Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Sagadevan, A. Charitou, F. Wang, M. Ivanova, M. Vuagnat and M. Greaney, *Chem. Sci.*, 2020, DOI: 10.1039/D0SC01289K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemical-science

View Article Online

View Journal

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx Arunachalam Sagadevan, Anastasios Charitou, Fen Wang, Maria Ivanova, Martin Vuagnat, and Michael F. Greaney*

Using Visible Light Ruthenium C-H Activation

ortho C-H Arylation of Arenes at Room Temperature

DOI: 10.1039/x0xx00000x

A ruthenium-catalyzed ortho C-H arylation process is described using visible light. Using the readily available catalyst [RuCl₂(p-cymene)]₂, visible light irradiation was found to enable arylation of 2-aryl-pyridines at room temperature for a range of aryl bromides and iodides.

Introduction

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Dpen Access Article. Published on 07 April 2020. Downloaded on 4/7/2020 11:43:00 AM.

The integration of visible light photoredox catalysis with transition metal C-H activation catalysis creates new pathways for bond formation, that frequently operate under mild conditions. The two catalysis regimes can be meshed via two separate catalyst entities, with two corresponding catalysis cycles;¹ or alternatively, a single dual-function catalyst system can be used.² We are interested in this latter approach to exploit the facility of some Ru catalysts to absorb visible light, such that their native C-H activation function is enhanced in terms of improved rates, substrate scope, and environmental impact. We, along with the Ackermann group, recently demonstrated this concept for the Ru-catalysed metaalkylation reaction (Scheme 1).3 The tert-butylation of 2phenylpyridine 1, typically carried out under thermal conditions (ca. 100 °C), could proceed at room temperature under blue-light irradiation using the widely employed catalyst $[RuCl_2(p-cymene)]_2$ to give the alkylated product **3** in good yield.

We were interested in exploring this concept of photo-Ru C-H activation in the arylation regime. Ru-catalysed *ortho*-arylation is a powerful approach to C-C bond formation that has seen extensive development in recent years.⁴ Proceeding *via* Ru(II) / Ru(IV) catalytic cycles, the process has excellent scope for aryl halides (including aryl chlorides), is very tolerant of water and air, and the cost of Ru compares favorably with the far more expensive alternatives of Pd and Rh that are frequently used for *ortho* C-H arylation. High reaction temperatures are standard, however, when using $[RuCl_2(p-cymene)]_2$ as catalyst.^{5,6} A photo Ru arylation reaction could activate alternative mechanistic paths and offer the possibility of room temperature reaction.⁷ The two Ru-catalyzed processes, *meta*-

alkylation and *ortho*-arylation, operate through very different frameworks in the thermal regime, with the former thought to involve discrete 2° and 3° carbon-centered radicals adding to Ru(III) metallacycles (Scheme 1A),⁸ and the latter involving more typical oxidative additions of aryl halides to a Ru(II) center.⁹ The role of photoexcitation on a putative arylation process was thus interesting to examine in light of this dichotomy; as the photoreductive formation of highly reactive aryl radicals in analogy to Ru-*meta* alkylation chemistry was unlikely to be a significant factor.

Scheme 1 Ruthenium photocatalysis for meta-alkylation and proposed ortho-arylation.

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Chemical Science

ARTICLE

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 07 April 2020. Downloaded on 4/7/2020 11:43:00 AM.

Results and Discussion

Photoarylation of 2-arylazines with aryl halides

We began by examining the archetypal arylation system of 2phenylpyridine **1a** with bromoanisole **4a** (Table 1). Using [RuCl₂(*p*-cymene)]₂ as catalyst in the presence of KOAc, under blue LED irradiation, we were pleased to observe successful arylation at room temperature to give a good 70% combined conversion to mono and di-*ortho*-arylated products **5a** and **5aa**. As is typical for Ru *ortho*-arylations of 2-phenyl pyridine, the monoarylated product is a superior substrate than the starting material, giving the diarylated material as the major product.

