4-N-BENZAZOLYLAMINO DERIVATIVES OF 3-Y-3-BUTEN-2-ONE

Viktor MILATA^a, Dušan ILAVSKÝ^a, Igor GOLJER^b and Ján LEŠKO^b

 ^a Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, 812 37 Bratislava
^b Central Laboratory of Chemical Technique, Faculty of Chemical Technology, Slovak Technical University, 812 37 Bratislava

> Received May 2, 1991 Accepted August 30, 1991

Dedicated to Professor L. Ebringer on the occasion of his 60th birthday.

Ethoxymethylene derivatives of 2,4-pentanedione (Ia), 3-oxobutanenitrile (Ib), methyl (Ic) or ethyl (Id) 3-oxobutanoate give with 4- or 5-aminobenzimidazole or benzotriazole, respectively, under mild conditions products of nucleophilic substitution II - V. Structure of these compounds was discussed on the basis of their spectral measurements – IR, UV, ¹H, ¹³C NMR and mass spectra.

Benzazolylaminomethylene derivatives of ethyl malonate or methyl cyanoacetate were used in the synthesis of 3-substituted azoloquinolone derivatives¹. Their synthesis is based on the reaction of aminobenzazole (4- or 5-aminobenzimidazole or benzotriazole) with the corresponding alkoxymethylene derivatives of ethyl malonate and methyl cyanoacetate², respectively. The ethoxymethylene derivatives of 2,4-pentanedione (*Ia*), 3-oxobutanenitrile (*Ib*), methyl (*Ic*) and ethyl (*Id*) 3-oxobutanoate give with 5-amino-1-arylbenzazoles³, 5-amino-1-methylbenzazoles and 5-amino-2-methylbenzotriazole⁴ products of nucleophilic substitution.

This work presents the synthesis and spectral properties of 4-N-benzazolylaminomethylene derivatives of 2,4-pentanedione, 3-oxobutanenitrile, methyl and ethyl 3-oxobutanoate, prepared by treatment of the latter with 4- or 5-aminobenzimidazole or benzotriazole (Scheme 1 and Table I). These aminomethylene derivatives contain always at least one acetyl group in the β -position of this substituent. The second electron-withdrawing group is either an acetyl, cyano or an ester group respectively. The amino group of the aminobenzazole occupies both posible position on the benzene nucleus, that means position 4(7)- or 5(6)-. No substitution products were observed from an attack of the imino hydrogen of the azole ring or formed by substitution through another possible centre of nucleophilic attack.

Spectral characteristics confirm the proposed structure of synthetized compounds: an intramolecular hydrogen bond between the imino hydrogen and the carbonyl

TABLE I

Yield, physico-chemical and analytical data of compounds II-V

Company	Formula	M.p., °C	Cale	culated/Fo	und	
Compound	(M.w.)	Yield, %	% C	% Н	% N	
lla	$C_{13}H_{13}N_{3}O_{2}$	199-200	64.19	5.39	17.27	
	(243.3)	78	64.20	5.18	17.14	
IIb	$C_{12}H_{10}N_4O$	240 - 242	63.71	4.46	24.76	
	(226.2)	89	63.59	4.34	24.67	
IIc	$C_{13}H_{13}N_{3}O_{3}$	171-173	60.23	5.05	16.21	
	(259.3)	69	60.11	5.00	16.13	
11d	$C_{14}H_{15}N_{3}O_{3}$	172-174	61.53	5.53	15.38	
	(273-3)	62	61.37	5.39	15.19	
111a	$C_{12}H_{12}N_4O_2$	223 226	59.01	4.95	22.94	
	(244.3)	82	59.00	4.91	22.89	
IIIb	$C_{11}H_0N_5O$	260-263	58.15	3.99	30.82	
	(227.2)	89	58.01	3.86	30.68	
IIIc	C ₁₂ H ₁₂ N ₄ O ₂	209-213	55.38	4.65	21.53	
	(260.3)	72	55.29	4.56	21.34	
IIId	C. H. N.O.	171 174	56.93	5.14	20.43	
	(274.3)	63	56.77	5.01	20.22	
IVa	C. H. N.O.	198-201	64.19	5.39	17.27	
	(243.3)	86	64.10	5.28	17.17	
IVb	C. H. N.O	228 231	63.71	4.46	24.76	
	(226.2)	91	63.73	4.46	24.72	
IVc	Conthe No.	151-154	60.23	5.05	16.21	
	(259.3)	68	60.09	4.99	16.01	
IVd	C. H. N.O.	170 - 173	61.53	5.53	15.38	
	(273.3)	71	61.35	5.39	15.24	
Va	C. H. N.O.	227-229	59.01	4.95	22.94	
, ,	(244.3)	8	58.99	5.01	22.88	
Vh	C. H.N.O	236-240	58.15	3.99	30.82	
,,,	(227.2)	93	58.09	4.00	30.59	
Va	C.H.N.O	162-164	55.28	4.65	21.53	
۲C	(260.3)	74	55.18	4.45	21·35 21·36	
T/J		205 200	56.02	5.14	20.42	
va	(274.3)	205 209 68	56·76	5.00	20.45	
	(2/= 3)	00	50 10	2.00	20 20	

