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SUMMARY: The ambident alkoxy-indolyl-methylcarbenium ions la-c are depro- 

tonated by NaH to give in situ generated enol ethers which can be easily -- 
trapped by a dienophile such as, e.g., dimethyl acetylenedicarboxylate to 

form the carbazole derivatives 3, 4, and I. On reaction with the ethoxy-2- 

methylindolylcarbenium ion Id under the same conditions, a stereoselective 

Michael-type addition with formation of 6 takes place. 

The general interest in the chemistry of carbazoles and structurally 

related indole derivatives has increased considerably in recent years l-5 as 

some of these compounds, both natural products and synthetic compounds, have 

exhibited pronounced physiological activities. A concept for the preparation 

of [Elannellated indoles and carbazole alkaloids consists of the [4+2]- 

cycloaddition to 3-vinylindoles l-7 . The pronounced enophile reactivity of 

these compounds is the result of the characteristically high HOMO energy8. 

With the view to a systematic extension of the by no means fully utilized 

synthetic potential 6 of this type of reaction and to the development of a 

synthesis of 3-demethoxycarbazomycine I5 and analogues, we now report on a 

new variation of this cyclization method. 

According to a retrosynthetic analysis, the as yet not synthesized carb- 

azole derivative I, for example, should be accessible from the indolyl enol 

ether II via a Diels-Alder reaction with a C4 -dienophile as the key step. As 

intensive studies on the synthesis of isolable II were unsuccessful, we at- 

tempted to generate II and its analogues in situ and to trap them with a C4- -- 
dienophile. Preliminary results using these reaction sequences involving cy- 

cloadditions with dimethyl acetylenedicarboxylate are described here. 
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The ambident cations 1, first described by usg, seemed to be syntheti- 

cally attractive starting materials for the realization of this concept. Com- 

pounds la-c can indeed be deprotonated by NaH in DME and the enol ethers 2 

thus generated in situ can be trapped easily with dimethyl acetylenedicar- -- 

boxylate to give the cycloadducts 3a.b (11 and 6%) and 4 (cis/trans 4:l by 

'H-NMR spectroscopic measurements, 28%, reaction conditions: DME, 20-50 OC, 

30 min, nitrogen atmosphere: separation by flash chromatography: silica gel, 

petroleum ether/ethyl acetate)". Whereas product formation in the cycloaddi- 

tions with la,b is governed by the driving force of the indolization via a 

dehydrogenation step, the reaction with lc, as expected, is terminated at the 

stage 4 as a result of a blockage of the indolization step. The primarily 

formed cycloadduct from the cycloaddition with lc is stabilized by a non- 

stereospecific [1,31-H shift with formation of an annellated 1,3-cyclohexa- 

diene structure. The carbazole 3a represents a synthetically attractive pre- 

cursor (COOMe ---_) Me) for the total synthesis of 3-demethoxycarbazomycine 

Ill. For this purpose, 3a is hydrolyzed (KOH/MeOH) to the dicarboxylic acid 

and then reduced to I with HSiC13 according to a known procedure 11 

(1. HSiC13/MeCN, (n-Prj3N; 2. KOH/MeOH). 
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With regard to this methodology, suitable alkoxy-indolylcarbenium ions 

could also be employed for the in situ generation of synthetically attractive -- 

indolo 2,3]quinodimethanes C as 4a-components 12 . For example, the cation Id, 

which could form 5 via deprotonation, might be considered as a suitable pre- 
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cursor. However, even on multiple variations of the reaction conditions and 

in the presence of radical inhibitors, this concept could not be realized. 

Instead of formation of the expected 2,3-dimethoxycarbonylcarbasole deriva- 

tive12, only a stereoselective Michael-type reaction with formation of 6 

(11%. flash chromatography) in addition to a dealkylation of the cation ldg 

(formation of 2-methylindole-3-carboxaldehyde) and polymerization occurred13. 

6 

Id 

The constitutions of I, 3, and 6 as well as the configurations of 4 and 

6 given above have been unequivocally confirmed by elemental analysis, mass 

spectrometry, and 'H-NMR spectroscopy (selective decoupling and NOE mea- 

surements)". 

Preliminary experiments using this new "in situ vinylindole variation" -- 

have shown that reactions with other dienophiles (e.g. maleic anhydride, g- 

phenylmaleimide) can also be realized. A systematic investigation of the syn- 

thetic potential of this type of reaction for the preparation of further new 

carbazole derivatives is now in progress in our laboratory. 
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