Stereoselective Synthesis of 3,6-Disubstituted 1,2-Diaminocyclohexanes through Ring-Closing Metathesis of 4,5-Diamino-1,7-octadiene Derivatives

Carla Boga,^a Claudio Fiorelli,^b Diego Savoia*^b

^a Dipartimento di Chimica Organica 'A. Mangini', Università di Bologna, viale Risorgimento 4, 40136 Bologna, Italy

Received 30 June 2005; revised 11 July 2005

Abstract: 3,6-Disubstituted 4,5-di[(*S*)-1-phenylethylamino]-1,7octadienes with different configurations at the carbon stereocenters were protected as dihydrochlorides or cyclic phosphorous diamides and then converted into (1R,2R)-3,6-disubstituted 1,2-diaminocyclohexanes through ruthenium-catalyzed ring-closing metathesis and subsequent hydrogenolysis-hydrogenation steps.

Key words: catalysis, cyclization, diamines, metathesis, ruthenium

The ring-closing metathesis (RCM) of 1,n-dienes has been widely applied for the construction of nitrogen-containing compounds, for example, natural alkaloids containing the pyrrolidine or piperidine ring¹ and aminosubstituted cycloalkenes.² We have recently reported^{3a} that the dihydrochloride of (4R, 5R)-4,5-diamino-1,7-octadiene derivative 1a was converted into the N,N'-disubstituted 1,2-diaminocyclohex-4-ene 2a by a RCM reaction using the first generation Grubbs ruthenium carbene complex 5 as the catalyst (Scheme 1). On the other hand, the cyclization of the vinyl-substituted diaminodiene 1b was obtained with moderate diastereoselectivity through formation of the formaldehyde aminal 3, which was then directly converted into diaminocyclohexene 2b in the presence of trifluoroacetic acid in refluxing toluene.^{3b} In contrast, we could not find suitable conditions to achieve the cyclization of the phenyl-substituted substrate 1c, even using the second generation ruthenium carbene complex 6.

The importance of compounds **2** stems from their potential as intermediates, due to the possible transformation of the alkene function, e.g., hydrogenation to saturated compounds, or other addition reactions, e.g., epoxidation and dihydroxylation, providing access to ring-substituted derivatives of the prototypical chiral ligand 1,2-diaminocyclohexane.⁴ The new compounds can find application as novel chiral N,N-ligands for metal species. In fact, the effect of substituents on the reactivity and stereoselectivity of salen complexes featuring a substituted cyclohexane ring has become object of investigation.⁵ Moreover, polyhydroxylated diaminocyclohexenes (diaminoconduritols) and -cyclohexanes are potentially active as glycosidase inhibitors⁶ and can form cytostatic platinum complexes.⁷ In this paper, we describe the results of our efforts to achieve the RCM reaction of other 3,6-disubstituted-4,5diamino-1,7-octadienes 1c-e with defined configurations of the stereocenters C3 and C6. Configurationally pure compounds 1 are available through double addition of γ substituted allylzinc reagents to the optically pure diimine, derived from glyoxal and (S)-1-phenylethylamine.⁸ In these reactions, the configuration of the α -amino stereocenters (C4, C5) in products 1 is controlled by the chiral auxiliary, whereas the relative stereochemistry of the stereocenters C3 and C6 depends on the E/Z configuration of the C=C bond in the allylic organozinc reagent. The configuration of all stereocenters in 1 is maintained in the cyclization, leading to stereochemically defined products 2. Obviously, compounds ent-2 are available starting from (R)-1-phenylethylamine.

In particular, we describe a novel procedure for the cyclization of diaminodienes 1, which involves the preliminary preparation of cyclic phosphorous diamides 4 by reaction with phosphorus trichloride.^{9,10} The RCM reaction of these intermediates leads to bicyclic phosphorous diamides 7,¹¹ which are hydrolyzed to give the required diaminocyclohexenes 2, avoiding their purification by treatment with a HCl/MeOH solution.

It is noteworthy that the RCM route is an alternative to the zirconium-promoted and -catalyzed reductive cyclizations of 1,¹² which in our study could not be applied to compound **1e** with hydroxy substituents in the allylic positions.

Since it was apparent from the previous results that the RCM reaction of compounds 1 was strongly affected by the steric effects of the allylic substituents R, we continued the investigation on several 3,6-disubstituted compounds 1, aiming to find out suitable protocols for their cyclization. The results of the RCM reactions carried out on the dihydrochlorides of diaminodienes 1 or the phosphorous diamides 4 are summarized in Table 1.

Compound **1d** was prepared as a mixture of the two main diastereomers (55:45 ratio, not separated), which differed in the configuration of one allylic stereocenter.

The two ruthenium catalysts **5** and **6** displayed different activity in the RCM reaction of **1d**. As a matter of fact, working with catalyst **5** on **1d**·2HCl in refluxing CH_2Cl_2 no reaction was observed after six hours (entry 1). On the other hand, catalyst **6** (5 mol%) under the same conditions

^b Dipartimento di Chimica 'G. Ciamician', Università di Bologna, via Selmi 2, 40126 Bologna, Italy Fax +39(051)2099456; E-mail: diego.savoia@unibo.it

SYNTHESIS 2006, No. 2, pp 0285–0292 Advanced online publication: 21.12.2005 DOI: 10.1055/s-2005-918515; Art ID: Z12705SS © Georg Thieme Verlag Stuttgart · New York

 $\textbf{a}{:}\ R=H; \ \textbf{b}{:}\ R=vinyl; \ \textbf{c}{:}\ R=Ph; \ \textbf{d}{:}\ R=Me; \ \textbf{e}{:}\ R=OH; \ \textbf{f}{:}\ R=OEt; \ \textbf{g}{:}\ R=OPh$

Scheme 1

was able to discriminate the two diastereomers of 1d at a high degree: the C_1 -symmetric diastereomer C_1 -1d was quickly consumed and converted into *cis*-2d, i.e. with the *cis* relationship of the two methyl substituents (entry 2). The diaminocyclohexene *cis*-2d and unreacted C_2 -symmetric 1d (C_2 -1d) were separated by column chromatography and obtained in 35% and 37% yield, respectively. Using this route, the separation of the two diastereomers of 1d, which is tedious and incomplete on a large scale, can be avoided.