of acetyl or ester group (IR spectra, Table II) stabilize the antiperiplanar conformation of the enamine moiety of compounds II - V.

°₅(0₂N	H N N	<u> 1.</u> 2.	H ₂ -Rane EtOCH= /a-/a	<u>у Ni</u> cc ^{COCH} 3 Y. d H ₃ C	H	S N-H	H 70 37 N X ²
						//-V	
				H ³ C		N N N N T	HZZZ
			4-Sub comp	stituted ounds		5-Sub comp	stituted ounds
I	Y		x	Y		X	Y
a b c d	COCH ₃ CN COOCH ₃ COOC ₂ H ₅	IIa IIb IIc IId IIIa IIIa IIIb IIIc IIId	CH CH CH N N N N	$\begin{array}{c} \text{COCH}_3\\ \text{CN}\\ \text{COOCH}_3\\ \text{COOC}_2\text{H}_5\\ \text{COCH}_3\\ \text{CN}\\ \text{COOCH}_3\\ \text{COOCH}_3\\ \text{COOC}_2\text{H}_5 \end{array}$	IVa IVb IVc IVd Va Vb Vc Vd	CH CH CH N N N N	COCH ₃ CN COOC ₂ H ₅ COCH ₃ CN COOCH ₃ COOC ₂ H ₅

SCHEME 1

The absorption bands between 250 and 270 nm in UV spectra (Table II) correspond to benzotriazole and benzimidazole chromophore⁵, respectively. The longest wavelength absorption band belongs to the interaction of benzazole with the aminoethylene substituent⁶.

The doubling of signals of the aminoethylene substituent and the benzene ring of the benzazole in proton and carbon NMR spectra, respectively, of compound IIIb-IIId to Vb-Vd (Tables III, IV) confirm, unlike in IIa-Va, the existence of geometrical isomerism: derivatives of 3-oxobutanenitrile (IIb-Vb) are formed in the 1:1 ratio, while in 3-oxobutanoates IIc, IId-Vc, Vd predominate (over 85 per cent) the E-isomer⁷.

Milata, Ilavský, Goljer, Leško:

TABLE II

IR and UV spectra of compounds II - V

Com	IR spe	ectrum, cm	- 1		τ	JV spectru	m	
pound	ν̃(C==Ο)	v(C==N)	ν̃(CH) ν̃(NH)		λ _{max} , r	m/logεm	² mol ⁻¹	
IIa	1 615	-	2 915 3 375			254 3∙03	_	349 3·41
IIb	1 655	2 215	3 200 3 520	227 2·98		253 2·85	261 2·72	352 3·32
IIc	1 630, 1 710 1 640	-	3 170 3 400	-	235 3·07	253 3·00	261 2∙88	348 3∙37
IId	1 610, 1 710 1 640		3 220 3 430	224 3·07	236 3·11	252 3·08	260 2·97	348 3·43
IIIa	1 620 1 635		3 105 3 470	230 3·00		259 3∙04	269 2·93	354 3∙45
IIIb	1 645	2 205	3 170 3 400	226 3·26		262 2·83		355 3·42
IIIc	1 640 1 680	-	3 220 3 460	229 3·19		260 2·78	269 2∙70	354 3∙49
IIId	1 635 1 710		3 100 3 440	228 3·16	241 3·03	260 2·75	268 2·68	352 3·43
1Va	1 620	_	2 000 3 360	-	—	255 3·30	263 3·27	342 3·47
IVb	1 640, 1 675 1 645	2 210	2 820 3 440	225 3·32		254 2·97	261 2·90	345 3•43
IVc	1 625, 1 670 1 640	-	3 230 3 440	-	238 3·32	252 3·19	259 3·02	341 3•45
I V d	1 620, 1 670 1 635		3 220 3 430		238 3·29	253 3·16	260 2·99	342 3·42
Va	1 640		3 040 3 440				258 3·08	342 3•34
Vb	1 610 1 655	2 230	3 170 3 450	224 3·25		—	266 2·79	342 3•37
Vc	1 630, 1 715 1 645		3 000 3 435		234 3·31		269 2∙88	340 3·49
Vd	1 630 1 710	-	2 980 3 425	~	234 3·28		266 2·86	341 3·45

