DOI: 10.1002/ejic.201000488

Observation of Room-Temperature Deep-Red/Near-IR Phosphorescence of Pyrene with Cycloplatinated Complexes: An Experimental and Theoretical Study

Wenting Wu,^[a] Wanhua Wu,^[a] Shaomin Ji,^[a] Huimin Guo,^{*[a]} and Jianzhang Zhao^{*[a]}

Keywords: Sensors / Phosphorescence / Platinum / Fluorescence / Density functional calculations

Pyrene-containing cyclometallated Pt^{II} complexes, with the pyrene moiety directly cyclometallated (Pt-1) or connected to a 2-phenylpyridine (ppy) ligand through a C-C (Pt-2) or C≡C bond (Pt-3), and a control complex with a phenyl group attached to the ppy ligand (Pt-4) have been prepared. Roomtemperature deep-red/near-IR (NIR) phosphorescence emission (650-800 nm) was observed for Pt-1, Pt-2 and Pt-3, whereas Pt-4 showed emission at 528 nm. We found that Pt-2, in which the pyrene moiety is not directly cyclometallated, shows intense pyrene-based phosphorescence, which contrasts with a previous report that direct cyclometallation is necessary for the observation of the phosphorescence of pyrene in cyclometallated complexes. Besides the phosphorescence emission in the deep-red/near-IR range, a fluorescence

Introduction

Cyclometallated Pt^{II}/Ir^{III} complexes such as [(ppy)Pt-(acac)] (ppy = 2-phenylpyridine, acac = acetylacetonato) have attracted considerable attention due to their applications in electroluminescence.^[1-9] Some of the cyclometallated Pt^{II} complexes are luminescent in fluid solution at room temperature (r.t.).^[1] The emissive excited states of these complexes are usually ³IL/³MLCT (phenyl-)pyridine, Pt→pyridine) triplet states.^[1] These complexes are ideal phosphores for organic light-emitting diodes (OLEDs) because 75% of the excitons in the electroluminescence, which show triplet-spin manifold, cannot be utilized by fluorescent materials. Concerning the photoluminescence with cyclometallated complexes, the population of the triplet state is a result of the heavy-atom effect of Pt or Ir, through which the singlet \rightarrow triplet intersystem crossing (ISC) is facilitated $(S_1 \rightarrow T_1)$, and thus phosphorescence can be observed. Usually the singlet excited state is completely quenched by

[a] State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology. 158 Zhongshan Road, Dalian 116012, P. R. China Fax: +86-411-3960-8007 E-mail: zhaojzh@dlut.edu.cn guohm@dlut.edu.cn Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic. 201000488 or from

the author.

View this journal online at wileyonlinelibrary.com

4470

promising. the ISC process and thus no fluorescence can be detected for these cyclometallated complexes. Cyclometallated complexes usually give emission in the blue-green range depending on the structures of the ligands.^[1,6] For example, the emission of [(ppy)Pt(acac)] was observed at 486 nm.^[5] However, emission at longer wavelengths is also desired, for example, emission at longer wavelengths (deep-red/near-IR range) is important for optical communication and biomedical imaging. Unfortunately it is difficult to access deep-red/ near-IR emission through cyclometallated complexes, especially with PtII.[1]

emission band at higher energy was observed. Thus, these

complexes can be described as unichromophore multi-emissive materials. Normal ³MLCT/³IL emission at 528 nm was

observed for Pt-4. The UV/Vis absorption and phosphores-

cence emissions of the complexes were rationalized by DFT/ TDDFT calculations. Theoretical calculations propose py-

rene-localized T_1 states (³IL) for Pt-1, Pt-2 and Pt-3, which is

supported by the experimental results. The complexes were

used in luminescent O₂-sensing experiments. These studies

will be helpful in the development of room-temperature

phosphorescent materials and their application as lumines-

cent molecular sensing or electroluminescent materials are

On the other hand, luminescent molecular sensors or chemosensors usually employ fluorescent chromophores such as pyrene.^[10–12] Pyrene is a versatile fluorophore and has been extensively used in fluorescent chemosensors. However, the phosphorescence emission of pyrene has not been employed in luminescent molecular sensors. Phosphorescence usually exhibits larger Stokes shifts, red-shifted emission and much longer luminescent lifetimes compared with fluorescence emission.^[10] These photophysical properties are ideal for luminescent molecular sensor applications.^[10,11] However, room-temperature phosphorescence of aromatic fluorophores is difficult to obtain because the weak spin-orbit coupling effect of the aromatic fluorophores (π - π * transitions) and the large singlet-triplet energy gap makes $S_1 \rightarrow T_1$ ISC difficult. As a result, very few aromatic polycyclic hydrocarbons show room-temperature

phosphorescence and usually the phosphorescence can only be observed at low temperatures in a rigid matrix.^[10]

Recently, we studied the room-temperature phosphorescence of heavy-transition-metal complexes such as Ru^{II}.^[13–15] There are only very limited reports on the observation of room-temperature phosphorescence emission of pyrene^[16] and its application as sensing materials, such as in luminescent oxygen sensing.^[14,17–20]

Inspired by the recent elegant work on cyclometallated Pt complexes and to tackle the aforementioned challenges,^[1,5,11,17,18,21] we set out to tune the emission colour of cyclometallated Pt^{II} complexes from the typical green to deep-red/near-IR in order to achieve the room-temperature phosphorescence of pyrene. The design rationale of these complexes lies in the notion that room-temperature phosphorescence of polycyclic aromatic hydrocarbons can be facilitated by the heavy-atom effect of Pt. Thus, ³IL emission will be accessible with a strong spin-orbit coupling effect. Following this line, we designed and prepared complex Pt-1 in which the pyrene moiety is directly metallated by Pt^{II} (Scheme 1). As a similar model complex, Pt-2 was synthesized with the pyrene moiety appended to the 4-position of the ppy ligand and not directly cyclometallated. A complex with a pyrene-ethynyl moiety attached to ppy was also prepared (Pt-3). A complex with a phenyl group attached to the ppy ligand (Pt-4) was prepared to study the effect of structure on the photophysics of the complexes. Room-temperature phosphorescence in the deep-red and near-IR range (650-800 nm) was observed for Pt-1, Pt-2 and Pt-3. The emission bands were assigned to the ligand-centred (³IL) phosphorescence of pyrene appends. **Pt-1** shows emission bands that are red-shifted by 50 nm relative to those of a previously reported cycloplatinated pyrene.^[16] In particular, ³IL emission (phosphorescence of pyrene) was observed for Pt-2 in which the pyrene is not directly cyclometallated. These results contrast those of a previous report that the phosphorescence of pyrene requires direct cyclometallation.^[16,22] In the case of new complex Pt-2, intense pyrene-derived r.t. phosphorescence was observed without direct cyclometallation of the pyrene moiety. In addition to the phosphorescence bands in the near-IR range, emissions at higher energy were observed for Pt-1, Pt-2 and Pt-3. These emission bands were assigned to the fluorescence emission of the ligand, similarly to a previous report.^[16] Based on the experimental results, a frustrated ISC process, that is, from the pyrene-localized ¹IL to the ¹MLCT and ³MLCT states, was proposed to be responsible for the unichromophore fluorescence/phosphorescence multi-emissions. The photophysics of the complexes were studied by performing theoretical calculations based on density functional theory (DFT) and time-dependent DFT (TDDFT), which clearly indicate pyrene-localized triplet excited states for Pt-1, Pt-2 and Pt-3. The complexes were used in luminescent O₂-sensing experiments. Our strategy for achieving the deep-red/near-IR emission of pyrene through the use of cyclometallated Pt^{II} complexes, the application of the complexes in luminescent O₂-sensing, as well as the assignment of the emissive triplet excited states by using DFT/TDDFT

calculations will be useful in the future design of functional cyclometallated Pt complexes with predetermined photophysical properties, such as the ³IL emissive state (r.t. phosphorescence of the ligands), to achieve room-temperature phosphorescence of organic chromophores.

Results and Discussions

Design and Synthesis of the Complexes

The design rationale of the complexes lies in the notion that the r.t. phosphorescence of pyrene may be switched on by the heavy-atom effect of Pt.^[16] Thus, complex Pt-1 was designed with a view to the direct metallation of the pyrene moiety. The C^N ligand of Pt-1 was synthesized by Suzuki coupling reaction between 1-pyreneboronic acid and 2-bromopyridine. Then the ligand 2-pyrenylpyridine was metallated with [K₂PtCl₄]. The auxiliary ligand acetylacetonate (acac) was introduced in the presence of Na₂CO₃ (Scheme 1). To investigate the effect of the direct cycloplatination of the pyrene moiety on the photophysical properties, Pt-2 was designed with the pyrene moiety appended at the 4-position of the ppy group through a C–C single bond (pyrene is not directly cycloplatinated). First, 4-bromo-ppy was synthesized and then the palladium-catalysed Sonogashira coupling reaction was carried out with 1-pyreneboronic acid to prepare ligand L-2.

