R2014a) platform. 

 

Relaxivity determination 

The longitudinal water proton relaxation rate (r1 = 1/T1 - 1/Tw) was measured at 20 

MHz with a Bruker Minispec MQ-20 relaxometer (Bruker Biospin, Germany). Samples were 

thermostated by using a circulating water bath at 25.0 ± 0.2 oC. The longitudinal relaxation 

times (T1) were measured by using the inversion recovery method (180o − τ  − 90o) by 

averaging 5 − 6 data points for each concentration point obtained by using 14 different τ 

values (τ values ranging between 0 to at least 6 times the expected T1). 

 

DFT calculations 

 The [Mn(c-cdta)(H2O)]2–·2H2O and [Mn(t-cdta)(H2O)]2–·2H2O systems were fully 

optimized by using the hybrid meta-GGA M062X functional and the TZVP basis set [59, 60]. 

The nature of optimized geometries as true energy minima was confirmed by frequency 

analysis. Frequency calculations provided zero-point energies (ZPEs), enthalpies (H) and free 

energies (G) at 298.15 K and 1 atm. The relative free energies include non-potential-energy 

contributions (zero point energies and thermal terms) obtained through frequency analysis. 

Hyperfine coupling constants were calculated on the optimized structures by using the 

EPR-III basis set for the ligand atoms and the aug-cc-pVTZ-J basis set for Mn [61, 62]. 
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Throughout this study bulk solvent effects were considered by using the integral equation 

formalism variant of the polarizable continuum model (IEFPCM) [63]. 

 

Abbreviations 

 

MRI Magnetic resonance imaging 

DFT Density Functional Theory 

APC aminopolycarboxylate 

CA Contrast Agent 

dtpa Diethylenetriaminepentaacetic acid 

dota 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid 

NSF Nephrogenic Systemic Fibrosis 

edta Ethylenediaminetetraacetic acid 

trans-1,2-cdta trans-1,2-Diaminocyclohexane-N,N,N′,N′-tetraacetic acid 

cis-1,2-cdta cis-1,2-Diaminocyclohexane-N,N,N′,N′-tetraacetic acid 

dipea N,N-diisopropylethylamine 

ida Iminodiacetate 

NMRD Nuclear magnetic relaxation dispersion 

4-het-cdta 4-((1-(2-Hydroxyethyl)-1H[1,2,3]triazol-4-yl)methoxy)methyl-trans-1,2-

diaminocyclohexane-N,N,N’,N’-tetraacetic acid 

1,4-do2a 1,4,7,10-Tetraazacyclododecane-1,4-diacetic acid 

do1a 1,4,7,10-Tetraazacyclododecane-1-acetic acid 

phdta o-Phenylenediamine tetraacetate 

ESI QTOF Electro Spray Ionization Quadrupole Time of Flight 

nmp N-methylpiperazine 
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ZPEs Zero-point energies 

 

Appendix A. Supplementary data 

Supplementary data associated with this article (1H-, 13C-NMR and MS data of the pure 

compounds, comparison of X-ray and DFT structures and the equations related to the solvent 

exchange kinetics data refinement) can be found, in the online version, at 

http://dx.doi.org/10.1016/xxxxxxxxxxxxxxxxx . 
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Highlights 

- Stability constants, water exchange rates and the relaxivities of the isomeric [Mn(cdta)]2− 

complexes are similar 

-The conditional stability and the inertness of the [Mn(t-cdta)]2− is higher than that of [Mn(c-

cdta)]2− 

-The trans-1,2-cyclohexanediamine unit is an excellent “building block” when designing 

Mn(II) complexes as safe MRI agents 
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TOC graphic 

Cis- or 

trans-?

N N
HO2C

HO2C CO2H

CO2H

 

M(II) complexes formed with c-cdta (cis-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid) 

chelator have been investigated by pH-potentiometry, UV-vis spectrophotometry, 1H and 17O 

NMR relaxometry. pMn as well as the inertness of the Mn(II) complex formed with c-cdta 

ligand were found to differ substantially form those found for the trans- derivative while the 

water exchange rate and the relaxivity do not differ remarkably. Our results confirm, that the 

t-cdta platform has better potential for further ligand development owing to better dissociation 

kinetic parameters of its Mn(II) complex. 

 

 