N-B	enzazo	olylar	nin	0]	Der	iva	tiv	es (of 3	-Y	-3-	Bu	ten	-2-	one	•												5	35
	6, 7	ł	-		8-4	7-2	7-5		ł	ł		8-4	7-2	i		i	8-7	ŀ	8-7		0.6	ŀ	0.6	0.6		0.6		6.0	l
37	ر 4, 6(5)	l	i				1.8		1	ł		ļ		ł			2·1	I	2-4		2.1	ļ	2·1	2·1		ł	l	1.8	i
	8, NH	12.9	13-2		13·2		13.5		12-0	12.6		13-2		13-2		12-9	13-5	14-1	13-2		13-5	13-5	12-9	13·2		13·2	13.2	13.2	13·2
	۲	2·39 s	I		3·71 s	3-81 s	4-17 q 1-28 t	4-27 q 1-33 t	2-41 s	ł		3.73 s	3-83 s	4-19 q 1-29 t	4-29 q 1-34 t	2-38 s	ł		3.67 s	3-76 s	4-16 q 1-27 t	4-28 q 1-30 t	2-41 s	1 +		3·67 s	3-76 s	4-16 q 1-27 t	4·26 q 1·30 t
	сосн ₃	2-43 s	2·33 s	2·29 s	2·45 s	2-38	2-44 s	2-38 s	2-43 s	2·32 s	2·34 s	2·46 s	2·39 s	2·45 s	2·40 s	2-40 s	2-32 s	2-30 s	2·39 s	2·34 s	2·42 s	2·37 s	2·43 s	2·36 s	2·32 s	2·39 s	2·33 s	2.41 s	2·36 s
	HN	12-97 d	12-65 d	10-80 d	13-09 d	11·26 d	13-05 d	11·35 s	12-98 d	12·65 d	9-92 s	13·09 d	11·23 d	13-06 d	11·30 d	12 <i>·</i> 77 d	12·30 d	10-81 d	12·77 d	10-76 d	12·72 d	10-86 d	12·65 d	12·22 d	10-90 s	12·62 d	10·70 d	12-63 d	10-82 d
	H-8	9-32 d	9-01 d	P 00-6	9-34 d	9-32 d	9-32 d	9-27 d	9-34 d	р 79·8		9-42 d		9-43 d	9-42 d	8-46 d	8-48 d	8·38 d	8-47 d	8-46 d	8·49 d	8-47 d	8-52 d	8-57 d	8·48 d	8-47 d	8-45 d	8-51 d	8·47 d
	Н-7				7·24 d		7·24 d	7·23 d	•	~		7-46 d	7·52 d	i (2 H)		7-62 d	7-59 d	7-59 d	7-60 d		7·62 d		р <i>L</i> 6-Г	р <i>1</i> 6-Г		p 16-L		7-95 d	
	9-H	-30 m (3 H	-30 m (3 H		7·19 dd		7·16 dd		50 m (3 H	43 m (3 H		7-34 dd		7-57 m		7-29 dd	7·30 dd	7·32 dd	7·18 dd		7-23 dd		7-57 d	7-58 dd		7·39 dd	7-41 dd	7-46 dd	
27 spillode	H-4(5)	Ļ	-L		7-35 d	7-37 d	7-35 d	7·37 d	- <u>7</u>	÷		7·54 d	7-56 d	7-33 d		P 0 <i>L</i> ∙ <i>L</i>	7·68 d	D 97∙7	7·61 d		7·63 d		8-06 d	P 00-8		7-83 d	7-80	7-88 d	7-83 d
	H-2	8-33 s	8-32 s	8-35 s	8-33 s	8-31 s	8·32 s	8·31 s	I	I		i		İ		8-26 s	8-25 s	8-24 s	8·26 s		8-27 s		ł	1		ł		[
ande vitativi III	Compound	IIa	911		IIc		PH		IIIa	qIII		IIIc		PIII		IVa	9/1		IVc		IVd		Va	Vb		V_{C}		рĄ	