Furthermore, we found that protection of the diamine moiety as a cyclic phosphorous diamide is convenient for the RCM reaction, being more easily introduced as well as removed than other common diamides. In fact, we prepared the phosphorous diamide **4d** and then observed a quick cyclization in the presence of 4 mol% of catalyst **6** in CH₂Cl₂ at 40 °C (entry 3). After acidic hydrolysis of the reaction mixture the desired free diamine **2d** was isolated in 92% yield.

The *trans*-dimethyl-substituted diastereomer was similarly prepared in good yield starting from C_2 -1d (entry 4), that had been recovered from the previous run described in entry 2.

The phosphorous diamide **4b** with pentadienyl substituents was prepared from diamine **1b** in a similar manner. We observed that **4b** did not undergo cyclization in the presence of catalyst **5** in refluxing toluene, as diamine **1b** was almost quantitatively recovered after the hydrolysis step (entry 5). Instead, the RCM reaction of **4b** was moderately successful in the presence of catalyst **6** (7 mol%) in refluxing benzene (3 h), allowing the bicyclic phosphorous amide **7b** to be obtained in ca. 30% yield (NMR anal-

ysis) and prevalence of the *cis* isomer after acidic hydrolysis (entry 6). Better reaction conditions were found using CH_2Cl_2 as the solvent at 40 °C. In this case, *cis*-**2b** was isolated in 53% yield after chromatographic separation from minor amounts of the *trans* diastereomer and unreacted **1b** (entry 7).

Unfortunately, phosphorous diamide 4c prepared from phenyl-substituted diaminodiene 1c did not undergo cyclization either in CH₂Cl₂ or in benzene at reflux using catalyst 6 (entry 8). In contrast, the presence of hydroxy substituents was not detrimental to the cyclization of 1e to 2e (70% yield) catalyzed by complex 6 under the same conditions (entry 10), whereas catalyst 5 was inactive (entry 9). With this regard, it should be underlined that previdescribed syntheses of oxygen-substituted ously cyclohexenes via RCM reactions were generally achieved through protection of the hydroxy functions in the starting 1,7-dienes, and required high loadings of the catalyst 5 (up to 30 mol%), high temperatures and long reaction times.¹³ Moreover, isomerization of the allylic alcohol to methyl ketone was a competitive pathway in reactions catalyzed by $5.^{13,14}$

Either the dihydrochloride or the phosphorous diamide **4f** of the diethoxy-substituted substrate **1f** (75:25 mixture of diastereomers, the prevalent one had C_1 -symmetry) were submitted to RCM reactions in refluxing CH₂Cl₂ (entries 11, 12). Only the phosphorous diamide **4f** could be converted in moderate yield into the desired cyclohexene *cis***2f**. No successful conversion was achieved in the RCM reactions of the C_2 -symmetric phenoxy-substituted compounds **1g**·2HCl and **4g** by using catalyst **6** either in CH₂Cl₂ at 40 °C or in toluene at 110 °C (entries 13, 14).

Entry	Diaminodiene	Yield of intermediate (%)	RCM catalyst, solvent, temp., time	Yield of product (%) ^a	
1	Me Me NH HN Ph Id (dr ca 55:45)	1d ·2HC1 (100)	5 (5 mol%), CH ₂ Cl ₂ , 40 °C, 6 h	1d ^b	
2	Tu (di cu. 55.45)	1d·2HCl	6 (5 mol%), CH ₂ Cl ₂ , 40 °C, 3 h	Me - Me Me Me Me Me Ph Ph Cis-2d (35)	Me Me Me Me Me Me Me C_2 -1d (37)
3	1d (dr = 55:45)	Me Me Ph O Ph O H H H H H H H H H	6 (4 mol%), CH ₂ Cl ₂ , 40 °C, 4 h; then HCl–MeOH	$\begin{array}{c} Me & Me \\ Me & Me \\ Ph & Ph \end{array}$ $\begin{array}{c} Me & Me \\ Ph & Ph \end{array}$ $\begin{array}{c} Me & Me \\ Ph & Ph \end{array}$ $\begin{array}{c} 2d (92, cis/trans = 55:45) \end{array}$	
4	$\begin{array}{c} Me \\ Me \\ -NH \\ Ph \\ Ph \\ C_2-1d \end{array} Me$	Me Me Me Me Me Me C_2 -4d (93)	6 (4 mol%), CH ₂ Cl ₂ , 40 °C, 3 h; then HCl–MeOH	Me Me Ph NH HN Ph Ph Ph Ph H NH HN Ph Ph	
5	Me Ph NH HN Ph 1b	Me Ph N Ph N H Ph H H H H H	5 (7 mol%), toluene, 110 °C, 6 h; then HCl–MeOH	1 b ^b	
6		4b	6 (7 mol%), benzene, 80 °C, 3 h	$Me \qquad Me \qquad Me \qquad Me \qquad Ph \qquad O \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad Ph $	
7		4b	6 (7 mol%), CH ₂ Cl ₂ , 40 °C, 3 h; then HCl–MeOH	$Me = NH HN + Ph$ $Cis-2b (53)^d$	
8	Ph- Me Ph Ph Ph Ph Ph Ph Ph	Ph H	5 (10 mol%), benzene, 80 °C, 6 h; or 6 (10 mol%), CH ₂ Cl ₂ , 40 °C, 6 h; then HCl–MeOH	1c ^b	
9	HO Me Ph NH HN Ph HN HN HN HN HN HN HN HN HN	1e ·2HCl (100)	5 (5 mol%), CH ₂ Cl ₂ , 40 °C, 3 h	1e ^b	

Synthesis 2006, No. 2, 285–292 © Thieme Stuttgart · New York

Downloaded by: University of Illinois at Chicago. Copyrighted material.

Table 1 Ring-Closing Metathesis of Diaminodiene Derivatives (continued)

^a Yield of product isolated by column chromatography.

^b The unreacted starting material was generally recovered in >95% yield.

^c Yield determined by ¹H NMR spectroscopy of the crude reaction mixture.