Previously we found that an ethynylated ligand may impart a significant effect on the photophysics of polypyridyl ruthenium complexes.^[14] To investigate the effect of π conjugation on the photophysics of the cyclometallated Pt complex, Pt-3 was designed in which ethynylene acts as the linker between the pyrene and the ppy units. Note that we did not use a C=C double bond as the linker to extend the π conjugation of the ppy ligand because the *cis/trans* photoisomerization of the C=C double bond can substantially quench the luminescence of the excited lumophores.^[23] Instead, the C=C triple bond is a rigid linker and is effective for π conjugation and through-bond electron/energy transfer.^[24] Note also that the C=C linker may induce complicated yet interesting photophysical properties in the luminescent metal complexes.^[14] To investigate the effect of the pyrene moiety on the photophysics of the Pt^{II} complexes, a model complex Pt-4 was synthesized with a phenyl group attached to the 4-position of the ppy ligand. All the complexes were prepared in satisfactory yields.

As the energy of the triplet excited state (T_1) of pyrene (ca. 600 nm) is substantially lower than the T_1 state of the [(ppy)Pt(acac)] complex (ca. 485 nm) we expected to observe phosphorescence emission from the pyrene in **Pt-1**, **Pt-2** and **Pt-3**,^[14] although this is not a guaranteed property.^[16] For **Pt-4**, however, as the energy of the triplet state of the phenyl group is substantially higher than that of [(ppy)Pt(acac)] (485 nm),^[5] we do not expect any emission other than the typical ³IL/³MLCT emission of [(ppy)Pt(acac)].

Scheme 1. Synthesis of the cyclometallated Pt complexes. (a) 2-Bromopyridine was used for the synthesis of L-1. 2-(4-Bromophenyl)-pyridine was used for L-2. Base/Pd(PPh₃)₄ (3.6 mol-%), toluene/EtOH (3:1, v/v), Ar, 90 °C, 20 h. (b) i) K₂PtCl₄, 2-ethoxyethanol/water (3:1, v/v), Ar, 80 °C, 20 h; ii) Hacac/Na₂CO₃, 2-ethoxyethanol, 100 °C, 20 h. (c) i) Ethynyltrimethylsilane, Pd(PPh₃)Cl₂ (2 mol-%), CuI (4 mol-%), PPh₃ (4.0 mol-%), NEt₃/THF (3:1, v/v), Ar, 90 °C, 6 h; ii) K₂CO₃, MeOH/diethyl ether (2:1, v/v), r.t., 3 h. (d) Diisopropylamine, Pd(PPh₃)₂Cl₂ (6 mol-%), CuI (6 mol-%), PPh₃ (12 mol-%), Ar, 90 °C, 4 h.

UV/Vis Absorption Spectra of the Ligands and the Cyclometallated Pt^{II} Complexes

The UV/Vis absorption spectra of the ligands and the complexes were studied (Figure 1). The UV/Vis absorption spectra of the pyrene-containing ligands are different to that of pyrene.^[12,14] This indicates electronic coupling between the pyrene and the ppy moiety. For example, the absorption bands of **L-1** and **L-2** at 350 nm are red-shifted relative to that of pyrene. Moreover, the absorption bands of **L-1** and **L-2** are structureless, in contrast to the highly structured absorption of pyrene at around 320 nm.^[25,26] These absorption bands mainly arise from pyrene-localized transitions, which is supported by DFT calculations. For **L-4**, however, the maximal absorption band is at a much shorter wavelength (270 nm).

New absorption bands were observed for the Pt^{II} complexes at wavelengths red-shifted in comparison with the C^N ligands. For example, a structured intense absorption band at 425 nm was observed for **Pt-1**. The spectra of ligand **L-1** is devoid of this absorption band. The absorption of **Pt-1** in the visible range is red-shifted by around 50 nm relative to that of previously reported cycloplatinated pyrene complexes with 1-(diphenylphosphanyl)pyrene or 1,6-

Figure 1. UV/Vis absorption spectra of the ligands and complexes in CH_2Cl_2 ($c = 1.0 \times 10^{-5} \text{ mol/L}$, 25 °C).

bis(diphenylphosphanyl)pyrene as ligands.^[16] We propose the red-shifted absorption of **Pt-1** is a result of perturbation of the molecular orbitals of pyrene by direct platination (with the formation of a Pt–C covalent bond) and transitions such as ¹IL (pyrene \rightarrow pyridine) and ¹MLCT (Pt \rightarrow pyrene/pyridine) are responsible for the red-shifted absorptions. This assumption is supported by DFT calculations, which indicate that the absorption at around 400–470 nm is due to ¹MLCT (Pt \rightarrow pyridine), ¹IL (pyrene-localized) and ¹LLCT (pyrene \rightarrow pyridine) transitions.

For L-2, however, the UV/Vis absorption changes observed upon metallation are different to those of L-1. First, the main absorptions of L-2 persist in the UV/Vis absorption of Pt-2, namely the bands at 280 and 346 nm. Secondly, a new shoulder absorption at around 420 nm appeared for Pt-2 not observed for L-2. We attribute the new absorption at 420 nm to the absorption of the complex (e.g., ³MLCT), whereas the absorption band at 350 nm is due to the pyrene-localized transition. This assignment is supported by DFT/TDDFT calculations. These results demonstrate that the metallation of L-2 imparts only a minor effect on the UV/Vis absorption of the pyrene moiety in contrast to the case of Pt-1. New absorption bands at 366 and 391 nm appeared for **Pt-4** when compared with the absorption spectrum of L-4. We attribute the new absorption at 391 nm to the Pt complexation effect, that is, to the ${}^{3}IL/$ ³MLCT states. The intense absorption of L-4 at 275 nm persists upon cyclometallation.

Photoluminescence of the Ligands and Complexes

The emission spectra of the ligands and the cyclometallated complexes were also studied (Figure 2). For the pyrene-containing ligands of L-1 and L-2, structureless emission bands at 393 and 417 nm were observed, respectively. This emission profile is in contrast to the structured emission band of pyrene at 390 nm,^[10,12] which points to significant electronic coupling between the pyrene and the pyridine or ppy appends. The red-shifted emission of L-2 at 417 nm may be due to the extended π -conjugated framework in comparison with L-1. For L-4, however, the emission was observed at the much shorter wavelength of 348 nm. The slightly more structured emission at 428 nm for L-3 may be due to the attachment of the electron-withdrawing ethynyl moiety on the pyrene.^[12]

The emissions of the cyclometallated complexes are shown in Figure 2b. First we checked the emission of the model complex **Pt-4**; an emission band at 528 nm was observed. The structured emission profile is a characteristic of [(ppy)Pt(acac)] complexes.^[5] However, the emission of **Pt-4** is red-shifted by around 40 nm relative to that of the parent complex [(ppy)Pt(acac)].^[5]

Next we investigated the complex **Pt-1** in which the pyrene moiety is directly cycloplatinated. Interestingly, deepred/near-IR emission at 680 nm (the emission spectrum covers the range of 650 to beyond 800 nm) was observed. The emission band is red-shifted by around 50 nm relative to

Figure 2. Emission spectra of (a) the ligands and (b) the complexes. $\lambda_{ex}(L-1) = 360 \text{ nm}, \lambda_{ex}(L-2) = 367 \text{ nm}, \lambda_{ex}(L-3) = 367 \text{ nm}, \lambda_{ex}(L-4)$ = 310 nm, $\lambda_{ex}(Pt-1) = 415 \text{ nm}, \lambda_{ex}(Pt-2) = 433 \text{ nm}, \lambda_{ex}(Pt-3) = 380 \text{ nm}, \lambda_{ex}(Pt-4) = 397 \text{ nm}$ ($c = 1.0 \times 10^{-5} \text{ mol/L}$ in CH₂Cl₂, 25 °C).

the previously reported cycloplatinated complexes with 1diphenylphosphanylpyrene or 1,6-bis(diphenylphosphanyl)pyrene as ligands.^[16] We propose that the emission at 680 nm is due to a triplet emissive state with a substantial ³IL component, that is, the pyrene-localized excited state.^[16] This assignment was supported by DFT/TDDFT calculations. Besides the deep-red/near-IR emission at 680 nm, minor emission bands at higher energies of 577 and 471 nm were also observed for Pt-1. We propose that the emission at 577 nm is due to emission typical of [(ppy)Pt(acac)] complexes. This is supported by the sensitivity of the emission intensity at 577 nm to O_2 (the emission can be completely quenched under aerated conditions). Further, we propose that the emission band at 471 nm is due to the fluorescence of the ligand. Similar fluorescence emission was previously observed for pyrene-derived PtII or AuI complexes.[16,22] The emission intensity of the peak at 471 nm is nearly unaffected by O₂, which is characteristic of fluorescent emissions; the insensitivity to oxygen is due to the singlet manifold and the short luminescent lifetime of the emission.^[10]

In contrast to **Pt-1**, the pyrene unit of **Pt-2** is not directly cycloplatinated. The photoluminescence of **Pt-2** shows a structured emission band at 640 nm (Figure 2b), which is blueshifted by around 40 nm relative to that of **Pt-1**. Interestingly, the emission of **Pt-2** is red-shifted by 112 nm relative to that of **Pt-4**. Thus, the deep-red emission is not due to the normal ³MLCT emission of the [(ppy)Pt(acac)] complexation core. Based on DFT/TDDFT calculations we attribute this emission band to the phosphorescence emission originating from the pyrene-localized triplet state ³IL and the pyrene-pyridine ³LLCT mixed with Pt-ppy ³MLCT

FULL PAPER

features. Similar emission was reported for cyclometallated or dangling Pt^{II} complexes with 1-diphenylphosphanylpyrene or 1,6-bis(diphenylphosphanyl)pyrene as ligands.^[16] Note that an intense phosphorescence emission of pyrene is observed for **Pt-2** in which the pyrene moiety is not directly cycloplatinated. Previously it was reported that a pyrenederived complex with a dangling Pt ion shows very weak phosphorescence, but strong fluorescence of the pyrene moiety.^[16] Emission at a higher energy is also observed for **Pt-2** (485 nm). We attribute the emission to typical [(ppy)-Pt(acac)] emission.^[26]

Interestingly, emission at 669 nm was observed for Pt-3, which is red-shifted by around 30 nm relative to that of Pt-2. Emission at a much higher energy (430 nm) is also observed for Pt-3. We attribute this emission band to the fluo-

Table 1. Photophysical parameters of the ligands and the cycloplatinated complexes Pt-1-Pt-4.

