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An indole-biotransforming strain MA was identified as Lysinibacillus xylanilyticus on the basis of the 16S rRNA gene sequencing.
It transforms indole completely from the broth culture in the presence of an additional carbon source (i.e., sodium succinate). Gas-
chromatography-mass spectrometry identified indole-3-acetamide, indole-3-acetic acid, and 3-methylindole as transformation
products. Tryptophan-2-monooxygenase activity was detected in the crude extracts of indole-induced cells of strain MA, which
confirms the formation of indole-3-acetamide from tryptophan in the degradation pathway of indole. On the basis of identified
metabolites and enzyme assay, we have proposed a new transformation pathway for indole degradation. Indolewas first transformed
to indole-3-acetamide via tryptophan. Indole-3-acetamide was then transformed to indole-3-acetic acid that was decarboxylated
to 3-methylindole. This is the first report of a 3-methylindole synthesis via the degradation pathway of indole.

1. Introduction

Indole is an industrially important heterocyclic aromatic
compound that is an environmental pollutant due to its
worldwide occurrence [1]. Major contamination sources are
industrial waste, coal tar waste, and wastewater from coking
plants, coal gasification, and refineries and cigarette smoke
[1].

Bacterial aerobic degradation of indole proceeds via di-
verse mechanisms including (i) the catechol pathway pro-
ceeding through indoxyl, 2,3-dihydroxyindole, isatin, N-for-
mylanthranilic acid, anthranilic acid, salicylic acid, and cat-
echol [2]; (ii) the gentisate pathway proceeding through in-
doxyl, isatin, anthranilic acid, and gentisic acid [3]; and (iii)
the anthranilate pathway proceeding through 2,3-dihydroxy-
indole, N-carboxyanthranilic acid, and anthranilic acid [4].

Bacterial transformation of indole to indigo has been
characterized in a variety of bacteria [2, 5, 6]. Initially,

indole is oxidized to indoxyl that spontaneously transforms
to indigo. Another transformation mechanism involves con-
version of indole to indole-3-acetic acid, indole-3-glyoxylic
acid, and indole-3-aldehyde [7].

Anaerobic bacterial degradation of indole was studied
under denitrifying, sulfate-reducing, or methanogenic con-
ditions by forming oxindole as the main metabolite [8–
10]. A sulphate-reducing bacterium, Desulfobacterium indol-
icum, degraded indole via oxindole, isatin, isatoic acid, and
anthranilic acid [11, 12].

In this study, we investigated a newmechanism of aerobic
transformation of indole via a newly isolated bacterium,
Lysinibacillus xylanilyticus strain MA.

2. Materials and Methods

2.1. Chemicals andMedia. Indole and its derivativeswere pur-
chased from Sigma-Aldrich. All other chemicals, reagents,
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and solvents were purchased from Fisher Scientific. Minimal
medium was prepared as described previously [13].

2.2. Bacterial Strain. Twenty bacteria were isolated from the
contaminated soil using minimal medium containing 10mM
sodium succinate and 0.5mM indole. For isolation, 1 g soil
was added to minimal medium containing 10mM sodium
succinate and 0.5mM indole. After 48 h of incubation, the
medium was serially diluted and plated on the minimal
agar plates containing 10mM sodium succinate and 0.5mM
indole. After incubation period, twenty different morpho-
types were selected and streaked for purity. These bacteria
were screened for their ability to mineralize or transform
indole by growing on minimal media containing 0.5mM
indole in the presence or absence of 10mM sodium succinate.
Samples were collected at regular intervals to monitor indole
depletion and extracted with ethyl acetate. The extracted
samples were analyzed by high performance liquid chro-
matography by a previously described method [7], and the
results showed that there was no indole depletion by any of
the bacteria growing onminimalmedium containing 0.5mM
indole. However, one bacteria-designated strain (MA) was
able to deplete indole in the presence of additional carbon
sources (i.e., sodium succinate). This bacterium was selected
for further study.

2.3. 16S rRNA Gene Sequencing and Phylogenetic Analysis.
The genomic DNA extraction for PCR amplification of the
16S rRNA gene of strain MA was carried out as described
previously [14]. Amplification and sequencing conditions
for the 16S rRNA gene were done exactly the same as
described previously [15]. The 16S rRNA gene sequence of
strain MA was aligned with other sequences obtained from
the EzTaxon databases [16]. The phylogenetic tree was con-
structed using neighbor-joining algorithms and evolutionary
distance matrices were calculated with the Kimura two-
parameter model [17]. Bootstrap replications (1000) were
performed with the MEGA6 program [17].