535

Collect. Czech. Chem. Commun. (Vol. 57) (1992)

TABLE III

Compound	C-2	C-4	C-S	C-6	C-7	C-3a	C-7a	C-8	C-9	C-10	C-11	Y(COCN)	((CH ₃)Y(CH ₂
IIa	142-3	129-4	108-6 ^a	123-2	108-6 ⁴	133-7	134-6	153-4	112-5	9-661	31-7	195-1	27-5
qII	142-6	128-7	109-3	123-3	108-2	133-7	134-8	152-9	84-1	196.4	28.5	120-4	
	142-3	130-0	111-8	123-1	108.8	133-0	135-8	155-5	86-0	191-4	26.7	117-4	
IIc	142-3	129-1	108-7	123-2	108-4	133-6	114-7	152-6	101-8	198-7	30-8	166-8	51-0
	142-1	129-4	108-2		108-0			152-4	102-0	196-3	30-4	166-4	51-1
PII	142-3	129-2	108-6	123-2	108.2	133-7	134-7	152-6	102·1	198-7	30-9	166-4	59-5 14-
	142·1							152-2	103-2	194·0	30-6	166-7	59-9 14-3
IIIa	I	129-6	110-5ª	127-9	110.5ª	135-2	136-0	153-4	113-3	200-0	31-7	195-2	27-4
qIII	I	128-5	110-0	127-2	108-0	135-44	135-64	154-7	85.1	196.4	28-3	119-7	
		130-2	112.6	127-8	107-2	135.54	135.5"	153-0	87-0	191-3	26.6	116-7	
IIIc	[129-4	110-7	128-0	107-9	135-3	125-8	152-8	102-8	199-2	30-7	166.5	51.2
								152-4	104·1	194-0	30·3	168-0	51.3
PIII	I	129-4	110-5	128-0	107-7	135-4	135-8	152-8	103-2	199-1	30-9	166-1	59-7 14-3
			110-0		107-5			152-2	102-5	194·0	30-5	166-2	60·1 14·2
IVa	143-3	104-9	134-1	114·1	116-1	136-2	138-6	153-6	112-0	199-2	31-6	195-1	27.5
IVb	143-3	105-3	133-6	114-0	116-6	133-4	135-1	153-5	83-3	195-9	28-4	120-7	
	143-6	105-5		114-2	116-9			153-5	85-8	191-7	26-8	117-5	
IVc	143-3	101-44	134-0	113-6 ^a	113.64	134-8 ^a	134-8 ⁴	152-5	101-2 ^a	198-1	30.6	166-8	50-9
								152-4		194-0	30-5	166-4	51-0
PAI	143-3	104-6	134-1	113-8	116-5	136-5	138-4	152-5	101-5	198-1	30-7	166-4	59-4 14-3
								152-2			30-5		
Va	l	102-0	133-5	116-9	118-4	137-4 ^a	137-5"	153-4	112-9	9-661	31-6	195-5	27-6
<i>41</i>		4	133-5	115-2	118-6	128-8	130-1	153-5	87-2	195-9	2 8·3	120-2	
			133-2			129-1		153-1	85-7	19-19	26-4	116.8	
Vc V	i	102·2	137-2	117-2	117-5	137-9	138-3	152-2	102-2	198-4	30-8	166-6	51.0
		103-3	137-8	117-3	117-7	138-0		152-1	102-5	193-9	30·1	166-2	51-1
Vd	I	101-9	137-4	117-3	117-8	138-0	138-3	152-3	102.5	198-5	30-8	166-3	59-6 14-3
		101-8						151-6	103.6	194-2	30-4	167-8	59-9 14-2