^d Minor amounts of unreacted **1b** or **1f** and *trans*-**2b** or -**2f** were not isolated.

From these results, it appears that the RCM reaction of 3,6-disubstituted 4,5-diamino-1,7-octadienes **1** is preferably accomplished through the cyclic phosphorous diamides **4** by using ruthenium catalyst **6** in CH₂Cl₂ at 40 °C. The reaction is sensitive to steric effects, being affected by the nature of the substituents and the configuration of the inherent stereocenters. Particularly, cyclohexenes are more easily formed when the allylic substituents can assume the relative *cis*-relationship in the six-membered carbon ring. Nevertheless, the C_2 -symmetric hydroxy-substituted diaminodiene **1e** can be cyclized to give substituted cyclohexene *trans*-**2e** through the dihydrochloride.

Finally, the N-unsubstituted diaminocyclohexanes (1R,2R,3R,6S)-8d, (1R,2R,3S,6S)-8d, (1S,2S,3R,6R)-8e, (1R,2R,3R,6S)-8g and (1S,2S,3R,6S)-8f were prepared from 2d-g by palladium-catalyzed hydrogenation-hydrogenolysis in refluxing ethanol (Scheme 2). Particularly noteworthy is that diethyl-substituted compound 8g derived from the vinyl-substituted precursor 2b.

Scheme 2

PAPER

It can be concluded that the RCM reactions of the proper substrates 1d-g have allowed to prepare new 1,2-diaminocyclohexane derivatives, where both the amino groups are equatorially oriented and the C3,C6 substituents are in one of the three possible relative orientations: axial-equatorial (8d-g), equatorial-equatorial (8d) and axial-axial (8e). The effect of the relative stereochemistry of the C3,C6 substituents and their size should now be assessed in a number of asymmetric reactions, e.g., those catalyzed by salen complexes.

Melting points are uncorrected. Solvents were distilled over the appropriate drying agent under N2 atmosphere before use: THF (sodium benzophenone ketyl, then LiAlH₄), CH₂Cl₂ (P₂O₅). Optical rotations were measured on a digital polarimeter in a 1 dm cell and $[\alpha]_D$ values are given in 10⁻¹ deg·cm³·g⁻¹. ¹H NMR spectra were recorded on a Varian Gemini instrument at 300 MHz or 200 MHz for samples in CDCl₃, which was stored over Mg: ¹H and ¹³C NMR chemical shifts are reported in ppm relative to CHCl₃, $\delta_{\rm H} = 7.27$, $\delta_{\rm C}$ = 77.0) and J values are given in Hz. ³¹P NMR spectra were recorded on a Varian Mercury 400 spectrometer at 161.90 MHz; chemical shifts are referenced to external standard 85% H₃PO₄. MS spectra were taken at an ionizing voltage of 70 eV on a Hewlett-Packard 5970 or 5890 spectrometer with GLC injection. Chromatographic separations were performed on columns of SiO₂ (Merck, 230-400 mesh) at medium pressure. The ruthenium catalysts 5 and 6 were purchased from Aldrich. The metathesis reactions were carried out in a flame-dried apparatus under a static atmosphere of dry Ar.

RCM Reactions of Diaminodienes 1 through their Dihydrochlorides; General Procedure

To the stirred solution of diaminodiene **1** (2 mmol) in MeOH (5 mL) was added HCl (4 M in dioxane, 1 mL). Then the solvent was removed at reduced pressure to leave an off-white solid. This solid was dissolved in CH₂Cl₂ (6 mL), complex **6** (5–7 mol%) was added while Ar was bubbled through the solution (0.5 min), and the solution was stirred at 40 °C until (almost) complete conversion (TLC analysis). The cooled reaction mixture was treated with 2 M NaOH (5 mL) and the organic phase was extracted with CH₂Cl₂ (3 × 5 mL). The collected organic layers were dried (CaCl₂) and concentrated at reduced pressure to leave a greyish solid. Pure diaminocyclohexenes were obtained by column chromatography (SiO₂, cyclohexane–EtOAc).

(1*R*,2*R*,3*R*,6*S*)-3,6-Dimethyl-*N*,*N*'-bis[(1*S*)-1-phenylethyl]cyclohex-4-ene-1,2-diamine (*cis*-2d)

This compound was obtained as an oil starting from the (6*R*,6*S*)mixture of 1d·2HCl through chromatographic separation of unreacted C_2 -1d.

 $[\alpha]_{D}^{25}$ –61.5 (*c* 0.22, CHCl₃).

IR (neat): 3340, 3295, 3062, 3023, 1602, 1370 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.63$ and 1.11 (2 d, 6 H, J = 6.9 Hz), 1.22 and 1.48 (2 d, 6 H, J = 6.6 Hz), 1.27 (s, 1 H) 2.0 (m, 2 H), 2.07 (dd, 1 H, J = 9.9, 8.7 Hz), 2.36 (dd, 1 H, J = 15.3, 5.1 Hz), 2.40 (m, 1 H), 3.68 and 3.81 (2 q, 2 H, J = 6.6 Hz), 5.21 (ddd, 1 H, J = 9.9, 1.8, 1.5 Hz), 5.46 (ddd, 1 H, J = 9.9, 4.8, 2.4 Hz), 7.1–7.4 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 14.2, 20.2, 24.1, 25.6, 31.1, 41.0, 53.5, 55.7, 56.7, 58.4, 126.7, 127.2, 128.1, 128.3, 130.3, 131.5.

GC-MS: m/z (%) = 105 (100), 214 (65), 110 (51), 120 (17), 348 (2, M⁺).

Anal. Calcd for $C_{24}H_{32}N_2$: C, 82.71; H, 9.25; N, 8.04. Found: C, 82.46; H, 9.29; N, 8.07.

289

$(1R,\!4R,\!5S,\!6S)$ -5,6-Bis{[(1S)-1-phenylethyl]amino}cyclohex-2-ene-1,4-diol (2e)

White powder; mp 120–122 °C.

 $[\alpha]_{D}^{25}$ –11.4 (*c* 0.63, CHCl₃).