Table 1 Development of Ru photoarylation				
	Br [RuCl ₂ (p-c	cymene)] ₂ (10 mol %) solvent, additives	N +	N.
		Ds , RT, N ₂ , 24 h	Ar 4	Ar
1a	4a		5a	522
				- uu
entry	catalyst	additives	solvent	yield [%] ^[a]
1	[RuCl ₂ (p-cymene)] ₂	$MesCO_2H$	1,4-dioxane	(70)
2	$[RuCl_2(p-cymene)]_2$	$MesCO_2H$	DME	60
3	[RuCl ₂ (p-cymene)] ₂	$MesCO_2H$	THF	65
4	[RuCl ₂ (p-cymene)] ₂	$MesCO_2H$	2MeTHF	(72)
5	$[RuCl_2(p-cymene)]_2$	N-Ac-I-	2MeTHF	(74)
		isoleu		
6	$[RuCl_2(p-cymene)]_2$	N-Ac-I-	2MeTHF	(78)
		isoleu		
7	[RuCl ₂ (p-cymene)] ₂	N-Ac-I-	2MeTHF	(80)
		isoleu / H₂O		
8	[RuCl ₂ (p-cymene)] ₂	none/H ₂ O	2MeTHF	(80)
9	$[RuCl_2(p-cymene)]_2$	N-Ac-I-	MeOH,	trace
		isoleu	MeCN,	
			DCM, or	
			DMF	
10	RuCl ₃ ·H ₂ O	none	2MeTHF	0
11	$Ru(PPh_3)_4Cl_2$	N-Ac-I-	2MeTHF	0
		isoleu / H₂O		
12	Ru(bpy) ₃ Cl ₂	None	2MeTHF	0
13	$[RuCl_2(p-cymene)]_2$	N-Ac-I-	2MeTHF	(72)
	(5 mol%)	isoleu / H₂O		
14	no catalyst	N-Ac-I-	2MeTHF	0
		isoleu		
15	$[RuCl_2(p-cymene)]_2$	N-Ac-I-	2MeTHF	0
	dark	isoleu / H₂O		
16	$[RuCl_2(p-cymene)]_2$	N-Ac-I-	2MeTHF	0
	with air	isoleu / H ₂ O		

Reaction conditions: **1a** (0.3 mmol), **4a** (0.6 mmol), [Ru] catalyst (10 mol%), additive (10 mol%), base 2.0 equiv, solvent (1 mL). The mixture was irradiated with blue LEDs (40-90 W power) for 24 h under N₂ atmosphere. [a] Yields in brackets refer to combined ¹H NMR yield using 1,3,5-trimethylbenzene (mesitylene) as the internal standard, unbracketed yields are isolated. THF = tetrahydrofuran, 2-MeTHF = 2-methyl tetrahydrofuran, DME = 1,2-dimethoxyethane, DMF = dimethyl formaldehyde, DCM = dichloromethane.

The reaction worked well in ethereal solvents (entries 1-4), and a screen of carboxylate and amino acid additives did not yield substantial improvements, although the acetylisoleucine derivative gave slightly improved yields and was retained for substrate screening (entry 7). Common^{1:} dol Went 50% and H²⁸ and MeOH, DCM, MeCN, or DMF were not effective (entry 8), nor were the simple Ru(II) salts shown in entries 9-11. Control experiments established that both light and catalyst were essential for reaction at room temp (entries 13-15), and as with our previous Ru *meta* systems,¹⁰ the reaction was found to be air sensitive and require inert atmospheres to proceed.

Unless otherwise noted, reaction conditions were as follows: **1** (1.0 eq, 0.3 mmol), **4a** (1.5 eq, 0.6 mmol), [Ru] catalyst (10 mol %), additive (10 mol %), base (2.0 eq), solvent (1 mL), H₂O (5 eq). The mixture was irradiated with blue LEDs (40-90 W power) for 24 h under N₂ (1 atm). The yields refer to isolated yields after purification by column chromatography on silica gel (major product illustrated). [a] Reaction performed using 0.250 mmol of 1 (1.0 eq) and 0.375 mmol of **4a** (1.5 eq). [b] Reaction performed without the addition of N-Ac-L-IIe. [c] Reaction run for 40 h.

With these conditions in hand, we established the scope of the reaction with respect to the C-H component using *p*-bromoanisole as the arylating agent. Alkyl, alkoxy, carboxy, and phenyl substitution was tolerated in the 4-position of the arene, favoring the disubstituted product (**5aa** – **5ff**). Substitution in the 3-position with MeO, Me, Cl, and fused ring of the naphthyl group acted as a steric control element, suppressing the second *ortho* ruthenation step and yielding mono-arylated products exclusively (**5g** – **5j**). Some alterations

Journal Name

to the directing group were possible, with alkylated pyridines being effective in the reaction, along with bicyclic quinoline and isoquinoline directing groups (5kk - 5o). Finally, changing the arene C-H to the 5-membered heteroarene thiophene C-H was partially successful in the photoarylation, affording the novel pyridyl thiophene **5q** but in diminished yield.