2.4. Growth and Indole Depletion. The bacteria were grown
on minimal medium containing 0.5mM indole and 10mM
sodium succinate. Sampleswere collected at every 4 h interval
up to 32 h. For growthmeasurement, the optical density of the
culture was measured at 600 nm using a spectrophotometer.
For indole depletion, samples were centrifuged and extracted
with ethyl acetate. The extracted samples were dissolved in
20𝜇L methanol and analyzed by HPLC (Waters 600 HPLC
model) as described previously [7].

2.5. Identification of Metabolites. The samples (0 h, 12 h, 24 h,
and 32 h) were analyzed by gas-chromatography-mass spec-
trometry (GC-MS) to identify metabolites via an Agilent
gas chromatography system model 7890A equipped with a
high throughput time-of-flight mass spectrometer and HP-
5 column (30m × 0.320mm × 0.25 𝜇m) [7]. The column
temperature was initially increased from 50∘C to 280∘C at the
rate of 20∘C/min and thenheld for 5min [7].Heliumwas used
as a carrier gas at 1.5mL/min and the samples (1 𝜇L) were

injected in splitless mode [7]. The ion-source temperature
and transfer line temperature were maintained at 250∘C and
225∘C, respectively [7]. The electron energy was set at 70 eV
[7].

2.6. Tryptophan 2-Monooxygenase Activity. Enzyme activ-
ity was determined in a 1mL reaction mixture containing
100mM Tris buffer (pH 7.8), 0.5mM of L-tryptophan, and
crude extracts. After the incubation at 10min at room tem-
perature, the reaction was stopped by adding 100 𝜇L of 5N
HCl. The reaction mixture without crude extracts served as
the control. The reaction mixture was centrifuged, extracted
with ethyl acetate, and dissolved in 20𝜇L of methanol and
analyzed with GC-MS to identify the product.

3. Results and Discussion

Strain MA was identified as a member of the genus Lysini-
bacillus xylanilyticus on the basis of the 16S rRNA gene
sequencing. The 16S rRNA gene sequence of strain MA
has been deposited in NCBI under the GenBank accession
number KT030900. Phylogenetic analysis showed that strain
MA fell within other members of Lysinibacillus with a cluster
near Lysinibacillus xylanilyticus strain XDB9 (Figure 1). On
the basis of the 16S rRNA gene sequencing and phylogenic
analysis, strain MA was identified as Lysinibacillus xylanilyti-
cus strain MA.

Figure 2 showed that strain MA grew well on minimal
medium supplemented with 0.5mM indole and 10mM
sodium succinate. During the initial 4 h, there was no bac-
terial growth due to lag phase whereas bacteria grow rapidly
after 8 h due to the exponential phase. There was very slow
growth after 24 h when the bacteria reached stationary phase.
Themaximum optical density of the culture was 1.7 after 32 h
of incubation. No bacterial growth was observed on minimal
medium supplemented with 0.5mM indole because it is the
sole source of carbon and energy. These data indicate that
strain MA did not utilize indole as its sole source of carbon
and energy. Strain MA transforms indole in the presence
of additional carbon source (i.e., sodium succinate). Indole
transformation was measured by HPLC, and the results
showed complete indole depletion within 32 h.

The GC-MS studies showed transformation of indole
into three metabolites. These metabolites were identified
on the basis of their mass spectra comparisons with those
of authentic standards. The mass spectrum of metabolite
I had a molecular ion at 𝑚/𝑧 174 and quinolinium ion
at 𝑚/𝑧 130. This metabolite was identified as indole-3-
acetamide (Figure 3(a)). The mass spectrum of metabolite
II contains a parent ion at 𝑚/𝑧 175 and quinolinium ion at
𝑚/𝑧 130. This metabolite was identified as indole-3-acetic
acid (Figure 3(b)). The mass spectrum of metabolite III had
ions at 𝑚/𝑧 131, 130, 103, 102, 77, and 78. This metabolite was
identified as 3-methylindole (Figure 3(c)).