IR (KBr): 3318, 3027, 1600, 1324, 1259 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.38 (d, 6 H, *J* = 6.6 Hz), 1.9–2.9 (broad, 4 H), 2.45 (m, 2 H), 3.81 (q, 2 H, *J* = 6.6 Hz), 4.06 (m, 2 H), 5.97 (dd, 2 H, *J* = 1.4, 2.8 Hz), 7.2–7.4 (m, 10 H).

¹³C NMR (75 MHz, CDCl₃): δ = 25.2, 52.5, 55.1, 62.3, 126.6, 127.2, 128.6, 130.5, 145.1.

Anal. Calcd for $C_{22}H_{28}N_2O_2$: C, 74.97; H, 8.01; N, 7.95. Found: C, 74.67; H, 8.04; N, 7.92.

Phosphorous Diamides 4; General Procedure

To a stirred solution of diaminodiene 1 (2 mmol) in CH₂Cl₂ (10 mL) were added Et₃N (2.02 g, 20 mmol) and DMAP (10 mg). Freshly distilled PCl₃ (0.55 g, 4 mmol) was added at 0 °C and the mixture was stirred for 3 h at reflux. After cooling at 0 °C, H₂O (10 mL) was slowly added (**Caution!**), CH₂Cl₂ was removed at reduced pressure, and the organic materials were extracted with Et₂O (3 × 10 mL). The ethereal layers were collected, then Na₂SO₄ and SiO₂ (1 g) were added, the mixture was stirred for 30 min, then filtered through a small pad of Celite, and the organic solution was concentrated at reduced pressure. The products were used without further purification.

(4*R*,5*R*)-1,3-Bis[(1*S*)-1-phenylethyl]-4,5-bis(1-vinylprop-2-en-1-yl)-1,3,2-diazaphospholidine 2-Oxide (4b) Whitish oil.

 $[\alpha]_{D}^{25}$ +21.6 (*c* 0.44, CHCl₃).

IR (neat): 3428, 3077, 2360 (PH), 1635, 1226 (P=O), 1129, 1037, 998, 918, 773, 704 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.73 (d, 3 H, *J* = 7.3 Hz), 1.78 (d, 3 H, *J* = 7.3 Hz), 2.55–2.75 (m, 3 H), 2.85–2.95 (m, 1 H), 4.10–4.20 (m, 1 H), 4.25–4.55 (m, 3 H), 4.75–5.25 (m, 7 H), 5.30–5.50 (m, 1 H), 5.50–5.70 (m, 2 H), 7.25–7.45 (m, 8 H), 7.55–7.65 (m, 2 H), 8.04 (d, 1 H, ¹*J*_{P,H} = 609 Hz, PH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.42 (d, ${}^{3}J_{C,P}$ = 3.6 Hz, CH₃), 21.4 (d, ${}^{3}J_{C,P}$ = 3.6 Hz, CH₃), 51.2 (CHCH=CH₂), 51.6 (CHCH=CH₂), 55.85 (d, ${}^{2}J_{C,P}$ = 7.2 Hz, CHCH₃), 56.2 (d, ${}^{2}J_{C,P}$ = 6.1 Hz, CHCH₃), 59.7 (d, ${}^{2}J_{C,P}$ = 9.0 Hz, CHCHN), 62.6 (d, ${}^{2}J_{C,P}$ = 7.8 Hz, CHCHN), 116.6 (CH₂=), 116.9 (CH₂=), 117.6 (CH₂=), 117.8 (CH₂=), 127.4, 127.5, 127.85, 128.0, 128.35, 128.6 (6 lines for arom. CH), 136.1 (CH=), 136.2 (CH=), 136.9 (CH=), 137.25 (CH=), 142.8 (arom. C), 143.1 (arom. C).

³¹P NMR (162 MHz, CDCl₃): δ = 8.9 (dm, ¹*J*_{P,H} = 609 Hz).

(4R,5R)-4,5-Bis[(1S)-1-methylprop-2-en-1-yl]-1,3-bis[(1S)-1-phenylethyl]-1,3,2-diazaphospholidine 2-Oxide (C_2 -4d) Whitish oil.

 $[\alpha]_D^{25}$ –31.2 (*c* 0.73, CHCl₃).

IR (neat): 3445, 3065, 3035, 2346 (PH), 1638, 1600, 1228 (P=O), 1130, 1033, 913, 802, 704 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 0.76$ (d, 3 H, J = 7.1 Hz), 0.79 (d, 3 H, J = 7.1 Hz), 1.76 (d, 3 H, J = 7.0 Hz), 1.82 (d, 3 H, J = 7.0 Hz), 2.20–2.49 (m, 2 H), 2.58–2.90 (m, 2 H), 4.12–4.42 (m, 2 H), 4.52–5.04 (m, 4 H), 5.15–5.34 (m, 1 H), 5.65–5.84 (m, 1 H), 7.23–7.43 (m, 8 H), 7.52–7.60 (m, 2 H), 7.96 (d, 1 H, ¹ $J_{P,H} = 609$ Hz, PH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.4 (CH₃CHCH=), 15.6 (CH₃CHCH=), 21.6 (d, ³*J*_{C,P} = 4.7 Hz, CH₃CHN), 21.7 (d, ³*J*_{C,P} = 5.2 Hz, CH₃CHN), 38.2 (CHCH=CH₂), 38.7 (CHCH=CH₂), 55.0 (d, ²*J*_{C,P} = 6.9 Hz, NCHCH₃), 55.1 (d, ²*J*_{C,P} = 7.6 Hz, NCHCH₃), 60.1 (d, ²*J*_{C,P} = 9.1 Hz, CHCHN), 62.55 (d, ²*J*_{C,P} = 8.2 Hz, CHCHN), 115.5 (CH₂=), 116.0 (CH₂=), 127.3, 127.4, 127.7, 127.9, 128.2, 128.4 (6 lines for arom. CH), 138.3 (CH=), 139.3, (CH=), 142.35 (arom. C), 142.8 (arom. C).

³¹P NMR (162 MHz, CDCl₃): $\delta = 9.9$ (dm, ¹ $J_{P,H} = 609$ Hz).

(4*R*,5*R*)-1,3-Bis[(1*S*)-1-phenylethyl]-4,5-bis[(1*R*)-1-phenylprop-2-en-1-yl]-1,3,2-diazaphospholidine 2-Oxide (4c)

White solid; mp 210–215 °C (dec.).

