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The design, synthesis, and study of new catalyst structures
have had an enormous impact on chemical synthesis, and
continue to be a central challenge in asymmetric catalysis.[1]

We recently described that a 2-aminopyridinium ion might be
a promising catalaphore[2] for the design of new asymmetric
hydrogen-bond donor catalysts.[3] In that connection, we
became interested in 1-aza[6]helicene[4] 1 as a chiraphore[2]

because a first-order analysis of the crystal structure of an
analogous 1,16-diaza[6]helicene[5] suggests that its pyridine
ring is well-desymmetrized in terms of both top-from-bottom
and left-from-right differentiations. To our knowledge, the
application of 1 and analogous helical chiral pyridines[5–7] in
asymmetric catalysis has not been studied, even though 1 has
been known in the literature since 1975.[4d] In this context, we
were prompted to develop an efficient synthesis of
1-azahelicenes, which allows systematic structural varia-
tion—important for the elucidation of the relationship
between catalyst structure, reactivity, and selectivity—and
to exploit them as chiraphores. In view of the utility of helical
chiral pyridines such as 1, it occurred to us that the
corresponding pyridine N-oxides might prove to be effective
asymmetric catalysts.[8] Herein, we describe the scalable
synthesis of 1-azahelicenes and the structural characterization
of the corresponding N-oxides, and we apply this new family
of compounds to the catalytic enantioselective desymmetri-
zation of meso epoxides (see Table 1). This study provides the
first report of the application of azahelicenes in asymmetric
catalysis.[9]

An examination of the structure of 1 suggests that the
chiral environment in the vicinity of the nitrogen atom can be
tuned by structural modification at cabon atoms 11–16.
Therefore, we devised a convergent synthetic route to 1 in
which benzoquinoline unit 2 and C11–C16 unit 3 could be
expeditiously united (Scheme 1). This strategy would allow
ready access to the necessary 1-azahelicene derivatives by
simply replacing 3 with its readily available structural
analogues, such as 9 and 12 (Scheme 2). Preparation of key

unit 8 starts from commercially available pyridine 4 and
phosphonium salt 5, which was readily synthesized in three
steps from commercially available 2-bromo-4-methyl benzal-
dehyde. The highly Z-selective Wittig reaction[6b, 10] of 4 and 5
and subsequent Stille–Kelly reaction[5,11] provided benzoqui-
noline 6. The catalytic C�H functionalization method devel-
oped by Sanford and co-workers[12] readily converted 6 into 7
from which 8 was obtained in an ordinary way. The second
sequence of the highly Z-selective Wittig reaction and the
Stille–Kelly reaction of 8 with 9, 11, or 12 provided 1-
azahelicenes 10, 1, or 13, respectively. The scalability of this

Scheme 1. Synthesis design.

Scheme 2. Syntheses of 1-azahelicenes: a) NaHMDS, DMF, 78%;
b) [PdCl2(Ph3P)2], (Me3Sn-)2, PhMe, 77 %; c) Pd(II) catalyst,[12] NBS,
CH3CN, 84%; d) benzoyl peroxide, NBS, PhH, 71%; e) 2-nitropropane,
NaOEt, EtOH, DMF, 86%; f) NaHMDS, DMF, 79% for 9, 76% for 11,
62% for 12 ; g) [PdCl2(Ph3P)2], (Me3Sn-)2, PhMe, 70% for 10, 61% for
1, 55% for 13. HMDS= 1,1,1,3,3,3-hexamethyldisilazane; DMF=N,N-
dimethylformamide; NBS= N-bromosuccinimide.
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route was demonstrated by synthesizing 1 on a 2.0 gram scale.
Oxidation of 10, 1, or 13 with meta-chloroperbenzoic acid
furnished the desired pyridine N-oxides, 14–16, respectively,
in 32–49 % yields,[13] the enantiomers of which were readily
resolved by chiral HPLC methods (Table 1).

As a test for our catalyst, we examined the effectiveness of
helical chiral catalyst design in the catalytic desymmetrization
of meso epoxides with chlorosilanes, a reaction first studied
by Denmark and co-workers and then by the groups of Fu,
Nakajima, Kim, and Chelucci.[14] All three compounds (P)-
14–16 were found to sufficiently catalyze the ring-opening
reaction of cis-stilbene oxide by SiCl4 and provided the
corresponding (R,R)-chlorohydrin with high ee values
(Table 1, entry 1). For the three catalsyts, the ring opening
proceeded in better enantioselectivity for substrates having
aromatic substituents rather than for those bearing alkyl
groups (Table 1, entries 1 and 2 versus 3 and 4). Catalyst 14
provided better ee values than 15 for acyclic epoxides
(Table 1, entries 1–3), but the opposite was true for the
cyclic epoxide (Table 1, entry 4). Overall, 16 was found to be
better in terms of enantioselectivity than 14 and 15, and is
comparable to the best catalysts in the literature[14] for both
aromatic- and alkyl-substituted epoxides. The scope of the
present reaction was additionally probed with catalyst, 16
(Table 2). The enantiomeric excess of the chlorohydrin was
found to be somewhat sensitive to electronic effects (Table 2,
entries 1–3). The ring opening proceeded with a moderate
ee value for an acyclic alkyl substituted epoxide (Table 2,
entry 4), but with a modest ee value for a cyclic substrate
(Table 2, entry 5).

The difference in the degree of helical deformation
between the crystal structures of 14–16 was found to be
negligible[16] (Figure 1). Also evident from these structures is

that the chiral space around their oxygen atoms are clearly
defined by the rings beneath them. Modification of these rings
does indeed lead to increased enantioselectivity and substrate
scope in the catalytic desymmetrization of meso expoxides
with SiCl4 (Table 1).

In summary, we have designed and synthesized a new
family of chiral catalysts, helical chiral pyridine N-oxides, and
we have applied them to the catalytic, enantioselective ring
opening of meso epoxides. In the course of these studies, we
have provided the first demonstration that the appropriate
structural modification to the rings beneath the plane of the
pyridine N-oxide can serve as a powerful means for tuning the
catalyst enantioselectivity. We anticipate that this strategy
would be general for the tuning of the catalyst enantioselec-
tivity for this class of chiraphores. Ongoing studies are
directed at providing support for this hypothesis and at
developing additional applications of 1-azahelicenes as chir-
aphores for catalysis of synthetically significant transforma-
tions.
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Table 2: Desymmetrization of meso epoxides by 16.[a]

Entry R[b] Yield [%] ee [%]

1 4-ClC6H4 84 94
2 4-CF3C6H4 83 92
3 4-CH3C6H4 83 87
4 CH2O(CH2)3Ph 63 72
5 -CH2OCH2- 64 33

[a] All data are the average of two runs. Both P and M catalysts were
used. [b] R reprsents groups appended to meso-epoxide substrate (see
reaction equation in Table 1).

Figure 1. ORTEP views of the solid-state structures of 14, 15 (40%
probability thermal ellipsoid), and 16 (50% probability thermal ellip-
soid).[15]

Table 1: Desymmetrization of meso epoxides by helical-chiral pyridine
N-oxides.[a]

Entry

1
77% yield
93% ee

80% yield
92% ee

77 % yield
94 % ee

2
79% yield
81% ee

77% yield
73% ee

76 % yield
92 % ee

3
71% yield
49% ee

68% yield
42% ee

72 % yield
65 % ee

4
70% yield
0% ee

68% yield
22% ee

74 % yield
33 % ee

[a] All data are the average of two runs. Both P and M catalysts were used
but only P catalysts are shown for clarity.
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