536

4-N-Benzazolylamino Derivatives of 3-Y-C-Buten-2-one

537

TABLE V

Mass spectra of compounds II - V; 10 most intensive peaks of each compound

Compound	<i>m</i> / <i>z</i> (H)
lla	243 (M ⁺ , 22), 210 (27), 200 (100), 158 (46), 144 (43), 132 (19), 118 (61), 117 (33), 90 (25), 43 (71), 39 (26)
IIb	226 (M ⁺ , 38), 184 (16), 183 (100), 144 (34), 118 (85), 117 (22), 91 (19), 90 (25), 63 (19), 43 (51), 39 (33)
llc	273 (M ⁺ , 60), 230 (100), 202 (21), 199 (44), 184 (76), 157 (24), 144 (31), 118 (38), 117 (21), 43 (31)
Ild	259 (M ⁺ , 44), 216 (100), 212 (18), 184 (69), 157 (23), 156 (22), 144 (29), 118 (38), 117 (19), 43 (35)
111a	244 (M ⁺ , 53), 201 (100), 183 (28), 159 (73), 145 (29), 131 (27), 119 (31), 112 (62), 104 (33), 103 (37)
IIIb	227 (M ⁺ , 60), 184 (88), 159 (19), 157 (27), 156 (30), 130 (18), 129 (43), 105 (33), 103 (17), 43 (100)
IIIc	260 (M ⁺ , 64), 217 (57), 200 (64), 185 (57), 172 (26), 159 (29), 158 (65), 130 (40), 129 (29), 43 (100)
IIId	274 (M ⁺ , 60), 231 (45), 200 (57), 185 (45), 159 (28), 158 (55), 142 (19), 130 (21), 104 (19), 43 (100)
IVa	243 (M ⁺ , 78), 228 (29), 210 (82), 200 (36), 186 (59), 158 (43), 132 (100), 118 (27), 117 (29), 43 (77)
1Vb	226 (M ⁺ , 76), 211 (48), 183 (100), 156 (33), 144 (21), 129 (25), 118 (41), 117 (27), 90 (27), 63 (31), 43 (81)
1Vc	259 (M ⁺ , 63), 227 (27), 199 (100), 184 (70), 157 (30), 156 (21), 133 (74), 132 (37), 117 (21), 43 (47)
IVd	273 (M ⁺ , 43), 227 (19), 199 (100), 184 (84), 157 (36), 156 (27), 132 (25), 117 (20), 90 (18), 43 (88)
Va	244 (M ⁺ , 32), 216 (21), 183 (19), 174 (18), 1 56 (19), 132 (20), 112 (62), 104 (31), 70 (22), 43 (100)
Vb	227 (M ⁺ , 79), 199 (25), 184 (52), 157 (55), 156 (30), 130 (26), 129 (74), 63 (31), 52 (36), 43 (100)
Vc	260 (M ⁺ , 39), 200 (91), 185 (78), 172 (35), 158 (33), 157 (47), 130 (46), 129 (37), 103 (37), 43 (100)
Vd	274 (M ⁺ , 39), 246 (24), 200 (100), 185 (69), 172 (29), 158 (32), 157 (36), 129 (24), 130 (31), 43 (66)

Acceptor influence of the group in position 3 rise in order $CN > COOR > COCH_3$ what is reflected by chemical shifts of carbon atoms C-9. Antiperiplanar conformation of enamine substituent is confirmed in proton spectra by the presence of interaction constant 3J (H-8, NH) over 12 Hz, while signals under 11 ppm belong the iminogroup bonding in the intramolecular hydrogen bond with carbonyl of ester and over 12 ppm with carbonyl of acetyl group. The chemical shifts of protons and carbons of the benzene ring of benzazole skeleton (with exception C-4) show that the electronaccepting effect of the triazole is greater that of the imidazole ring. Unusually high value of the chemical shift of proton H-8 (over 9 ppm with exception *IIIb*) can be accounted for by the existence of the non bonding interaction between nitrogen atom of the azole ring of benzazole skeleton with prototropy and the ethylene hydrogen of aminoethylene substituent in position 4 (structures *II* and *III*).