	$\lambda_{\rm abs} [{\rm nm}] (\varepsilon \ [10^4 { m m}^{-1} { m cm}^{-1}])^{[a]}$	λ _{ex} [nm]	λ _{em} [nm]	$arPhi_{ m f}^{ m [b]}$	${\varPhi_{\mathrm{p}}}^{[\mathrm{c}]}$	$ au^{[d]}$
L-1	280 (1.56), 345 (1.34)	360	393	0.41	_	3.0 ns
L-2	280 (4.36), 346 (3.83)	367	417	0.68	_	12.5 ns
L-3	285 (2.16), 310 (2.46), 375 (3.16), 398 (3.22)	367	428	0.83	-	1.49 ns
L-4 Pt-1	275 (10.81) 283 (5.64), 357 (2.25), 394 (2.61), 415 (3.43)	310 415	348 471, 577, 680	0.12 _[e]	_ 0.49	1.29 ns 471 nm (3.0 ns), 578 nm (856.2 ns),
Pt-2	280 (4.95), 346 (3.78)	433	485, 640	0.001	0.65	682 nm (6.22 μs) 485 nm (2.4 ns), 640 nm (15.8 μs)
Pt-3	286 (6.79), 350 (9.45)	380	669	_[e]	0.26	_[e]
Pt-4	296 (2.79), 332 (0.16), 366 (0.70), 391 (0.05)	397	528	_[e]	15.0	5.6 µs

[a] Extinction coefficients are shown in parentheses. [b] Quantum yield of fluorescence in aerated CH_2Cl_2 . [c] Quantum yield of phosphorescence in deoxygenated CH_2Cl_2 . The values are multiplied by 10^2 . [d] The lifetimes of the ligands were measured in aerated CH_2Cl_2 . The lifetimes of the complexes were measured in deoxygenated CH_2Cl_2 . [e] Not determined.

rescence of the ethynyl ligand (Figure 2, a).^[16] The principle photophysical data of the ligands and the complexes are compiled in Table 1.

The Excited States of the Complexes-DFT/TDDFT Calculations

Recently, theoretical calculations, such as the DFT and TDDFT methods, have been used to study the photophysical properties of fluorophores.^[12,27–33] Investigation of the photophysical properties from a theoretical point of view will be beneficial for the design of new luminophores with predetermined photophysical properties.^[12,14,27]

The different photophysical properties of the structurally related analogues **Pt-1**, **Pt-2** and **Pt-3** are fascinating and we set out to evaluate the different photophysical properties by theoretical calculations. The ground-state geometry of **Pt-1** was optimized; a square-planar coordination Pt^{II} centre was found with the pyrene moiety coplanar with the pyridine group. We found that the frontier orbitals (HOMO/LUMO) of **Pt-1** are basically ligand-localized, that is, pyrene-localized (Figure 3).

The excitation energies calculated for **Pt-1** are in good agreement with experimental observations. For example, the predicted absorptions are located at 439, 421, 351/349 and 285 nm (Table 2). These predicted values are in good agreement with the experimental values of 415, 394, 357 and 283 nm (Figure 1, b). Based on the electronic structures of the transitions, we assigned the absorption bands at 400–450 nm (Figure 1, b) to $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions; the orbitals involved are $H-2\rightarrow L$, $H-1\rightarrow L$, $H\rightarrow L$, $H\rightarrow L+1$. By examining the distributions of the molecular orbitals, we found that these transitions are pyrene-localized (¹IL), $Pt\rightarrow pyrene/pyridine$ (¹MLCT), pyrene $\rightarrow pyridine$ and acac $\rightarrow pyrene/pyridine$ (¹LLCT) transitions.

Pt-1 shows deep-red/near-IR emission in the range of 650–800 nm. To investigate the emissive states, the triplet excited states of **Pt-1** were studied by the TDDFT method. The calculated excitation energy of T_1 is 672 nm. Note that the calculation is based on the ground-state geometry, thus, the anticipated emission will be more red-shifted than the

Figure 3. Frontier molecular orbitals of **Pt-1** calculated by DFT/TDDFT at the B3LYP/6-31G(d)/LanL2DZ level of theory using Gaussian 09.

Table 2. Electronic excitation energies and the corresponding oscillator strengths (f), the main configurations and CI coefficients of the low-lying electronically excited states of complex **Pt-1** calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ based on the DFT//B3LYP/6-31G(d)/LanL2DZ-optimized ground-state geometries.

	Electronic					
	transitions	Energy ^[a]	f ^[b]	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	2.83 eV, 439 nm	0.2998	H–1→L	0.5863	IL & MLCT
				H→L	0.3032	IL
	$S_0 \rightarrow S_2$	2.95 eV, 421 nm	0.3981	H−2→L	0.1614	LLCT & MLCT
				$H-1 \rightarrow L$	0.2663	IL & MLCT
				$H \rightarrow L$	0.5448	IL
				$H \rightarrow L+1$	0.1131	LLCT
	$S_0 \rightarrow S_4$	3.29 eV, 377 nm	0.0261	H−2→L	0.6422	LLCT & MLCT
				$H-1 \rightarrow L$	0.1485	IL & MLCT
				$H \rightarrow L+1$	0.1840	IL
	$S_0 \rightarrow S_5$	3.53 eV, 351 nm	0.0239	H−2→L	0.1070	LLCT & MLCT
				$H-1 \rightarrow L+1$	0.2891	IL
				$H \rightarrow L+1$	0.5989	IL
	$S_0 \rightarrow S_6$	3.56 eV, 349 nm	0.0573	H−2→L	0.1113	LLCT & MLCT
				$H-1 \rightarrow L+1$	0.5843	IL
				$H \rightarrow L+1$	0.2426	IL
	$S_0 \rightarrow S_{18}$	4.35 eV, 285 nm	0.1474	$H-4\rightarrow L+2$	0.4741	LLCT & MLCT
				$H-1\rightarrow L+4$	0.2002	LLCT & MLCT
Triplet	$S_0 \rightarrow T_1$	1.85 eV, 672 nm	$0.0000^{[e]}$	$H-5\rightarrow L+5$	0.1143	LLCT & MLCT
				H−1→L	0.1652	IL & MLCT
				H→L	0.7392	IL
				$H \rightarrow L+1$	0.1943	IL
				$H \rightarrow L+3$	0.1376	LLCT

[a] Only selected low-lying excited states are presented. [b] Oscillator strength. [c] H represents the HOMO and L the LUMO. Only the main configurations are presented. [d] The CI coefficients are absolute values. [e] No spin–orbital coupling effect was considered and thus the f values are zero.

calculated energy gap between S_0 and T_1 triplet excited state (672 nm). Experiments indicated phosphorescence emission at 680 nm.^[34]

By examining the electronic structures of the excited state and the corresponding molecular orbitals (Table 2 and Figure 3) we found that the T₁ state of **Pt-1** is characterized by pyrene-localized (³IL), pyrene \rightarrow pyridine (³LLCT) and Pt \rightarrow pyrene/pyridine transitions (³MLCT), but that Pt^{II} does not contribute significantly to the T₁ state.

Based on these calculations, we anticipate that in contrast to the parent complex [(ppy)Pt(acac)], for which an ³IL state was proposed (phenyl-)pyridine of the ppy ligand),^[1,5] Pt-1 will show pyrene-localized emission. This prediction is supported by the experimental results, which show emission bands in the 600-800 nm range.^[16] The energies of the HOMO and LUMO of Pt-1 were calculated to be -5.14 and -1.96 eV, respectively, which compares with the energies of the HOMO and LUMO of -5.41 and -1.66 eV for Pt-4. We found that the energy of the HOMO of Pt-1 is higher, but the LUMO energy is lower than those of the model complex Pt-4, that is, the HOMO-LUMO energy gap of Pt-1 is smaller than that of Pt-4. Thus, redshifted emission can be expected for Pt-1 when compared with Pt-4. This expectation is supported by the experimental results (Figure 1 and Table 1).

