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The biosynthesis and subsequent modification of fatty acids plays a
major role in the primary and secondary metabolism of both
terrestrial and marine organisms. One such metabolite, myristic
acid (1) is the biosynthetic precursor of a number of secondary
metabolites, four of which are depicted in Figure 1 (2–5). These
molecules have each been shown to possess a broad range of
antibacteral and antivirulence activity ranging from the inhibition of
biofouling and biofilm formation to the disruption of quorum-sensing
networks (vide). Our laboratory has recently completed the first total
synthesis of promysalin ((− )-2), which confirmed both its absolute
stereochemistry and potent species-specific antibacterial activity (sub-
micromolar activity against P. aeruginosa).1,2 In 1978 Moore et al.3

identified lyngbic acid, ((− )-3) as a major component of the lipid
extracts from the marine cyanobacteria Lyngbya majuscula. Gerwick
later studied the biological properties of this secondary metabolite and
reported that (− )-3 displays antimicrobial activity toward Gram-
positive bacteria (Staphylococcus aureus and Bacillus subtilis); however,
Gram-negative strains were not evaluated.4 Additionally, (− )-3 was
shown to interfere with the CqsS-mediated signaling pathway that is
responsible for quorum sensing in Vibrio harveyi5 and inhibit the
growth of marine fungi Fusarium sp., Lindra thalassiae and Dendry-
phiella salina.6 In 2000, Gerwick et al.7 reported the isolation of two
aromatic amide derivatives of lyngbic acid, hermitamides A ((− )-4)
and B ((− )-5). These compounds were shown to be inhibitors of the
human voltage-gated sodium channel,8 cytotoxic to neuro-2a neuro-
blastoma cells and active in a brine shrimp toxicity assay.7 As with
lyngbic acid, these compounds were not evaluated against Gram-
negative pathogens. Motivated by our earlier work on promysalin and
the dire need for the discovery of novel therapeutics to combat
Pseudomonas infections, we sought to investigate the potential of these
molecules as species-specific antibacterial agents.
Similar to diversity-oriented synthesis, diverted total synthesis

(DTS) is a method by which one can leverage achievements in total
synthesis to access structural space, which is not possible through
biosynthetic means. Pioneering work by the Danishefsky group
demonstrated that DTS could be used to improve both the efficacy

and pharmacological properties of migrastatin9 and epothilone,10

leading to viable drug candidates. In a similar fashion, the Reddy
group applied DTS toward the synthesis of hybrid hermitamides,
derived from the coupling of lyngbic acid, a marine metabolite, with
amines from the terrestrial amides of the Piperaceae family resulting in
compounds with in vitro cytotoxicity against human cancer cell lines.11

Taking inspiration from these examples, we sought to utilize DTS
through the coupling of a readily available precursor from our
promysalin synthesis, (− )-6S, with the structurally similar alcohol
variants of lyngbic acid and the hermitamides. Herein, we report the
biological evaluation and an enantioselective synthesis of both
enantiomers of lyngbic acid and hermatidamides A and B, and a
focused library of chimeric promysalin derivatives.
The synthesis of lyngbic acid began with the asymmetric allylation

of octanal with allyltributylstannane mediated by a titanium-BINOL
complex to afford either stereoisomer of allylic alcohol 7 (Scheme 1).12

Methylation of 7 followed by homologation via cross metathesis with
4-pentenoic acid affords both enantiomers of lyngbic acid (3) in an
overall yield of 32%. The total syntheses of hermitamide A and B
was accomplished by HATU-mediated coupling of 3 and phenylethy-
lamine to afford 4 or tryptamine to provide 5 in a longest linear
sequence of four steps.
We next focused our attention toward the DTS of chimeric

molecules which required intermediate (− )-6S, which was prepared
as previously reported,4 and seco-acid 8 (available via cross
metathesis). Compound 8 was either treated with (2-(trimethylsilyl)
ethoxy)methyl chloride to afford the protected ester or HATU and the
respective amine to furnish the corresponding amides (10) and (11).
The alcohols were then coupled to (− )-6S using Shiina conditions13