In the electron impact mass spectra (Table V) all of the studied compounds are observed the corresponding molecular ions with relative intensities 20 to 80 per cent (Table V). Compounds II favours the α -rupture next to nucleus (with hydrogen transfer) leading to the ionized benzimidazole nucleus with m/z 118. In the case of isomeric compounds III β -rupture over the α -rupture is favoured.

The origination of the most intensive fragment ions in spectra of compounds IV and V goes similarly as in the benzimidazole group unlike β -rupture with hydrogen transfer, that gives rise to the fragments with the charge in side chain, behaving like those described in the literature⁶. The β -rupture is not observed in cyano compounds (IIb - Vb).

EXPERIMENTAL

The melting points were measured on a Kofler micro hot-stage and are uncorrected. The IR spectra (KBr discs) and the UV spectra $(1 \cdot 10^{-4} \text{ mol dm}^{-3} \text{ in methanol})$ were recorded with Specord M 80 (Zeiss, Jena) and Specord M 40 (Zeiss, Jena) spectrometers, respectively. The ¹H and ¹³C NMR spectra of hexadeuterodimethylsulfoxide solutions were measured on Varian VXR-300 instrument at 298 K and are relative to hexamethyldisiloxane (internal reference for ¹H NMR) and hexadeuterodimethylsulfoxide ($\delta = 39.5$) or carbonyl of trifluoroacetic acid ($\delta = 164.2$) for ¹³C NMR spectra. Saturated solutions were measured in a 5 mm multinuclear probe. The ¹³C NMR spectra were measured at 75 kHz operating frequency. The electron impact mass spectra were taken with an MS 902S (AEI-Kratos) instrument at 70 eV electron energy and 100 μ A trap current.

2-Ethoxymethylene-3-oxobutanenitrile (*Ib*) was synthetized by condensation of ethyl orthoformate with 3-oxobutanenitrile, itself prepared by an acid hydrolysis of 3-amino-2-butenenitrile⁶. 3-Ethoxymethylene-2,4-pentanedione (*Ia*), methyl (*Ic*), and ethyl (*Id*) 2-ethoxymethylene-3-oxobutanoates were synthetized likewise by condensation of ethyl orthoformate with the corresponding methylene compound: 2,4-pentanedione, methyl or ethyl 3-oxobutanoates⁸, respectively. 4- or 5-Nitrobenzazoles were synthetized according to literature².

538

4-N-Benzazolylamino Derivatives of 3-Y-3-Buten-2-one

3-Benzazolylamino Derivatives of 3-Y-3-Buten-2-one (II - V)

The corresponding nitrobenzazole (10 mmol) in methanol (100 ml) was hydrogenated at 120 kPa on Raney nickel (200 mg) till 660 ml of hydrogen consumed. The catalyst was filtered off, the respective alkoxymethylene derivative I (10 mmol) was added in 20 ml methanol and the mixture was refluxed for 30 min. The mixture was shortly boiled with charcoal, filtered, the most part of the solvent was evaporated, the separated product was filtered off and washed with cold methanol. Crystallization from methanol afforded analytically pure products. Yields and other data are presented in Table I.

The authors wish to thank Mrs M. Hroboňová and Mrs S. Markusová for measurement the UV and IR spectra, Mrs M. Ondrejkovičová for elemental analyses, respectively.

REFERENCES

- 1. Milata V., Ilavský D.: Collect. Czech. Chem. Commun. 52, 2918 (1987).
- 2. Milata V., Ilavský D., Goljer I.: Chem. Papers 42, 801, (1988).
- 3. Bobošík V., Milata V., Ilavský D., Goljer I.: Collect. Czech. Chem. Commun. 57, 397 (1992).
- 4. Milata V., Ilavský D., Goljer I., Leško J., Basch E.-H.: Bull. Soc. Chim. Fr., in press.
- 5. Roberts N. K.: J. Chem. Soc. 1963, 5556.
- Milata V., Ilavský D., Goljer I., Leško J., Chahinian M., Basch E.-H.: Collect. Czech. Chem. Commun. 55, 1038, (1990).
- 7. Couchouron B., Le Saint J., Courtot P.: Bull. Soc. Chim. Fr. 1983, 66.
- 8. Claisen L.: Ber. Dtsch. Chem. Ges. 26, 2729, (1893).

Translated by the author (D.I.).