Pt-2 shows blueshifted emission (by ca. 50 nm) compared with **Pt-1**, but is substantially red-shifted compared with that of **Pt-4**. The structural difference between the two complexes is that the pyrene moiety is not directly cycloplati-

nated in **Pt-2** (Scheme 1). The ground-state geometry of **Pt-2** was optimized (Figure 4) and it was found that the pyrene moiety is tilted by 55° with respect to the Pt coordination plane. The calculated singlet excitation energies are 420, 360, 355, 279 and 276 nm. These values are very similar to the UV/Vis experimental absorption data of 400, 345, 279 and 267 nm. By examining the electronic structures of the S₁ state we found that the absorption bands at 420 nm can be assigned to pyrene \rightarrow ppy (IL), Pt \rightarrow pyrene/ppy (MLCT) and acac \rightarrow pyrene/ppy (LLCT) transitions. For the absorption band at 345 nm, acac \rightarrow pyrene/ppy and Pt \rightarrow pyrene/ ppy features can be indentified, with the pyrene-localized transition (H \rightarrow L+1) being dominant (Table 3 and Figure 4).

To study the emission of the complex, the triplet states of **Pt-2** were also studied using TDDFT calculations (Table 3). The calculated S_0-T_1 energy gap is 612 nm. This value is similar to the experimental results of the phosphorescence emission at 640 nm. By examining the T_1 state, we can attribute the emission band at 640 nm to the pyrene \rightarrow ppy (HOMO \rightarrow LUMO) and pyrene-localized (HOMO \rightarrow LUMO+1) transitions, the Pt atom contributing slightly to these transitions. With a small involvement of the Pt atom in the T_1 state (which is responsible for the emission at 640 nm) we anticipate a longer luminescent lifetime of this emission band compared with the normal emission of the [(ppy)Pt(acac)] complex. The luminescence lifetime of **Pt-2** was determined to be $\tau = 15.8 \,\mu$ s, which compares with $\tau = 2.6 \,\mu$ s for [(ppy)Pt(acac)].^[5] The energies of

Figure 4. Frontier molecular orbitals of **Pt-2** calculated by DFT/TDDFT at the B3LYP/6-31G(d)/LanL2DZ level of theory using Gaussian 09.

Table 3. Electronic excitation energies and the corresponding oscillator strengths (f), the main configurations and CI coefficients of the low-lying electronically excited states of complex **Pt-2** calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ based on the DFT//B3LYP/6-31G(d)/LanL2DZ-optimized ground-state geometries.

	Electronic					
	transitions	Energy ^[a]	<i>f</i> ^[b]	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	2.95 eV, 420 nm	0.3101	H−2→L	0.1141	LLCT & MLCT
-				$H-1 \rightarrow L$	0.1868	LLCT & LMCT
				H→L	0.6307	IL & LLCT
				$H \rightarrow L+1$	0.1084	IL & LLCT
	$S_0 \rightarrow S_4$	3.45 eV, 360 nm	0.1037	H−3→L	0.2278	MLCT
				H−2→L	0.5186	LLCT & MLCT
				$H \rightarrow L+1$	0.3036	IL & LLCT
	$S_0 \rightarrow S_5$	3.50 eV, 355 nm	0.1899	H−2→L	0.2923	LLCT & MLCT
				$H-1 \rightarrow L$	0.1633	LLCT & LMCT
				$H-1 \rightarrow L+1$	0.1968	LLCT
				$H \rightarrow L+1$	0.4911	IL & LLCT
	$S_0 \rightarrow S_{24}$	4.45 eV, 279 nm	0.1412	H–6→L	0.2467	LLCT & MLCT
				$H-5\rightarrow L+1$	0.3926	IL & LLCT
				$H-4\rightarrow L+1$	0.3533	IL & MLCT
	$S_0 \rightarrow S_{25}$	4.50 eV, 276 nm	0.1355	$H-6\rightarrow L$	0.3173	LLCT & MLCT
				$H-5\rightarrow L+1$	0.2711	IL & LLCT
				$H-2\rightarrow L+3$	0.3609	IL
Triplet	$S_0 \rightarrow T_1$	2.03 eV, 612 nm	$0.0000^{[e]}$	H→L	0.5112	IL & LLCT
				$H \rightarrow L+1$	0.5625	IL & LLCT
				$H \rightarrow L+2$	0.1697	LLCT
	$S_0 \rightarrow T_2$	2.56 eV, 484 nm	$0.0000^{[e]}$	$H-5\rightarrow L$	0.1969	IL & LLCT
				H–2→L	0.3386	LLCT & MLCT
				$H-1 \rightarrow L$	0.4325	LLCT & LMCT
				H→L	0.2934	IL & LLCT
				H→L+1	0.2493	IL & LLCT
				$H \rightarrow L+2$	0.1419	LLCT

[a] Only selected low-lying excited states are presented. [b] Oscillator strength. [c] H represents HOMO and L the LUMO. Only the main configurations are presented. [d] The CI coefficients are absolute values. [e] No spin–orbital coupling effect was considered, thus the f values are zero.

the HOMO and LUMO of **Pt-2** were calculated to be -5.06 and -1.74 eV, respectively. The energy of the HOMO orbital is greater than that of the model complex **Pt-4**.

Complex **Pt-3** was studied by a similar method. The ground-state geometry of the complex adopts a coplanar conformation, that is, the pyrene is coplanar with the Pt coordination plane (Figure 5). This geometry ensures efficient π conjugation between the pyrene and the ppy–Pt coordination moiety and thus we expect a longer wavelength of emission for **Pt-3** compared with **Pt-2**. This expectation was proven by the experimental results, which show

the emission of **Pt-3** centred at 669 nm and the emission band of **Pt-2** at 635 nm (Figure 2 and Table 1).

The vertical excitation energies of **Pt-3** were calculated by the TDDFT method. The excitation energies calculated for the singlet excited states are 452, 421, 382 and 324 nm (Table 4). These calculated values are in good agreement with the UV/Vis absorption data (Figure 1).

To study the emissive state of **Pt-3**, the triplet excited states were also studied (Table 4). Based on the electronic configuration of the T_1 excited state, which is responsible for the phosphorescence emission, the T_1 state is charac-

Figure 5. Frontier molecular orbitals of **Pt-3** calculated by DFT/TDDFT at the B3LYP/6-31G(d)/LanL2DZ level of theory using Gaussian 09.

Table 4. Electronic excitation energies and the corresponding oscillator strengths (f), the main configurations and CI coefficients of the low-lying electronically excited states of the complex **Pt-3** calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ based on the DFT//B3LYP/ 6-31G(d)/LanL2DZ-optimized ground-state geometries.

	Electronic TDDFT//B3LYP/6-31G(d)					
	transitions	Energy ^[a]	$f^{[b]}$	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	2.74 eV, 452 nm	1.0803	H→L	0.6402	LC
				$H \rightarrow L+1$	0.1023	LLCT
	$S_0 \rightarrow S_2$	2.95 eV, 421 nm	0.0854	H–4→L	0.1024	MLCT
				$H-1 \rightarrow L$	0.6312	LC
				$H-1\rightarrow L+1$	0.1606	LLCT
	$S_0 \rightarrow S_3$	3.25 eV, 382 nm	0.1744	H−2→L	0.3544	LLCT & MLCT
				$H \rightarrow L+1$	0.5702	LLCT
	$S_0 \rightarrow S_{10}$	3.83 eV, 324 nm	0.1779	$H-5\rightarrow L$	0.2412	MLCT
				H–4→L	0.3905	LC
				$H-2\rightarrow L+1$	0.2493	LLCT
				$H \rightarrow L+3$	0.2464	IL & LLCT
Triplet	$S_0 \rightarrow T_1$	1.78 eV, 697 nm	0.0000 ^[e]	$H-2\rightarrow L+1$	0.1326	LLCT
				H→L	0.6913	LLCT
				$H \rightarrow L+1$	0.3409	LLCT

[a] Only selected low-lying excited states are presented. [b] Oscillator strength. [c] H represents the HOMO and L the LUMO. Only the main configurations are presented. [d] The CI coefficients are absolute values. [e] No spin–orbital coupling effect was considered, thus the f values are zero.

terized by pyrene-localized (³IL), pyrene \rightarrow ppy (³IL) and Pt \rightarrow ppy (³MLCT) transitions. The energies of the HOMO and LUMO of **Pt-3** were calculated to be -5.01 and -2.01 eV, respectively. Compared to **Pt-4**, the HOMO of **Pt-3** is significantly higher and the LUMO is lower and thus we expect red-shifted emission for this complex.

Pt-4 was designed as a model complex and does not contain the pyrene group. Therefore the normal ³MLCT/³IL emissive state was expected for this complex.^[1,5] The ground-state geometry of the complex shows the phenyl group tilted by 37° with respect to the ppy coordination plane, which rules out efficient π conjugation (Figure 6). The excited states of **Pt-4** were also studied. The singlet excited states of the complex were found to have the main excitation energies of 403, 361, 326, 305 and 282 nm (Table 5). These values are in good agreement with the experimental results, which show UV/Vis absorption bands at 391, 366, 332 and 296 nm.

By examining the electronic structure of the S_1 state, the transition can be attributed to Pt \rightarrow ppy and phenyl \rightarrow pyridine transitions. In contrast to **Pt-1** and **Pt-2**, no aryl append localized transitions (¹IL) were found. The triplet states of **Pt-4** were also studied and an excitation energy of 490 nm (T₁) was found. This value is in good agreement with the experimental result of phosphorescence emission at 527 nm.^[34] By examining the electronic configuration of the T₁ state and the molecular orbitals, we found that the T₁ state is characterized by ppy-localized phenyl \rightarrow pyridine and Pt \rightarrow ppy transitions, that is, the T₁ state is a mixed ³MLCT/³IL state. Therefore the emissive state (T₁) of **Pt-4** is characterized by the normal profile of the [(ppy)Pt(acac)] complexes. The HOMO and LUMO energies of **Pt-4** were calculated to be -5.41 and -1.66 eV, respectively.