Scheme 3 Photoarylation of 2-arylpyridines with various aryl halides.

Unless otherwise noted, reaction conditions were as follows: 1 (1.0 eq, 0.25 - 0.30 mmol), 4 (1.5 eq, 0.375 - 0.45 mmol), [Ru] catalyst (10 mol %), base (2.0 eq), solvent (1 mL), H2O (5 eq). The mixture was irradiated with blue LEDs (40-90 W power) for 24 h in N2 (1 atm). The yields refer to isolated yields after purification by column chromatography on silica gel. [a] Reaction run for 72 h. [b] Reaction performed using 0.3 mmol of 1 (1.0 eq) and 0.6 mmol of 4 (2.0 eq) in the presence of N-Ac-L-Ile (10 mol %). [c] Reaction run for 40 h.

We then turned our attention to the aryl halide coupling partner, and were pleased to find broad substrate scope across a variety of aryl bromides and iodides (Scheme 3). We used 3-methyl-2-phenylpyridine (**1b**) as the substrate in the majority of cases, to simplify the reaction pathway for monoarylation. We observed good efficiencies for 4-alkyl and moderate efficiencies for 4-phenyl aryl halides (**6a** - **6cc**), along with the 2-thienyliodide substrate (**6dd**). Halogens were well tolerated (**6e** - **6gg**). Electron poor (4-keto and 4-carboxy ester groups) along with electron rich (4-methoxy) reacted smoothly in each case. *Ortho*-substituted aryl halides were not

generally effective in this protocol, althoughviet brows and the protocol although the properties of the protocol although the properties of the protocol although the protocol

Mechanistic studies

The exclusive formation of ortho-arylated products, allied with the high reduction potential of aryl halides (*ca.* -2.5 eV)¹² would likely preclude any discrete aryl radical generation through SET from a Ru(II) catalytic species in the reaction. This was supported with radical quenching experiments, where the reaction proceeded to reasonable conversion in the presence of both BHT and 1,1-diphenylethene (DHP), although TEMPO was observed to completely inhibit the reaction forming an insoluble black suspension. A competition experiment between the electron-rich bromoanisole **4a** and electron-poor bromo-benzoate afforded a 3:1 ratio of products in favour of the benzoate **6i**, in line with what is commonly observed in high-temperature Ru *ortho*-arylation through an oxidative addition mechanism.¹³

Recent investigations from Larrosa and co-workers into the mechanism of Ru(II)-ortho arylation have identified the inhibitory role of the cymene ligand in [RuCl₂(p-cymene)]₂ catalysis.^{5,14} While this ligand affords an air-stable, easy to use catalyst, it retards activity in catalytic cycles, and must decomplex to enable the formation of the active biscycloruthenated complex C (Scheme 4E). We analysed the free cymene formed in the reaction under room temperature blue light irradiation against an ambient light control. Decomplexation was observed in both cases, but with a clear rate increase under blue LED irradiation (Scheme 4C). Photodecomplexation of η^6 -arenes such as cymene is well known, and has been used as a triggering mechanism for both chemical and biological activity in Ru(II) complexes.¹⁵ However, a light / dark experiment (Scheme 4D) demonstrated that continuous irradiation was necessary for complete conversion. This suggests that either reversible cymene re-complexation can inhibit the reaction, or there is an additional role for visible light in the catalytic cycle (e.g. photoexcitation of complexes C or **D** to facilitate either oxidative addition or reductive elimination, respectively). Stern-Volmer experiments with stoichiometric pre-catalyst A and aryl halides did not show clear evidence of photoluminescence quenching, but we cannot rule out an additional role for visible light in subsequent steps in the catalytic cycle at this time.

Conclusions

We have established a room temperature, ruthenium catalysed *ortho*-arylation reaction that proceeds at room temperature under the agency of visible light irradiation. The reaction encompasses a wide selection of aryl halides, producing C-H arylated products that are typically accessed at temperatures in excess of 100 °C. Initial observations point to a photo-decomplexation of the cymene ligand from the ruthenium pre-catalyst as playing a key role in the catalytic

Chemical Science

ARTICLE

cycle. Future work will extend the photoarylation to new C-H substrate classes, and further delineate the role of visible light in the mechanism.