and globally deprotected to provide the three sets of chimeric
molecules: promysalin–lyngbic acid (12), promysalin–hermitamide A
(13) and promysalin–hermitamide B (14) in a longest linear sequence
of five steps.
The antibacterial activity of the six classes of molecules (3–5, 12–14)

against a panel of four Gram-negative bacteria (two strains of
P. aeruginosa (PAO1, PA14), P. fluorescens, and P. putida) at
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concentrations ranging from 455 nM–900 μM was next investigated (see
Supplementary Table S1). To our surprise, only one analog ((+)-12R,
S) displayed antibacterial activity against all strains tested with an IC50

of 455 μM, ~1000-fold less active than (− )-2. As one might expect,
the absolute stereochemistry of (+)-12R,S is identical to that of
promysalin, reconfirming the role of those stereocenters in antibacter-
ial activity. Curiously, during the course of our assays
(at 48 h) we noticed a pronounced, non-lethal species-specific
phenotype against PA14 (the strain that is most sensitive to the
activity of promysalin) when dosed with compounds (− )-13R,S and
(− )-14S,S (Supplementary Figure S1). This may hint at a disparate
mechanism of action unrelated to antibacterial activity and is currently
being investigated in our laboratory.
In summary, we have reported a concise, enantioselective total

synthesis of the marine secondary metabolites lyngbic acid,
hermitamide A and hermitamide B. Furthermore, we utilized DTS
to construct a focused library of six chimeric promysalin analogs
to further evaluate the structure–activity relationship of this
species-specific natural product. Our biological assays show, for the
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C7H15

OH
1) NaH, MeI
2) 4-Pentenoic Acid,

Grubbs II

4-Pentenoic Acid,
Hoveyda-Grubbs II

C7H15

OH

HO

O

(-)-3S: 45% over 2 steps
(+)-3R: 38% over 2 steps

C7H15

OMeO

HO

(-)-5S: 42%
(+)-5R: 64%

C7H15

OMeO

HN

(+)-8S: 72%
(-)-8R: 67%

1) SEMCl, Et3N
2) (-)-6S, MNBA, 

DMAP, Et3N

(+)-10S: 84%
(-)-10 R: 86%

(-)-9S,S: 55% over 2 steps
(+)-9R,S: 21% over 2 steps

1) (-)-6S, MNBA, 
DMAP, Et3N

2) TBAF, DMPU

(-)-13S,S: 60% over 2 steps
(-)-13R,S: 49% over 2 steps

TBAF, 
DMPU

(-)-12S,S: 74%
(+)-12R,S: 89%

O

N

OSEMO

SEMO C7H15

OO
O

N

OHO

HO C7H15

OO

O

N

OHO

N C7H15

OO

Lyngbic Acid

HATU, DIEA, 
Amine

C7H15

OMeO

N
H

Ph

(-)-4S: 84% 
(+)-4R: 86%

Hermitamide A NH2
Ph NH2 NH Hermitamide B

Promysalin-Lyngbic Acid

HATU, DIEA,

NH2
Ph

NH2 NH

HATU, DIEA,

C7H15

OHO

HN

(+)-11S: 42%
(-)-11 R: 64%

C7H15

OHO

HN

1) (-)-6 S, MNBA, 
DMAP, Et3N

2) TBAF, DMPU

(-)-14 S,S: 32% over 2 steps
(+)-14R,S: 28% over 2 steps

Promysalin-Hermitamide A

Ph

H

O

N

OHO

N C7H15

OO

Promysalin-Hermitamide B
H

Ph

HN

(-)-7 S
(+)-7R

N
H

HN

Scheme 1 Synthesis of lyngbic acid (3), hermitamides A (4) and B (5) and chimeric compounds. For clarity only one stereoisomer is depicted and
represented by the top compound name.
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first time, that lyngbic acid and the hermitamides do not possess any
significant antibacterial activity against a panel of Gram-negative
bacteria. Finally, we have demonstrated that subtle structural changes
to the promysalin side chain significantly reduce the biological activity
of the natural product.
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