The energy levels of electroluminescence materials are important for device fabrication. The energies of the HOMOs and LUMOs of the complexes were calculated (Figure 7.) and it is clear that **Pt-4** and the model complex [(ppy)Pt(acac)] share similar HOMO and LUMO energies. For **Pt-1** and **Pt-3**, the energy gaps between the HOMO and the LUMO are smaller than that of complex [(ppy)-Pt(acac)]. This is not surprising as the pyrene moiety is directly cycloplatinated (**Pt-1**) or the pyrenyl-ethynyl conjugated ppy ligand was used (**Pt-3**). The HOMO and LUMO energies of **Pt-2** are very interesting. The pyrene moiety is neither directly cycloplatinated nor π -conjugated to the ppy ligand through a C=C bond, however, the HOMO energy

Figure 6. Frontier molecular orbitals of **Pt-4** calculated by DFT/TDDFT at the B3LYP/6-31G(d)/LanL2DZ level of theory using Gaussian 09.

Table 5. Electronic excitation energies [eV] and the corresponding oscillator strengths (*f*), the main configurations and CI coefficients of the low-lying electronically excited states of complex **Pt-4** calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ based on the DFT//B3LYP/ 6-31G(d)/LanL2DZ-optimized ground-state geometries.

	Electronic					
	transitions	Energy ^[a]	$f^{[b]}$	Composition ^[c]	CI ^[d]	Character
Singlet	$S_0 \rightarrow S_1$	3.08 eV, 403 nm	0.0612	H−3→L	0.1372	LLCT & MLCT
				$H-2\rightarrow L$	0.1309	LLCT & MLCT
				H→L	0.6448	LLCT
	$S_0 \rightarrow S_2$	3.44 eV, 361 nm	0.0888	H−3→L	0.3300	LLCT & MLCT
				H−2→L	0.1669	LLCT & MLCT
				$H-1 \rightarrow L$	0.5642	LLCT
				$H \rightarrow L$	0.1008	LLCT
	$S_0 \rightarrow S_5$	3.80 eV, 326 nm	0.1936	H−3→L	0.3809	LLCT & MLCT
				H−2→L	0.3147	LLCT & MLCT
				$H-1 \rightarrow L+1$	0.2768	LLCT
				$H-1 \rightarrow L$	0.1633	LLCT
				$H \rightarrow L+1$	0.3287	LLCT
				$H-1 \rightarrow L+1$	0.1968	LLCT
	$S_0 \rightarrow S_8$	4.07 eV, 305 nm	0.1950	H−3→L	0.1500	LLCT & MLCT
				H−2→L	0.1221	LLCT & MLCT
				$H-2\rightarrow L+1$	0.2006	LLCT & MLCT
				$H-1 \rightarrow L+1$	0.5745	LLCT
Triplet	$S_0 \rightarrow T_1$	2.53 eV, 490 nm	0.0000 ^[e]	H−1→L	0.3708	LLCT
				H→L	0.6021	LLCT
				$H \rightarrow L+1$	0.1107	LLCT

[a] Only selected low-lying excited states are presented. [b] Oscillator strength. [c] H represents the HOMO and L the LUMO. Only the main configurations are presented. [d] The CI coefficients are absolute values. [e] No spin–orbital coupling effect was considered, thus the f values are zero.

of **Pt-2** is significantly higher than that of the model complex [(ppy)Pt(acac)] (Figure 7). This increased HOMO energy cannot be rationalized by the electron-donating ability of the pyrenyl group because no such effect was observed for **Pt-4** in which a phenyl ring is attached to the ppy ligand. DFT calculations revealed that the pyrene moiety contributes significantly to the HOMOs (Figure 4) and thus the high HOMO energy of **Pt-2** can be rationalized.

Our theoretical calculations show that the DFT/TDDFT method can be used to study the excited state of the cyclometallated Pt complexes and for assignment of the UV/Vis absorption (singlet excited states) and phosphorescence emissions (triplet excited states). The calculations indicated that the pyrene moiety is involved in the lowest-lying excited states of **Pt-1**, **Pt-2** and **Pt-3**. For **Pt-4**, however, normal ³MLCT/³IL transitions were found. These theoretical predictions are fully supported by the experimental results,

Figure 7. Calculated frontier energy levels of the complexes calculated by DFT/TDDFT at the B3LYP/6-31G(d)/LanL2DZ level of theory using Gaussian 09.

such as the deep-red/near-IR emission and the extended luminescent lifetimes of **Pt-1**, **Pt-2** and **Pt-3**. For **Pt-4**, normal ³MLCT/³IL emission was predicted by the theoretical calculations. Our assignment of the emissive state of the cyclometallated Pt complexes by DFT/TDDFT calculations will be useful in the design of luminescent complexes with predetermined photophysical properties, such as the ligandlocalized triplet excited state (³IL).

Luminescent O₂-Sensing with the Emissive Pt Complexes

Recently, luminescent O₂-sensing has attracted considerable attention.^[11,13,21,35,36] Phosphorescent dyes, usually transition-metal complexes, are employed for luminescent O₂ sensing as a result of their triplet nature and the long lifetime of their luminescence (in the microsecond range, μ s). Typical compounds for this purpose are Pt–porphyrin complexes, for example, PtOEP and Ru^{II}–polypyridine complexes.^[13,14,37–39] To the best of our knowledge, no cyclometallated Pt(acac) complexes have been systematically studied for O₂-sensing applications. Thus, we carried out a preliminary investigation on the luminescent O₂-sensing properties of the complexes.

The changes in the emission of the complexes in solution versus variation of O_2 partial pressures were studied (Figure 8). We found the phosphorescence emission band of Pt-1 at 680 nm is sensitive to O_2 . For example, changing from

Figure 8. Luminescent oxygen-sensing properties. Emission spectra of (a) **Pt-2** in CH₂Cl₂ solution saturated with 0.00, 0.02, 0.08, 0.12, 0.20, 1.00, 1.50, 3.50, 4.30, 21.0 and 100.0% oxygen (mixed gas with N₂, v/v). (b) Intensity ratios F_0/F vs. O₂ partial pressure [Torr]. Linear fitting of the O₂-sensing data of **Pt-1**, **Pt-2**, **Pt-3** and **Pt-4** in CH₂Cl₂. The asterisk (*) in (a) indicates the second-order transition of the monochromator of the fluorescence spectrometer. $c = 1.0 \times 10^{-5}$ mol/L, 12 °C.

a N₂ atmosphere to 0.20% O₂ will significantly quench the emission by 22.6% (see the Supporting Information).

We noticed the phosphorescence emission of **Pt-2** is highly sensitive to the presence of O₂. For example, the emission intensity is nearly completely quenched in the presence of 1.0% O₂ (v/v; Figure 8, b). The O₂-sensing data were fitted to the Stern–Volmer equation (Figure 8, b). Quenching constants of 0.17 and 1.45 Torr⁻¹ were determined for **Pt-1** and **Pt-2**, respectively. Thus, the emission of **Pt-2** is much more sensitive towards O₂ than **Pt-1**. Similar O₂-sensing studies were performed for **Pt-3** and **Pt-4** (see the Supporting Information). The quenching constants for **Pt-3** and **Pt-4** were determined to be 1.16 and 0.18 Torr⁻¹, respectively.

Our results show that the O_2 sensitivity of the emission of the cycloplatinated complexes is in line with the luminescent lifetimes of the complexes (Table 1). **Pt-2** shows the longest luminescence lifetimes and also shows the most sensitive O_2 -sensing behaviour among the complexes studied herein. **Pt-1** and **Pt-4** have relatively short luminescence lifetimes compared with **Pt-2** and lower sensitivity towards oxygen. Thus, **Pt-1** and **Pt-4** can potentially be used as an electroluminescence material and **Pt-2** can be used as a phosphorescent molecular probes (Table 6).

Table 6. Parameters of O_2 sensing of the complexes Pt-1, Pt-2, Pt-3 and Pt-4 in CH_2Cl_2 (linear fitting result).

	$K_{\rm SV}^{\rm app[a]}$	$pO_2^{[b]}$	r ^{2[c]}
Pt-1	0.17	5.88	0.99
Pt-2	1.45	0.69	0.98
Pt-3	1.16	0.86	0.99
Pt-4	0.18	5.56	0.99

[[]a] Quenching constant [Torr⁻¹]. [b] Oxygen partial pressure at which the initial emission intensity of the film is quenched by 50%, and can be calculated as $1/K_{SV}$ [c] Determination coefficients.