A. Competition between aryl halides

D. Light on / off

E. Proposed pathway

addition

 Scheme 4 Mechanistic investigations and proposed pathway.
 Conversion in part C View Article Online

 refers to amount of *p*-cymene produced.
 DOI: 10.1039/D0SC01289K

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the EPSRC, The Royal Society, and the EU. We thank Dr Louise Natrajan (University of Manchester) for helpful discussions.

Notes and references

¹ Reviews: a) M. D. Levin, S. Kim and F. D. Toste, *ACS Cent. Sci.* 2016, **2**, 293. b) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans and D. W. C. MacMillan, *Nat. Rev. Chem.* 2017, **1**, 0052; c) J. A. Milligan, J. P. Phelan, S. O. Badir and G. A. Molander, *Angew. Chem. Int. Ed.* 2019, **58**, 6152; d) M. Parasram, V. Gevorgyan, *Chem. Soc. Rev.* 2017, **46**, 6227.

² Selected recent examples: a) W. Ding, L.-Q. Lu, Q. Q. Zhou, Y. Wei, J. -R. Chen and W. -J. Xiao, J. Am. Chem. Soc. 2017, 139, 63. b) Y. Li, K. Zhou, Z. Wen, S. Cao, X. Shen, M. Lei and L. Gong, J. Am. Chem. Soc. 2018, 140, 15850. c) Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu, Science, 2016, 351, 681. d) J. M. Ahn, T. S. Ratani, K. I. Hannoun, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2017, 139, 12716. e) D. B. Bagal, G. Kachkovskyi, M. Knorn, T. Rawner, B. M. Bhanage, O. Reiser, Angew. Chem. Int. Ed. 2015, 54, 6999. f) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem. Int. Ed. 2015, 54, 13896. g) H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L. -A. Chen, K. Harms, M. Marsch, G. Hilt and E. Meggers, Nature 2014, 515, 100. h) L. Zhang and E. Meggers, Acc. Chem. Res. 2017, 50, 320. i) J. Thongpaen, R. Manguin, V. Dorcet, T. Vives, C. Duhayon, M. Mauduit and O. Basle, Angew. Chem. Int. Ed. 2019, 58, 15244. j) S. Witzel, J. Xie, M. Rudolph and A. S. K. Hashmi, Adv. Synth. Catal. 2017, 359, 1522. k) I. Abdiaj, A. Fontana, M. Vitoria Gomez, A. de la Hoz and J. Alcazar, Angew. Chem. Int. Ed. 2018, 57, 8473. I) B. D. Ravetz, J. Y. Wang, K. E. Ruhl and T. Rovis, ACS Catal. 2019, 9, 200. m) R. Kancherla, K. Muralirajan, B. Maity, C. Zhu, P. E. Krach, L. Cavallo and M. Rueping, Angew. Chem. Int. Ed. 2019, 58, 3412.

³ a) A. Sagadevan and M. F. Greaney, *Angew. Chem. Int. Ed.* 2019, **58**, 9826; b) P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr and L. Ackermann, *Angew. Chem. Int. Ed.* 2019, **58**, 9820.

⁴ Reviews: a) P. Nareddy, F. Jordan and M. Szostak, *ACS Catal.* 2017, **7**, 5721. b) L. Ackermann, *Org. Proc. Res. Dev.* 2015, **19**, 260. c) P. B. Arockiam, C. Bruneau, and P. H. Dixneuf, *Chem. Rev.* 2012, **112**, 5879.

⁵ Selected examples: a) M. Drev, U. Grošelj, B. Ledinek, F.

3 5 6 7% (black 1% This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Open Access Article. Published on 07 April 2020. Downloaded on 4/7/2020 11:43:00 AM.

Perdih, J. Svete, B. Štefane and F. Požgan, *Org. Lett.* 2018, **20**, 5268. b) A. Schischko, H. Ren, N. Kaplaneris, L. Ackermann *Angew. Chem. Int. Ed.* 2017, **56**, 1576. c) B. Li, C. Darcel, T. Roisnel and P. H. Dixneuf, *J. Organometallic Chem.* 2015, **793**, 200. d) Y.-Q. He and Y.-W. Zhong, *Chem. Commun.* 2015, **51**, 3411. e) M. Seki, *ACS Catal.* 2014, **4**, 4047. f) L. Ackermann, R. Vicente and A. Althammer, *Org. Lett.* 2008, **10**, 2299. g) S. Oi, K. Sakai and Y. Inoue, *Org. Lett.* 2005, **7**, 4009.