 $[\alpha]_{D}^{25}$ +19.2 (*c* 0.39, CHCl₃).

IR (KBr): 3429, 3026, 2329 (PH), 1600, 1226 (P=O), 1128, 1035, 988, 933, 900, 770, 701, 635, 542 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.39 (d, 3 H, *J* = 7.2 Hz), 1.44 (d, 3 H, *J* = 7.2 Hz), 2.58–3.05 (m, 5 H), 3.05–3.20 (m, 1 H), 3.80 (d, 1 H, *J* = 17.3 Hz), 3.95 (d, 1 H, *J* = 17.3 Hz), 4.69 (dd, 1 H, *J* = 10.4, 1.8 Hz), 4.77 (dd, 1 H, *J* = 10.4, 1.8 Hz), 5.50–5.70 (m, 2 H), 7.05–7.20 (m, 4 H), 7.20–7.45 (m, 14 H), 7.50–7.62 (m, 2 H), 8.30 (d, 1 H, ¹*J*_{P,H} = 602 Hz, PH).

¹³C NMR (75 MHz, CDCl₃): $\delta = 21.2$ (d, ³ $J_{C,P} = 6.0$ Hz, CH₃), 21.3 (d, ³ $J_{C,P} = 5.0$ Hz, CH₃), 53.8 (CHCH=CH₂), 54.8 (CHCH=CH₂), 56.0 (d, ² $J_{C,P} = 6.8$ Hz, CHCH₃), 57.0 (d, ² $J_{C,P} = 5.0$ Hz, CHCH₃), 61.9 (d, ² $J_{C,P} = 9.7$ Hz, CHCHN), 65.6 (d, ² $J_{C,P} = 7.7$ Hz, CHCHN), 117.6 (CH₂=), 117.9 (CH₂=), 126.75, 126.92, 127.2, 127.4, 127.7, 128.1, 128.35, 128.4, 128.4, 128.6 (10 lines, 2 sign. overl. for arom. CH), 137.2 (CH=), 137.7 (CH=), 141.4 (arom. C), 141.7 (arom. C), 143.9 (arom. C), 143.95 (arom. C).

³¹P NMR (162 MHz, CDCl₃): δ = 7.2 (dm, ¹J_{P,H} = 602 Hz).

(4*S*,5*S*)-4-[(1*R*)-1-Ethoxyprop-2-en-1-yl]-5-[(1*S*)-1-ethoxyprop-2-en-1-yl]-1,3-bis[(1*S*)-1-phenylethyl]-1,3,2-diazaphospholidine 2-Oxide and (4*S*,5*S*)-4,5-Bis[(1*S*)-1-ethoxyprop-2-en-1-yl)-1,3-bis[(1*S*)-1-phenylethyl]-1,3,2-diazaphospholidine 2-Oxide (4f)

Yellowish oil; dr = 70:30.

 $[\alpha]_{\rm D}^{25}$ –7.0 (*c* 0.68, CHCl₃).

IR (neat): 3433, 3062, 3028, 2346 (PH), 1640, 1226 (P=O), 1131, 929, 772, 703 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, 3 H, *J* = 7.0 Hz), 0.95 (t, 3 H, *J* = 7.0 Hz), 1.01 (t, 3 H, *J* = 7.0 Hz), 1.07 (t, 3 H, *J* = 7.0 Hz), 1.11 (t, 3 H, *J* = 7.0 Hz), 1.14 (t, 3 H, *J* = 7.2 Hz), 1.69 (d, 3 H, *J* = 7.3 Hz) 1.70 (d, 3 H, *J* = 7.0 Hz), 1.71 (d, 3 H, *J* = 7.1 Hz), 1.72 (d, 3 H, *J* = 7.2 Hz), 1.76 (d, 3 H, *J* = 7.0 Hz), 1.78 (d, 3 H, *J* = 6.5 Hz), 2.40–3.60 (m, 24 H), 4.10–5.90 (m, 24 H), 7.20–7.50 (m, 24 H), 7.50–7.65 (m, 6 H), 7.96 (d, 2 H, ¹*J*_{P,H} = 609 Hz, PH), 8.07 (d, 1 H, ¹*J*_{P,H} = 604 Hz, PH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.9 (CH₃CH₂OCH=), 15.0 (CH₃CH₂OCH=), 15.1 (CH₃CH₂OCH=), 15.2 (CH₃CH₂OCH=), 15.2 (CH₃CH₂OCH=), 15.3 (CH₃CH₂OCH=), 21.2 (d, ³J_{C,P} = 3.4 Hz, CH₃), 21.2 (d, ³J_{C,P} = 3.2 Hz, CH₃), 21.3 (d, ³J_{C,P} = 4.3 Hz, CH₃), 21.4 (d, ³J_{C,P} = 3.7 Hz, CH₃), 21.5 (d, ³J_{C,P} = 5.5 Hz, CH₃), 21.7 (d, ³J_{C,P} = 4.9 Hz, CH₃), 55.2 (d, ²J_{C,P} = 6.0 Hz, CHCH₃), 55.9 (d, ²J_{C,P} = 6.1 Hz, CHCH₃), 55.8 (d, ²J_{C,P} = 7.5 Hz, CHCH₃), 55.9 (d, ²J_{C,P} = 6.1 Hz, CHCH₃), 57.3 (d, ²J_{C,P} = 7.0 Hz, CHCH₃), 56.2 (d, ²J_{C,P} = 8.7 Hz, CHCH₃), 56.2 (d, ²J_{C,P} = 7.0 Hz, CHCH₃), 56.2 (d, ²J_{C,P} = 8.7 Hz, CHCH₃), 56.2 (d, ²J_{C,P} = 7.0 Hz, CHCH₃), 56.9 (d, ²J_{C,P} = 9.6 Hz, CHCH₃), 57.3 (d, ²J_{C,P} = 9.6 Hz, CHCH₃), 60.8 (d, ²J_{C,P} = 8.2 Hz, CHCH₃), 61.35 (d, ²J_{C,P} = 7.8 Hz, CHCH₃), 60.8 (d, ²J_{C,P} = 8.4 Hz, CHCH₃), 63.95 (OCH₂), 64.0 (OCH₂), 64.15 (OCH₂), 64.3 (OCH₂), 64.5 (OCH₂), 81.1 (CHCH=CH₂), 81.6 (CHCH=CH₂), 82.7 (CHCH=CH₂), 82.9

Synthesis 2006, No. 2, 285–292 © Thieme Stuttgart · New York

³¹P NMR (162 MHz, CDCl₃): δ = 12.1 (dm, ¹*J*_{P,H} = 609 Hz), 11.1 (dm, ¹*J*_{P,H} = 609 Hz), 8.3 (dm, ¹*J*_{P,H} = 604 Hz).