Conclusions

We have prepared pyrene-containing cycloplatinated complexes in which the pyrene moiety is directly cycloplatinated (Pt-1) or attached to the ppy ligand through a C-C single bond (Pt-2) or through a $C \equiv C$ triple bond (Pt-3). A control complex with a phenyl group attached to the ppy ligand (Pt-4), was also prepared. We observed room-temperature deep-red/near-IR phosphorescence emission (650-800 nm) for Pt-1, Pt-2 and Pt-3. Notably, room-temperature phosphorescence emission in the range of 600–700 nm was observed for Pt-2 in which the pyrene moiety is not directly cycloplatinated. This discovery contrasts the results in a previous report on cycloplatinated complexes with 1diphenylphosphanylpyrene or 1,6-bis(diphenylphosphanyl)pyrene as ligands. To the best of our knowledge this is the first report of room-temperature phosphorescence of pyrene without direct cyclometallation. The photophysical properties of the complexes were rationalized by DFT/ TDDFT calculations, which indicate pyrene-localized T_1 states for Pt-1 and Pt-2. Our systematic study of the synthe-

FULL PAPER

sis of the pyrene-substituted [(ppy)Pt(acac)] complexes, the observation of the deep-red/near-IR phosphorescence emission of pyrene with **Pt-1**, the observation of the phosphorescence of pyrene without direct cyclometallation on the pyrene moiety and the assignment of the emissive state through DFT/TDDFT calculations will be useful in the development of novel deep-red/near-IR-emitting complexes and for their application as molecular sensors or electroluminescence materials.

Experimental Section

General: All the chemicals used were analytically pure and used as received without further purification. NMR spectra were recorded with a 400 MHz Varian Unity Inova spectrometer. Mass spectra were recorded with a Q-TOF Micro MS spectrometer. UV/Vis spectra were recorded with a HP8453 UV/Vis spectrophotometer. Fluorescence spectra were recorded with a JASCO FP-6500 or Sanco 970 CRT spectrofluorimeter. Fluorescence and phosphorescence quantum yields were measured with quinine sulfate ($\Phi = 54\%$ in 0.5 M H₂SO₄) or [Ru(bpy)₂(phen)]·(PF₆)₂ as references ($\Phi = 6.0\%$ in CH₃CN), respectively. Fluorescence lifetimes were measured with a Horiba Jobin Yvon Fluoro Max-4 (TCSPC) instrument.

1-Bromopyrene: A solution of NBS (4.09 g, 23 mmol) in DMF (23 mL) was slowly added to a solution of pyrene (5.11 g, 25 mmol) in DMF (35 mL) at 0 °C. After stirring at room temp. for 24 h, the reaction mixture was poured into ice–water (150 mL) and the was mixture was extracted with diethyl ether. The organic layer was dried with anhydrous Na₂SO₄. After removal of the solvent by evaporation the crude white solid was purified by column chromatography (silica gel, petroleum ether). A white solid was obtained; yield 3.5 g, 54.2%. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.40$ (d, J = 9.2 Hz, 1 H), 8.20–8.17 (m, 3 H), 8.13 (d, J = 9.2 Hz, 1 H), 8.05–7.95 (m, 4 H) ppm. HRMS (ESI): calcd. for C₁₆H₉Br [M]⁺ 279.9888; found 279.9889.

2-(1-Pyrenyl)pyridine (L-1): 2-Bromopyridine (192.8 mg. 1.22 mmol), 1-pyrenylboronic acid (300.0 mg, 1.22 mmol), [Pd(PPh₃)₄] (52.1 mg, 0.045 mmol), aqueous Ba(OH)₂ (2.286 g, 2.0 M, 60 mL), EtOH (15 mL) and toluene (45 mL) were mixed. The mixture was degassed with argon and heated at reflux for 20 h. After being cooled, the solvent was evaporated under reduced pressure and the residue was extracted with CH₂Cl₂. The organic layer was dried with Na_2SO_4 and then evaporated to dryness. The crude product was purified by column chromatography (silica gel, CH_2Cl_2 /petroleum ether = 2:1, v/v). A light-yellow solid was obtained; yield 0.16 g, 47.0%. ¹H NMR (400 MHz, CDCl₃): δ = 8.87 (d, J = 4.4 Hz, 1 H), 8.37 (d, J = 9.2 Hz, 1 H), 8.24 (d, J = 8.0 Hz, 1 H), 8.20–8.14 (m, 3 H), 8.09–8.05 (m, 3 H), 8.00 (t, J = 7.2 Hz, 1 H), 7.86 (t, J = 8.0 Hz, 1 H), 7.70 (d, J = 8.0 Hz, 1 H), 7.36 (t, J = 2.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.5$, 149.7, 136.4, 135.6, 131.5, 131.4, 128.6, 128.0, 127.9, 127.6, 127.4, 126.0, 125.8, 125.4, 125.1, 124.9, 124.8, 122.0 ppm. MS (EI): calcd. for C₂₁H₁₃N [M]⁺ 279.1042; found 279.1048.

Pt-1: A mixture of 2-(1-pyrenyl)pyridine (147.0 mg, 0.53 mmol) and $[K_2PtCl_4]$ (109.2 mg, 0.26 mmol) in 2-ethoxyethanol (6 mL) and water (2 mL) was heated at 80 °C for 20 h. After cooling to room temperature, the mixture was poured into water (20 mL) and the precipitate was collected and washed with water (2×10 mL) and dried under vacuum at 50 °C for 5 h. The precipitate with treated with Hacac (78.9 mg, 0.79 mmol) in the presence of

Na₂CO₃ (279.0 mg, 2.63 mmol) in 2-ethoxyethanol (6 mL) at 100 °C for 20 h. Water (10 mL) was added and the precipitate was collected and washed with water (2 × 10 mL). After drying in vacuo in an oven, the crude product was purified by column chromatography (silica gel, CH₂Cl₂/petroleum ether = 1:1, v/v). A yellow solid was obtained; yield 43.0 mg, 27.9%. ¹H NMR (400 MHz, CDCl₃): δ = 9.22 (d, *J* = 8.0 Hz, 1 H), 8.69 (d, *J* = 9.6 Hz, 2 H), 8.39 (d, *J* = 9.2 Hz, 2 H), 8.14–8.00 (m, 5 H), 7.95–7.90 (m, 2 H), 7.15 (t, *J* = 8.0 Hz, 1 H), 5.54 (s, 1 H), 2.13 (s, 3 H), 2.06 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 184.7, 148.4, 138.2, 131.0, 129.8, 128.7, 128.6, 128.4, 127.2, 126.2, 125.6, 125.1, 123.2, 121.9, 120.8, 102.8, 28.5, 27.6 ppm. MS (MALDI-TOF): calcd. for C₂₆H₁₉NO₂Pt [M]⁺ 572.1064; found 572.1052. C₂₆H₁₉NO₂Pt (572.51): calcd. C 54.55, H 3.35, N 2.45; found C 54.84, H 3.55, N 2.31.

2-[4-(1-Pyrenyl)phenyl]pyridine (L-2): 2-(4-Bromophenyl)pyridine (286.0 mg, 1.22 mmol), 1-pyrenylboronic acid (300.0 mg, 1.22 mmol), [Pd(PPh₃)₄] (52.1 mg, 0.045 mmol), aqueous Ba(OH)₂ (2.286 g, 2.0 M, 60 mL), EtOH (15 mL) and toluene (45 mL) were mixed in a flask. The mixture was degassed with argon and heated at reflux for 20 h. After being cooled, the solvent was evaporated under vacuum and the residue was taken up in CH₂Cl₂, dried with Na_2SO_4 and then evaporated to dryness. The crude product was purified by column chromatography (silica gel, CH₂Cl₂/petroleum ether = 2:1, v/v). A light-yellow solid was obtained; yield 0.19 g, 43.0%. ¹H NMR (400 MHz, CDCl₃): δ = 8.77 (d, J = 4.4 Hz, 1 H), 8.26-8.17 (m, 6 H), 8.11 (s, 2 H), 8.06-8.00 (m, 3 H), 7.88-7.82 (m, 2 H), 7.76 (t, J = 8.0 Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl3): $\delta = 157.2, 149.7, 142.3, 138.1, 137.4, 137.3, 131.7, 131.3,$ 131.2, 131.0, 128.7, 127.8, 127.7, 127.6, 127.2, 126.2, 125.4, 125.2, 125.1, 124.9, 122.5, 121.0 ppm. MS (EI): calcd. for C₂₇H₁₇N [M]⁺ 355.1361; found 355.1367.

Pt-2: A mixture of 2-[4-(1-pyrenyl)phenyl]pyridine (155.0 mg, 0.44 mmol) and [K₂PtCl₄] (91.0 mg, 0.22 mmol) in 2-ethoxyethanol (6 mL) and water (2 mL) was heated at 80 °C for 20 h. After cooling to room temperature, the mixture was added to water (20 mL) and the precipitate was washed with water $(2 \times 10 \text{ mL})$ and dried under vacuum in a drying oven at 50 °C for 5 h. The precipitate was treated with Hacac (65.5 mg, 0.65 mmol) in the presence of Na₂CO₃ (231.0 mg, 2.18 mmol) in 2-ethoxyethanol (6 mL) at 100 °C for 20 h. Water (10 mL) was added and the yellow precipitate was collected and washed with water $(2 \times 10 \text{ mL})$. After drying in vacuo in an oven the crude product was purified by column chromatography (silica gel, CH_2Cl_2 /petroleum ether = 1:1, v/v). A yellow solid was obtained; yield 85.0 mg, 60.0%. ¹H NMR (400 MHz, CDCl₃): δ = 9.07 (d, J = 5.2 Hz, 1 H), 8.32 (d, J = 8.8 Hz, 1 H), 8.23 (d, J = 8.0 Hz, 2 H), 8.20-7.99 (m, 8 H), 7.89-7.85 (m, 2 H), 7.72 (d, J = 8.0 Hz, 1 H), 7.62 (d, J = 8.0 Hz, 1 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.72 (t, J = 7.6 Hz, 1 H), 5.45 (s, 1 H), 2.02 (s, 3 H), 1.86 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 184.7, 148.4, 138.2, 131.0, 129.8, 128.7, 128.6, 128.4, 127.2, 126.2, 125.6, 125.1, 123.2, 121.9, 120.8, 102.8, 28.5, 27.6 ppm. MS (MALDI-TOF): calcd. for C₃₂H₂₃NO₂Pt [M]⁺ 648.1377; found 648.1340. C₃₂H₂₃NO₂Pt (648.14): calcd. C 59.26, H 3.57, N 2.16; found C 59.09, H 3.84, N 1.85.