The GC-MS analysis of the enzyme reaction mixture
indicated the formation of a product with a mass spectrum
corresponding to indole-3-acetamide. However, this product
was not detected in the control.
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Figure 1: Neighbor-joining tree of Lysinibacillus xylanilyticus strain MA based on the 16S rRNA gene sequences.
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Figure 2: Growth of Lysinibacillus xylanilyticus strain MA on
minimal medium containing 10mM sodium succinate and 0.5mM
indole and indole depletion byLysinibacillus xylanilyticus strainMA.

On the basis of transformation products, we proposed
a new pathway of indole transformation. Indole is initially
converted to indole-3-acetamide via tryptophan. Indole-3-
acetamide was then transformed into indole-3-acetic acid,
which was decarboxylated to 3-methylindole (Figure 4).This
is the first report of formation of 3-methylindole from indole.

Previous studies showed that indole-3-acetic acid for-
mation occurs via either tryptophan-dependent pathway
[18, 19] or tryptophan-independent pathway [7, 20, 21]. The
Arthrobacter sp. SPG converted indole to indole-3-acetic acid
without forming tryptophan. This suggested the involve-
ment of a tryptophan-independent pathway [7]. However,
in this study, we observed tryptophan 2-monooxygenase
activity in the crude extracts of indole-induced cells of strain
MA suggesting the involvement of a tryptophan-dependent
pathway. Two mechanisms are known for formation of

indole-3-acetic acid from tryptophan [18, 19].The first mech-
anism involves a tryptophan aminotransferase-catalyzed
conversion of tryptophan to indole-3-pyruvic acid, which
is decarboxylated to indole-3-acetaldehyde by an indole-3-
pyruvic acid decarboxylase. This is then further oxidized
to indole-3-acetic acid [18]. We have not detected indole-
3-pyruvic acid and indole-3-acetaldehyde as metabolites of
indole degradation, suggesting that this mechanism is not
involved in the transformation. In the second mechanism,
the initial step is catalyzed by tryptophan 2-monooxygenase
and involves conversion of tryptophan to indole-3-acetamide
that is then transformed to indole-3-acetic acid by indole-3-
acetamide hydrolase [19]. In this study, indole-3-acetamide
was detected as a metabolite, indicating involvement of the
indole-3-acetamide pathway. Furthermore, the tryptophan 2-
monooxygenase activity confirmed the formation of indole-
3-acetamide from L-tryptophan.

In this study, 3-methylindole was also detected as a trans-
formation product. It may be formed from decarboxylation
of indole-3-acetic acid. Several researchers have reported
the formation of 3-methylindole from indole-3-acetic acid
[1, 22–25]. Many anaerobic bacteria including Lactobacillus
sp. [22],Clostridium scatologenes [23], andClostridium drakei
[23] transformed indole-3-acetic acid to 3-methylindole. A
mixed population of pig fecal bacteria has been reported to
convert indole-3-acetic acid to 3-methylindole [24]. Attwood
et al. [25] reported that six rumen microorganisms (sim-
ilar to Prevotella sp., Clostridium sp., Actinomyces sp., and
Megasphaera sp.) isolated from grazing ruminants produced
3-methylindole in the presence of indole-3-acetic acid [1].

This study differs from all previous studies of indole
biotransformation due to involvement of new transformation
mechanism. In the previous study, Arthrobacter sp. SPG
also transformed indole to indole-3-acetic acid that was
further converted to indole-3-glyoxylic acid and indole-3-
aldehyde [7]. In this case, indole-3-acetic acid is transformed
to 3-methylindole. Several bacteria transformed indole to
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Figure 3: Mass spectra of metabolites I (a), II (b), and III (c).
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Figure 4: Pathway of indole transformation by Lysinibacillus xylanilyticus strain MA.

indigo via indoxyl [1]; however, strain MA did not produce
indoxyl or indole. Recently, Fukuoka et al. [26] reported
biotransformation of indole in Cupriavidus sp. strain KK10
via an N-heterocyclic ring cleavage or carbocyclic aromatic
ring cleavage of indole; however, in this study, neither N-
heterocyclic ring cleavage nor carbocyclic aromatic ring
cleavage occurred.

4. Conclusion

Lysinibacillus xylanilyticus strain MA transforms indole to
3-methylindole via L-tryptophan, indole-3-acetamide, and
indole-3-acetic acid.This is the first report of 3-methylindole
bacteria-based formation from indole.
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