(4*S*,5*S*)-4,5-Bis[(1*R*)-1-phenoxyprop-2-en-1-yl]-1,3-bis[(1*S*)-1-phenylethyl]-1,3,2-diazaphospholidine 2-Oxide (4g) White solid; mp 125–134 °C (dec.).

 $[\alpha]_{D}^{25}$ +1.7 (*c* 1.8, CHCl₃).

IR (KBr): 3406, 3070, 3042, 2365 (PH), 1646, 1597, 1228 (P=O), 1118, 1031, 928, 803, 753, 700, 692 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.72 (d, 3 H, J = 7.0 Hz), 1.79 (d, 3 H, J = 7.0 Hz), 3.28–3.41 (m, 1 H), 3.41–3.55 (m, 1 H), 4.16–4.34 (m, 2 H), 4.38–4.60 (m, 2 H), 4.98–5.30 (m, 4 H), 5.40–5.57 (m, 1 H), 5.60–5.78 (m, 1 H), 6.65 (d, 2 H, J = 8.1 Hz), 6.74 (d, 2 H, J = 8.1 Hz), 6.88–7.00 (m, 2 H), 7.10–7.30 (m, 10 H), 7.34–7.53 (m, 4 H), 8.06 (d, 1 H, ¹ $_{J_{\rm P,H}}$ = 613 Hz, PH).

¹³C NMR (75 MHz, CDCl₃): δ = 20.83 (d, ${}^{3}J_{C,P}$ = 4.2 Hz, CH₃), 21.3 (d, ${}^{3}J_{C,P}$ = 4.2 Hz, CH₃), 54.6 (d, ${}^{2}J_{C,P}$ = 6.5 Hz, CHCH₃), 55.0 (d, ${}^{2}J_{C,P}$ = 8.0 Hz, CHCH₃), 57.7 (d, ${}^{2}J_{C,P}$ = 8.9 Hz, CHCHN), 60.14 (d, ${}^{2}J_{C,P}$ = 8.1 Hz, CHCHN), 78.4 (CHCH=CH₂), 79.4 (CHCH=CH₂), 115.7 (arom. CH), 116.3 (arom. CH), 118.6 (CH₂=), 119.0 (CH₂=), 121.10, 121.15, 127.3, 127.4, 127.5, 127.5, 128.4, 128.5, 129.2, 129.3 (10 lines for arom. CH), 133.65 (CH=), 134.5 (CH=), 142.35 (arom. C), 142.4 (arom. C), 142.7 (arom. C), 142.7 (arom. C).

³¹P NMR (162 MHz, CDCl₃): δ = 13.4 (dm, ¹*J*_{P,H} = 613 Hz).

RCM Reactions of Phosphorous Acid Diamides 4; General Procedure

Preparation of Diaminocyclohexenes 2 through 8

Complex **6** (43 mg, 0.05 mmol) was added to the stirred solution of phosphorous diamide **4** (2 mmol) in CH₂Cl₂ (6 mL) while Ar was bubbled through the solution (0.5 min) at 40 °C. An equal amount of complex **6** was added after 1.5 h and the mixture was further stirred at 40 °C for 1.5–2 h. The solvent was removed under reduced pressure and the residue was dissolved in MeOH (8 mL), then HCl (4 M in 2 mL dioxane) was added and the mixture was stirred overnight. The solvent was removed at reduced pressure and the residue was treated with Et₂O (10 mL), H₂O (10 mL) and solid NaOH until pH 11. The organic phase was separated and the aqueous layer was further extracted with Et₂O (3×5 mL). The collected organic layers were dried (Na₂SO₄) and concentrated at reduced pressure to leave a yellowish oil. Pure diaminocyclohexene was obtained through column chromatography (SiO₂, cyclohexane–EtOAc).

Compound 2b was previously described.^{3b}

(1*R*,2*R*,3*S*,6*S*)-3,6-Dimethyl-*N*,*N*′-bis[(1*S*)-1-phenylethyl]cyclohex-4-ene-1,2-diamine (*trans*-2d)

Yellowish oil.

 $[\alpha]_{D}^{25}$ +64.2 (*c* 1.74, CHCl₃).

IR (neat): 3317, 3082, 3060, 3011, 1602, 1368 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.09 (d, 6 H, *J* = 5.7 Hz), 1.28 (d, 6 H, *J* = 6.6 Hz), 1.68 (br m, 2 H), 2.04 (m, 4 H), 3.89 (q, 2 H, *J* = 6.6 Hz), 5.21 (s, 2 H), 7.1–7.4 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 20.5, 24.8, 40.6, 58.1, 62.3, 126.8, 127.1, 128.3, 131.4, 145.8.

Downloaded by: University of Illinois at Chicago. Copyrighted material.

GC-MS: m/z (%) = 105 (100), 214 (63), 110 (50), 120 (17), 348 (3, M⁺).

Anal. Calcd for $C_{24}H_{32}N_2$: C, 82.71; H, 9.25; N, 8.04. Found: C, 82.41; H, 9.29; N, 8.01.

(1*S*,2*S*,3*R*,6*S*)-3,6-Diethoxy-*N*,*N*'-bis[(1*S*)-1-phenylethyl]cyclohex-4-ene-1,2-diamine (*cis*-2f)

Yellowish oil.

 $[\alpha]_D^{25}$ –82.7 (*c* 0.7, CHCl₃).