1-Ethynylpyrene: Under argon, 1-bromopyrene (2.0 g, 3.57 mmol), [Pd(PPh₃)₂Cl₂] (100 mg, 0.14 mmol), PPh₃ (74.6 mg, 0.28 mmol) and CuI (54.3 mg, 0.28 mmol) were mixed in THF (20 mL) and triethylamine (60 mL). Then trimethylsilylacetylene (414 mg, 4.2 mmol) was added. The system was heated for 6 h at 90 °C. The reaction mixture was cooled to room temperature and filtered. The filtrate was collected and the solvent removed under reduced pres-

sure. The residue was dissolved in *n*-hexane. The remaining solid was filtered off and the filtrate was collected. Then the solvent was removed and a yellow oily was obtained. The yellow oil was dissolved in diethyl ether (20 mL). Then methanol (40 mL) and potassium carbonate (3.2 g) were added. The system was stirred at room temp. for 3 h. The mixture was filtered and the filtrate was revolved to dryness. The residue was purified by column chromatography (silica gel, *n*-hexane/DCM = 50:1, v/v). The third fraction was collected and the solvent was removed. The product was obtained as a cinereous powder; yield 600 mg, 40.0%. ¹H NMR (400 MHz, CDCl₃): δ = 8.54 (d, *J* = 8.6 Hz, 1 H), 8.11 (m, 4 H), 8.03 (m, 2 H), 7.97 (m, 2 H), 3.61 (s, 1 H) ppm. MS (EI): calcd. for C₁₈H₁₀ [M]⁺ 226.0783; found 226.0790.

L-3: To a degassed solution of 2-(4-bromophenyl)pyridine (414.0 mg, 1.77 mmol), [PdCl₂(PPh₃)₂] (74.0 mg, 0.106 mmol) and PPh₃ (56.0 mg, 0.21 mmol) in diisopropylanmine (50 mL) was added the solution of ethynylpyrene (400.0 mg, 1.77 mmol) in THF (10 mL). Then CuI (20.0 mg, 0.106 mmol) was added and the reaction mixture was heated at 90 °C for 4 h. The mixture was poured into water (20 mL) and extracted with CH_2Cl_2 (3 × 30 mL). Then the combined organic fractions were dried with Na₂SO₄ and the solvents evaporated to dryness. The crude product was purified by column chromatography (silica gel, ethyl acetate/hexane = 1:6, v/v). A yellow solid was obtained; yield 263.2 mg, 39.2%. ¹HNMR (400 MHz, CDCl₃): δ = 8.72 (d, J = 4.4 Hz, 1 H), 8.67 (d, J = 8.8 Hz, 1 H), 8.23–8.18 (m, 4 H), 8.13–8.00 (m, 6 H), 7.81 (d, J = 7.6 Hz, 2 H), 7.76 (d, J = 3.6 Hz, 2 H), 7.26–7.25 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 132.3, 132.1, 131.5, 131.3, 129.9, 128.6, 128.4, 127.4, 127.1, 126.4, 125.9, 125.8, 125.7, 124.7, 124.5, 124.4, 95.3, 90.2 ppm. HRMS (EI): calcd. for C₂₉H₁₇N [M]⁻ 379.1361; found 379.1367.

Pt-3: A mixture of L-3 (200.0 mg, 0.53 mmol) and [K₂PtCl₄] (109.0 mg, 0.26 mmol) in ethoxyethanol (6 mL) and water (2 mL) was heated at 80 °C for 20 h. After cooling to room temperature, the mixture was poured into water (10 mL) and the precipitate was collected and washed with water $(2 \times 10 \text{ mL})$. The crude product was dried under vacuum in a drying oven at 50 °C for 5 h. The precipitate was treated with Hacac (79.1 mg, 0.79 mmol) in the presence of Na₂CO₃ (279.0 mg, 2.63 mmol) in 2-ethoxyethanol (6 mL) at 100 °C for 20 h. Water (10 mL) was added and the precipitate was collected and washed with water $(2 \times 10 \text{ mL})$. After drying in vacuo in an oven, the crude product was purified by column chromatography (silica gel, CH_2Cl_2 /hexane = 1:1, v/v). A yellow solid was obtained; yield 20.0 mg, 5.6%. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.03$ (d, J = 5.2 Hz, 1 H), 8.74 (d, J = 9.2 Hz, 1 H), 8.23–7.99 (m, 8 H), 7.93 (s, 1 H), 7.83 (t, J = 8.0 Hz, 1 H), 7.65 (d, J = 7.6 Hz, 1 H), 7.49–7.46 (m, 2 H), 7.15 (t, J = 6.0 Hz, 1 H), 5.50 (s, 1 H), 2.22 (s, 3 H), 2.08 (s, 3 H) ppm. FTIR (KBr): \tilde{v} = 3435, 2923, 2852, 1631, 1608, 1578, 1561, 1517, 1479, 1427, 1390, 1312, 1262, 1095, 1025, 852, 825, 780, 755, 716 cm⁻¹. MS (MALDI-TOF): calcd. for C₃₄H₂₃NO₂Pt [M]⁺ 672.1377; found 672.1414. C₃₄H₂₃NO₂Pt·H₂O (690.65): calcd. C 59.13, H 3.65, N 2.03; found C 59.40, H 3.39, N 1.90.

2-(4-Biphenylyl)pyridine (L-4): 2-(4-Bromophenyl)pyridine (405.4 mg, 2.00 mmol), phenylboronic acid (244.0 mg, 2.00 mmol), [Pd(PPh₃)₄] (85.0 mg, 0.073 mmol), aqueous Na₂CO₃ (4.24 g, 2.0 M, 20 mL) and toluene (40 mL) were mixed in a flask. The mixture was degassed with argon and heated at reflux for 20 h. After being cooled, the solvent was evaporated under vacuum. The residue was taken up in CH₂Cl₂ and washed with water. The organic phase was dried with anhydrous Na₂SO₄ and then evaporated to dryness. The crude product was purified by column chromatography (silica gel,

CH₂Cl₂/petroleum ether = 2:1, v/v). A white solid was obtained; yield 0.25 g, 54.8%. ¹H NMR (400 MHz, CDCl₃): δ = 8.71 (d, *J* = 4.4 Hz, 1 H), 8.07 (d, *J* = 8.0 Hz, 2 H), 7.78–7.76 (m, 2 H), 7.71 (d, *J* = 8.0 Hz, 2 H), 7.65 (d, *J* = 8.0 Hz, 2 H), 7.46 (t, *J* = 7.6 Hz, 2 H), 7.37 (t, *J* = 7.6 Hz, 1 H), 7.25–7.23 (m, 1 H) ppm. MS (EI): calcd. for C₁₇H₁₃N [M]⁺ 231.1048; found 231.1051.

Pt-4: A mixture of 2-(4-biphenylyl)pyridine (115.6 mg, 0.50 mmol), [K₂PtCl₄] (103.8 mg, 0.25 mmol) in ethoxyethanol (6 mL) and water (2 mL) was heated at 80 °C for 20 h. After cooling to room temperature, the mixture was poured into water (20 mL) and the precipitate was collected and washed with water ($2 \times 10 \text{ mL}$). The crude product was dried under vacuum at 50 °C for 5 h. Reaction of the precipitate with Hacac (75.0 mg, 0.75 mmol) in the presence of Na₂CO₃ (265.0 mg, 2.50 mmol) in 2-ethoxyethanol (6 mL) at 100 °C for 20 h. After cooling to room temperature, water (10 mL) was added and the precipitate was collected and washed with water $(2 \times 10 \text{ mL})$. The crude product was dried in vacuo in an oven and then purified by column chromatography (silica gel, CH₂Cl₂/petroleum ether = 1:1, v/v). A yellow solid was obtained; yield 94.0 mg, 97.8%. ¹H NMR (400 MHz, CDCl₃): δ = 9.00 (d, J = 5.2 Hz, 1 H), 7.84 (s, 1 H), 7.79 (t, J = 7.2 Hz, 1 H), 7.70 (d, J = 7.6 Hz, 2 H), 7.61 (d, J = 8.0 Hz, 1 H), 7.50–7.43 (m, 3 H), 7.10 (t, J =6.0 Hz, 1 H), 5.48 (s, 1 H), 2.01 (s, 6 H) ppm. ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 185.7, 184.2, 168.0, 147.3, 143.9, 141.9, 141.8, 139.1,$ 138.1, 129.0, 128.6, 127.4, 127.2, 123.3, 122.8, 121.1, 118.4, 102.5, 28.3, 27.2 ppm. MS (MALDI-TOF): calcd. for $C_{22}H_{19}NO_2Pt$ [M]⁺ 524.1064; found 524.1099. C₂₂H₁₉NO₂Pt (524.47): calcd. C 50.38, H 3.65, N 2.67; found C 50.53, H 3.57, N 2.38.