⁶ For a recent mild Ru-catalyzed arylation using cyclometallated complexes see: M. Simonetti, D. M. Cannas, X. Just-Baringo, I. J. Vitorica-Yrezabal and I. Larrosa, *Nat. Chem.* 2018, **10**, 724.

⁷ For a review of photoredox arylation, see: a) I. Ghosh, L. Marzo, A. Das, R. Shaikh and B. König, *Acc. Chem. Res.* 2016, **49**, 1566. For a review of C-H activation under mild conditions, see: b) T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, *Chem. Soc. Rev.* 2016, **45**, 2900.

⁸ a) A. J. Paterson, S. S. John-Campbell, M. F. Mahon, N. J. Press and C. G. Frost, *Chem. Commun.* 2015, **51**, 12807. b) J. Li, S. Warratz, D. Zell, S. De Sarkar, E. E. Ishikawa and L. Ackermann, *J. Am. Chem. Soc.* 2015, **137**, 13894. c) F. Fumagalli, S. Warratz, S.– K. Zhang, T. Rogge, C. Zhu, A. C. Stückl and L. Ackermann, *Chem. Eur. J.* 2018, **24**, 3984.

⁹ C. Shan, L. Zhu, L.-B. Qu, R. Bai and Y. Lan, *Chem. Soc. Rev.* 2018, **47**, 7552.

¹⁰ a) C. J. Teskey, A. Y. W. Lui and M. F. Greaney, *Angew. Chem. Int. Ed.* 2015, **54**, 11677. b) H. L. Barlow, C. J. Teskey and M. F. Greaney, *Org. Lett.* 2017, **19**, 6662.

¹¹ T. Rogge and L. Ackermann, *Angew. Chem. Int. Ed.* 2019, **58**, 15640.

¹² C. P. Andrieux, C. Blocman, J. M. Dumas-Bouchiat and J. M. Saveant, *J. Am. Chem. Soc.* 1979, **101**, 3431.

¹³ L. Ackermann, R. Vicente, H. K. Potukuchi and V. Pirovano, *Org. Lett.*, 2010, **12**, 5032.

¹⁴ See also: a) P. Marce, A. J. Paterson, M. F. Mahon, C. G. Frost, *Catal. Sci. Technol.* 2016, 6, 7068. b) J. McIntyre, I. Mayoral-Soler, P. Salvador, A. Poater and D. J. Nelson *Catal. Sci. Technol.* 2018, 8, 3174. c) E. Ferrer Flegeau, C. Bruneau, P. H. Dixneuf and A. Jutand, *J. Am. Chem. Soc.* 2011, 133, 26, 10161.

¹⁵ a) E. E. Karslyan, D. S. Perekalin, P. V. Petrovskii, K. A. Lyssenko and A. R. Kudinov, *Russ. Chem. Bull., Int. Ed.*, 2008, **10**, 2201. b)
E. E. Karslyan, D. S. Perekalin, P. V. Petrovskii, A. O. Borisova and A. R. Kudinov, *Russ. Chem. Bull., Int. Ed.*, 2009, **58**, 585. c) F.
Barragán, P. López-Senín, L. Salassa, S. Betanzos-Lara, A. Habtemariam, V. Moreno, P. J. Sadler and V. Marchán, *J. Am. Chem. Soc.* 2011, **133**, 14098. d) D. S. Perekalin, E.E. Karslyan, E. A. Trifonova, A. I. Konovalov, N. L. Loskutova, Y. V. Nelyubina and A. R. Kudinov, *Eur. J. Inorg. Chem.*, **2013**, 481-493. e) S. L.
Saraf, T. J. Fish, A. D. Benninghoff, A. A. Buelt, R. C. Smith and L.
M. Berreau, *Organometallics* 2014, **33**, 6341. f) P. Qin, S. K.
Cope, H. Steger, K. M. Veccharelli, R. L. Holland, D. M. Hitt, C. E.
Moore, K. K. Baldridge and J. M. O'Connor, *Organometallics*, 2017, **36**, 3967.