IR (neat): 3301, 3027, 1602, 1369, 1326, 1270, 1088 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.09 and 1.26 (2 t, 6 H, *J* = 7.0 Hz), 1.32 and 1.44 (2 d, 6 H, *J* = 6.2 Hz), 2.24 (dd, 2 H, *J* = 11.4, 3.2 Hz), 2.55 (dd, 2 H, *J* = 11.4, 8.0 Hz), 3.43 (dq, 1 H, *J* = 1.8, 8.0 Hz), 3.5–3.75 (m, 4 H), 3.75–3.95 (m, 2 H), 4.17 (q, 1 H, *J* = 6.6 Hz), 5.79 (dd, 1 H, *J* = 1.8, 10.4 Hz), 5.90 (ddd, 1 H, *J* = 1.2, 4.8, 10.4 Hz), 7.1–7.5 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 15.55, 15.8, 24.9, 25.8, 26.9, 54.0, 54.2, 55.4, 57.1, 64.1, 64.2, 68.5, 125.8, 126.3, 126.9, 127.0, 127.0, 128.1, 128.5, 131.6, 145.3, 146.5.

GC-MS: *m*/*z* (%) = 105 (100), 57 (33), 77 (22), 161 (20), 106 (12), 266 (10), 120 (6).

Anal. Calcd for $C_{26}H_{36}N_2O_2{:}$ C, 76.43; H, 8.88; N, 6.86. Found: C, 76,74; H, 8.91; N, 6.84.

Preparation of 1,2-Diaminocyclohexanes Dihydrochlorides 8; General Procedure

A mixture of 1,2-diaminocyclohexene **2** (1 mmol), HCO_2NH_4 (0.800 g, 12.5 mmol), 20% Pd(OH)₂/C (0.100 g) in EtOH (10 mL) was heated at reflux temperature for 3 h. The cooled mixture was filtered through a small pad of celite and the organic solution was treated with HCl (0.5 mL; 4 M in dioxane). The solvents were removed under reduced pressure to leave the diamine dihydrochloride as a white solid (>95% pure by ¹H NMR).

(1*R*,2*R*,3*R*,6*S*)-3,6-Dimethylcyclohexane-1,2-diaminium Dichloride (*cis*-8d)

Mp 200–210 °C (dec.).

 $[\alpha]_{D}^{25}$ -8.4 (*c* 0.5, MeOH).

IR (KBr): 3420, 2500-3500 (br), 1594, 1566, 1498 cm⁻¹.

¹H NMR (300 MHz, CD₃OD): δ = 1.13 (d, 3 H, *J* = 7.2 Hz), 1.20 (d, 3 H, *J* = 6.6 Hz), 1.50 (dt, 1 H, *J* = 2.7, 12.9 Hz), 1.60–1.90 (m, 4 H), 2.50 (m, 1 H), 3.39 (dd, 1 H, *J* = 10.5, 11.1 Hz), 3.66 (dd, 1 H, *J* = 4.8, 10.5 Hz).

¹³C NMR (75 MHz, CD₃OD): δ = 12.9, 18.8, 28.3, 30.9, 33.1, 37.3, 56.2, 56.4.

Anal. Calcd for $C_8H_{20}Cl_2N_2$: C, 44.66; H, 9.37; N, 13.02. Found: C, 44.47; H, 9.40; N, 12.97.

(1*R*,2*R*,3*S*,6*S*)-3,6-Dimethylcyclohexane-1,2-diaminium Dichloride (*trans*-8d)

Mp 230–240 °C (dec.).

 $[\alpha]_{D}^{25}$ +7.2 (*c* 1.3, MeOH).

IR (KBr): 3425, 2500-3400 (br), 1594, 1520 cm⁻¹.

¹H NMR (300 MHz, CD₃OD): δ = 1.18 (d, 6 H, *J* = 6.0 Hz), 1.34 (m, 2 H), 1.82 (d, 4 H, *J* = 7.5 Hz), 3.2 (d, 2 H, *J* = 7.8 Hz).

¹³C NMR (75 MHz, CD₃OD): δ = 19.0, 33.4, 37.1, 59.8.

Anal. Calcd for $C_8H_{20}Cl_2N_2$: C, 44.66; H, 9.37; N, 13.02. Found: C, 44.48; H, 9.41; N, 12.98.

(1*S*,2*S*,3*R*,6*R*)-3,6-Dihydroxycyclohexane-1,2-diaminium Dichloride (8e)

Mp 200-210 °C (dec.).

 $[\alpha]_{D}^{25}$ –73.2 (*c* 0.17, MeOH).

IR (KBr): 3364, 2600–3200 (br), 1549, 1205 cm⁻¹.

¹H NMR (300 MHz, CD₃OD): δ = 1.60 (dd, 2 H, *J* = 9.8, 4.2 Hz), 1.89 (dd, 2 H, *J* = 9.8, 1.2 Hz), 3.53 (m, 2 H), 4.07 (m, 2 H).

¹³C NMR (75 MHz, CD₃OD): δ = 26.2, 53.3, 67.1.

Anal. Calcd for $C_6H_{16}Cl_2N_2O_2$: C, 32.89; H, 7.36; N, 12.79. Found: C, 32.75; H, 7.39; N, 12.75.

(1*S*,2*S*,3*R*,6*S*)-3,6-Diethoxycyclohexane-1,2-diaminium Dichloride (8f)

The crude compound was isolated as a yellowish solid in 87% yield, then washed with Et_2O -MeOH (8:1) to give a white solid in 55% yield.

Mp 175-185 °C (dec.).

 $[\alpha]_{D}^{25}$ –14.1 (*c* 0.27, MeOH).

IR (KBr): 3413, 3143, 2200-2500 (br), 1626, 1107 cm⁻¹.

¹H NMR (300 MHz, CD₃OD): δ = 1.27 and 1.29 (2 t, 6 H, *J* = 6.9 Hz), 1.55 (m, 2 H), 2.12 (m, 1 H), 2.25 (m, 1 H), 3.40–3.65 (m, 4 H), 3.65–3.90 (m, 3 H), 3.93 (s, 1 H).

¹³C NMR (50 MHz, CD₃OD): δ = 15.85, 15.9, 23.7, 24.1, 54.7, 55.5, 65.6, 66.0, 74.4, 77.7.