DFT/TDDFT Calculations: The structures of the complexes were optimized by using density functional theory (DFT) with the B3LYP functional and 6-31G(d)/LanL2DZ basis set. The related calculations in the excited state were carried out with time-dependent DFT (TDDFT) with the ground-state geometries. The 6-31G(d) basis set was employed for the C, H, N and O atoms, and the LanL2DZ basis set was used for Pt^{II}. There are no imaginary frequencies for any of the optimized structures. All the calculations were performed with Gaussian 09.^[40]

Supporting Information (see also the footnote on the first page of this article): Characterization and calculation of the compounds.

Acknowledgments

We thank the National Natural Science Foundation of China (NSFC, 20642003, 20634040 and 20972024), the Ministry of Education, Scientific Research Foundation for the Returned Overseas Chinese Scholars, Specialized Research Fund for the Doctoral Program of Higher Education (200801410004) and the New Century Excellent Talents in University (08–0077), the Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT0711), the State Key Laboratory of Fine Chemicals (KF0710 and KF0802), the State Key Laboratory of Chemo/Biosensing and Chemometrics (2008009), the Education Department of Liaoning Province (2009T015) and the Dalian University of Technology (SFDUT07005 and 1000–893394) for financial support. We are grateful to the Royal Society of Chemistry (RSC) (UK) for the China–UK Cost-Share Science Networks.

- [1] J. A. G. Williams, Top. Curr. Chem. 2007, 281, 205–268.
- [2] W. Y. Wong, J. Organomet. Chem. 2009, 694, 2644–2647.
- [3] C. L. Ho, W. Y. Wong, Z. Q. Gao, C. H. Chen, K. W. Cheah, B. Yao, Z. Y. Xie, Q. Wang, D. Ma, L. X. Wang, X. M. Yu, H. S. Kwok, Z. Y. Lin, *Adv. Funct. Mater.* **2008**, *18*, 319–331.

FULL PAPER

- [4] C. Che, C. Kwok, S. Lai, A. F. Rausch, W. J. Finkenzeller, N. Zhu, H. Yersin, *Chem. Eur. J.* 2010, 16, 233–247.
- [5] J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, *Inorg. Chem.* 2002, 41, 3055–3066.
- [6] G. J. Zhou, Q. Wang, W. Y. Wong, D. Ma, L. X. Wang, Z. Y. Lin, J. Mater. Chem. 2009, 19, 1872–1883.
- [7] J. A. G. Williams, Top. Curr. Chem. 2007, 281, 205–268.
- [8] a) E. L. Williams, J. Li, G. E. Jabbour, *Appl. Phys. Lett.* 2006, 89, 083506; b) R. Ragni, E. Orselli, G. S. Kottas, O. H. Omar, F. Babudri, A. Pedone, F. Naso, G. M. Farinola, L. De Cola, *Chem. Eur. J.* 2009, 15, 136–148.
- [9] a) H. Chen, C. Yang, Y. Chi, Y. Cheng, Y. Yeh, P. Chou, H. Hsieh, C. Liu, S. Peng, G. Lee, *Can. J. Chem.* 2006, 84, 309–318; b) D. Hanss, J. C. Freys, G. Bernardinelli, O. S. Wenger, *Eur. J. Inorg. Chem.* 2009, 32, 4850–4859; c) S. U. Pandya, K. C. Moss, M. R. Bryce, A. S. Batsanov, M. A. Fox, V. Jankus, H. A. Al Attar, A. P. Monkman, *Eur. J. Inorg. Chem.* 2010, 1963–1972.
- [10] J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, 2nd ed., Kluwer Academic/Plenum Publishers, New York, **1999**.
- [11] O. Wolfbeis, R. Narayanaswamy, Optical sensors: Industrial, Environmental and Diagnostic Applications, Springer, Berlin, Heidelberg, 2004.
- [12] S. Ji, J. Yang, Q. Yang, S. Liu, M. Chen, J. Zhao, J. Org. Chem. 2009, 74, 4855–4865.
- [13] S. Ji, W. Wu, Y. Wu, T. Zhao, F. Zhou, Y. Yang, X. Zhang, X. Liang, W. Wu, L. Chi, Z. Wang, J. Zhao, *Analyst* 2009, 134, 958–965.
- [14] S. Ji, W. Wu, W. Wu, P. Song, K. Han, Z. Wang, S. Liu, H. Guo, J. Zhao, J. Mater. Chem. 2010, 20, 1953–1963.
- [15] W. Wu, W. Wu, S. Ji, H. Guo, X. Wang, J. Zhao, *Dyes Pigm.* 2010, in press, DOI:10.1016/j.dyepig.2010.01.02.
- [16] J. Hu, J. H. K. Yip, D. Ma, K. Wong, W. Chung, Organometallics 2009, 28, 51–59.
- [17] G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747–751.
- [18] Z. He, W. Wong, X. Yu, H. Kwok, Z. Lin, *Inorg. Chem.* 2006, 45, 10922–10937.
- [19] S. J. Lee, C. R. Luman, F. N. Castellano, W. Lin, Chem. Commun. 2003, 2124–2125.
- [20] K. K.-W. Lo, K. Y. Zhang, S. Leung, M. Tang, Angew. Chem. Int. Ed. 2008, 47, 2213–2216.
- [21] C. S. K. Mak, D. Pentlehner, M. Stich, O. S. Wolfbeis, W. K. Chan, H. Yersin, *Chem. Mater.* 2009, 21, 2173–2175.
- [22] W. Y. Heng, J. Hu, J. H. K. Yip, Organometallics 2007, 26, 6760–6768.
- [23] B. Yin, F. Niemeyer, J. A. G. Williams, J. Jiang, A. Boucekkine, L. Toupet, H. Le Bozec, V. Guerchais, *Inorg. Chem.* 2006, 45, 8584–8596.

- [24] R. Bandichhor, A. D. Petrescu, A. Vespa, A. B. Kier, F. Schroeder, K. Burgess, J. Am. Chem. Soc. 2006, 128, 10688–10689.
- [25] B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, Germany, 2001.
- [26] A. Santoro, A. C. Whitwood, J. A. Gareth Williams, V. N. Kozhevnikov, D. W. Bruce, *Chem. Mater.* 2009, 21, 3871–3882.
- [27] X. Zhang, L. Chi, S. Ji, Y. Wu, P. Song, K. Han, H. Guo, T. D. James, J. Zhao, J. Am. Chem. Soc. 2009, 131, 17452–17463.
- [28] F. Han, L. Chi, X. Liang, S. Ji, S. Liu, F. Zhou, Y. Wu, K. Han, J. Zhao, T. D. James, J. Org. Chem. 2009, 74, 1333–1336.
- [29] X. Zhang, Y. Wu, S. Ji, H. Guo, P. Song, K. Han, W. Wu, W. Wu, T. D. James, J. Zhao, J. Org. Chem. 2010, 75, 2578–2588.
- [30] G. Zhao, J. Liu, L. Zhou, K. Han, J. Phys. Chem. B 2007, 111, 8940–8945.
- [31] Z. Yang, J. Feng, A. Ren, Inorg. Chem. 2008, 47, 10841–10850.
- [32] Y. Tao, Q. Wang, Y. Shang, C. Yang, L. Ao, J. Qin, D. Ma, Z. Shuai, *Chem. Commun.* 2009, 77–79.
- [33] a) X. Li, Z. Wu, Z. Si, H. Zhang, L. Zhou, X. Liu, *Inorg. Chem.* 2009, 48, 7740–7749; b) X.-J. Liu, J.-K. Feng, J. Meng, Q.-J. Pan, A.-M. Ren, X. Zhou, H.-X. Zhang, *Eur. J. Inorg. Chem.* 2005, 1856–1866.
- [34] C. L. Yang, X. W. Zhang, H. You, L. Y. Zhu, L. Q. Chen, L. N. Zhu, Y. T. Tao, D. G. Ma, Z. G. Shuai, J. G. Qin, *Adv. Funct. Mater.* 2007, 17, 651–661.
- [35] L. H. Fischer, M. I. J. Stich, O. S. Wolfbeis, N. Tian, E. Holder, M. Schäferling, *Chem. Eur. J.* 2009, 15, 10857–10863.
- [36] R. P. Briñas, T. Troxler, R. M. Hochstrasser, S. A. Vinogradov, J. Am. Chem. Soc. 2005, 127, 11851–11862.
- [37] K. Kalyanasundaram, Coord. Chem. Rev. 1982, 46, 159-244.
- [38] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. V. Zelewsky, *Coord. Chem. Rev.* 1988, 84, 85–277.
- [39] D. B. Papkovsky, T. C. O'Riordan, J. Fluoresc. 2005, 15, 569– 584.
- [40] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

Received: May 1, 2010 Published Online: August 4, 2010