Anal. Calcd for $C_{10}H_{24}Cl_2N_2O_2$: C, 43.64; H, 8.79; N, 10.00. Found: C, 43 51; H, 8.82; N, 10.15.

(1*R*,2*R*,3*R*,6*S*)-3,6-Diethylcyclohexane-1,2-diaminium Dichloride (8g)

Mp 170-180 °C (dec.).

 $[\alpha]_{D}^{25}$ –3.8 (*c* 0.44, MeOH).

IR (KBr): 3436, 2500-3400 (br), 1594, 1503 cm⁻¹.

¹H NMR (300 MHz, CD₃OD): δ = 0.88 (t, 6 H, *J* = 7.0 Hz), 1.1–1.7 (m, 8 H), 1.7–1.8 (m, 1 H), 1.9–2.1 (m, 1 H), 3.26 (dd, 1 H, *J* = 9.6, 8.0 Hz), 3.49 (dd, 1 H, *J* = 9.6, 4.8 Hz).

¹³C NMR (75 MHz, CD₃OD): δ = 11.0, 11.9, 19.2, 23.6, 25.1, 25.3, 39.6, 42.6, 54.7, 56.6.

Anal. Calcd for $C_{10}H_{24}Cl_2N_2$: C, 49.38; H, 9.95; N, 11.52. Found: C, 49.58; H, 9.99; N, 11.48.

Acknowledgment

This work was carried out in the field of the FIRB Project: Progettazione, preparazione e valutazione biologica e farmacologica di nuove molecole organiche quali potenziali farmaci innovativi.

References

- (1) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
- (2) (a) Hyldtoft, L.; Storm Poulsen, C.; Madsen, R. *Chem. Commun.* 1999, 2191. (b) Hyldtoft, L.; Madsen, R. *J. Am. Chem. Soc.* 2000, *122*, 8444. (c) Ovaa, H.; Codée, J. D. C.; Lastdrager, B.; Overkleeft, H. S.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron Lett.* 1999, *40*, 5063. (d) Hanna, I.; Ricard, L. *Org. Lett.* 2000, *2*, 2651.
- (3) (a) Alvaro, G.; Grilli, S.; Martelli, G.; Savoia, D. *Eur. J. Org. Chem.* 1999, 1523. (b) Grilli, S.; Martelli, G.; Savoia, D.; Zazzetta, C. *Adv. Synth. Catal.* 2002, *344*, 1068.
- (4) Bennani, Y. L.; Hanessian, S. Chem. Rev. 1997, 97, 3161.

- (5) (a) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063.
 (b) Flammengo, R.; Bruinink, C. M.; Crego-Calama, M.; Reinhoudt, D. N. J. Org. Chem. 2002, 67, 8552.
 (c) Belokon, Y. N.; Fuentes, J.; North, M.; Steed, J. W. Tetrahedron 2004, 60, 3191. (d) Paul, B. J.; Willis, J.; Martinot, T. A.; Ghiviriga, I.; Abboud, K. A.; Hudlicky, T. J. Am. Chem. Soc. 2002, 124, 10416. (e) Azev, V. N.; d'Alarcao, M. J. Org. Chem. 2004, 69, 4839.
- (6) (a) Cerè, V.; Peri, F.; Pollicino, S.; Ricci, A. Synlett 1998, 1197. (b) Arcelli, A.; Cerè, V.; Peri, F.; Pollicino, S.; Ricci, A. Tetrahedron 2001, 57, 3439. (c) Arcelli, A.; Cerè, V.; Peri, F.; Pollicino, S.; Ricci, A. Tetrahedron: Asymmetry 2002, 13, 191.
- (7) (a) Witiak, D. T.; Rotella, D. P.; Fillpi, J. A.; Gallucci, J. G. J. Med. Chem. 1987, 30, 1327. (b) Witiak, D. T.; Rotella, D. P.; Wei, Y.; Fillpi, J. A.; Gallucci, J. G. J. Med. Chem. 1989, 32, 214. (c) Witiak, D.; Wei, Y. J. Org. Chem. 1991, 56, 5408. (d) Hanessian, S.; Wang, J. Can. J. Chem. 1993, 71, 2102.
- (8) (a) Alvaro, G.; Grepioni, F.; Grilli, S.; Maini, L.; Martelli, G.; Savoia, D. *Synthesis* 2000, 581. (b) Fiorelli, C.; Maini, L.; Martelli, G.; Savoia, D. *Tetrahedron* 2002, *58*, 8679.

- (9) Remoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Datano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690.
- (10) The synthesis of (Z)-1,4-diamino-2-butenes was achieved recently by a temporary phosphorus tether RCM strategy: Sprott, K. T.; McReynolds, M. D.; Hanson, P. R. *Org. Lett.* 2001, *3*, 3939.
- (11) It should be underlined that compounds 7 and analogous compounds with different N-substituents are potentially useful reagents for the asymmetric phosphorylation of aldehydes: Blazis, V. J.; Koeller, K. J.; Spilling, C. D. J. Org. Chem. **1995**, 60, 931.
- (12) (a) Grepioni, F.; Grilli, S.; Martelli, G.; Savoia, D. J. Org. Chem. 1999, 64, 3679. (b) Grilli, S.; Martelli, G.; Savoia, D.; Zazzetta, C. Synthesis 2003, 1083.
- (13) (a) Jørgensen, M.; Hadwiger, P.; Madsen, R.; Stütz, A. E.; Wrodnigg, T. M. *Curr. Org. Chem.* **2000**, *4*, 565. (b) Lee, W.-W.; Chang, S. *Tetrahedron: Asymmetry* **1999**, *10*, 4473.
 (c) Ackermann, L.; Tom, D. E.; Fürstner, A. *Tetrahedron* **2000**, *56*, 2195. (d) Fukuda, Y.; Shindo, M.; Shishido, K. *Org. Lett.* **2003**, *5*, 749.
- (14) (a) Hoye, T. R.; Zhao, H. Org. Lett. 1999, 1, 1123.
 (b) Ravn, J.; Nielsen, P. J. Chem. Soc., Perkin Trans. 1 2001, 985.