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ABSTRACT: The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting 

the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to 

create up to maximum 6 defects per cluster in UiO-66. We have synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene 

dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to 

create defects, but also as a co-ligand that enhances the stability of the resulting defective framework. Furthermore, upon a post-

synthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (3 per 

formula unit), leaving the Zr-nodes on average 6-fold coordinated. Remarkably, the thermal stability of the materials further increases 

upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective 

structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed 

isomerization of D<#�	�	� oxide. This reaction is particularly sensitive to the Brønsted or Lewis acid sites in the catalyst. In 

comparison to the pristine UiO-66, which mainly possesses Brønsted acid sites, the Hl-UiO-66 and the post-synthetically treated Hl-

UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN 

spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile 

linker, one can achieve highly defective and stable MOFs and easily control the Brønsted to Lewis acid ratio in the materials, and 

thus their catalytic activity and selectivity.

Introduction

UiO-66 is one of the best known metal-organic frameworks 

(MOFs) due to its outstanding stability, which is caused by the 

presence of high-valent metal cations creating clusters with 

high charge densities.1 Moreover, UiO-66 is a prototypical 

MOF in defect engineering because it can bear a high number 

of defects without loss of structure.2-6 In general, the most 

common approach to create defects is the modulation synthesis 

approach, in which a large excess of the monocarboxylic acid is 

used, in combination with the dicarboxylic acid. The monotopic 

ligands reduce the speed of crystallization and occupy the metal 

coordination sites to generate defects. The most common 

modulators used are formic acid, acetic acid and trifluoroacetic 

acid, all having a mono coordination mode.3, 7-9 MOFs with 

hierarchical porosity have been synthesized using either 

monocarboxylic acids as modulators or by thermolysis of mixed 

linker MOFs.10-13 In catalysis, the defective UiO-66 (using 

trifluoroacetic acid as modulator) has already shown to have a 

high reactivity in the Meerwein reduction of 4-tert-

butylcyclohexanone with isopropanol.14 Recently, we have 

used L-proline as a chiral modulator for the synthesis of UiO-

type of MOF structures which showed an excellent reactivity in 

the diastereoselective aldol reaction.15 Nevertheless, in all 

cases, the thermal stability of the framework is reduced upon 

the generation of 
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66-SO4 (Fig. 2). Two peaks at 168.9 eV and 170.2 eV (purple 

hash) in Hl-UiO-66-SO4 are attributed to the �freely dangling� 

phen-SO3H of the PSBA linker, whereas the peaks at 169.9 eV 

and 171.0 (blue plus) in the UiO-66-SO4 are indicative for these 

sulfonate groups, coordinated to Zr-sites. This indicates that the 

PSBA decoordinates after H2SO4 treatment. Analysis of the 

deconvoluted bands gives a rough indication on the distribution 

of the surface species. For the Hl-UiO-66-SO4, approximately 

40% of the sulfur is present as sulfate (blue plus) and 60% is 

present as hemilabile linker (purple hash). Further 

corroboration is found in the oxygen region of the XPS spectra 

(Fig. S19). The O 1s region has a new peak at 534.4 eV in Hl-

UiO-66 compared with UiO-66. This peak is attributed to Zr-

O(SO3). After washing with H2SO4, this peak mainly disappears 

and another peak is found at 532.7 eV, attributed to O 1s of 

SO4
2-.

We made a surprising observation when we performed 

thermal stability tests of the three MOF materials. TGA 

experiments show that the thermal stability further increases 

from UiO-66, Hl-UiO-66 to Hl-UiO-66-SO4 (Fig. 3b). To 

confirm the result, the variable-temperature powder X-ray 

diffraction (VTXRD) was performed. As can be seen from 

Fig.S21, these VTXRD results correspond very well to the 

results obtained from the TGA measurements. A higher thermal 

stability was observed with increasing numbers of defects 

which resulted in the following order: UiO-66 (450°C) < Hl-

UiO-66 (480°C) < Hl-UiO-66-SO4 (515°C). Compared with 

Hl-UiO-66 and UiO-66, the sulfonate group of hemilabile 

ligands makes the Hl-UiO-66-SO4 more stable in spite of the 

high amount of defects. The results correspond to the work of 

Muesmann et al. concluding that Cu(BDS) (BDS = p-

benzenedisulfonate) showed higher stability than Cu(BDC).44 

The enhanced stability of Hl-UiO-66-SO4 suggests that the 

sulfate groups play an important role in the stabilization of this 

defective structure. This phenomenon was also observed in 

pristine UiO-66 (Fig. S17).

In order to obtain a better insight into the structural stability 

of the modified material, periodic density functional theory 

(DFT) calculations were carried out on the UiO-66 and Hl-UiO-

66 materials. For UiO-66, the calculations were 

Fig. 5 Top: Representation of UiO-66 with one missing linker defect and Hl-UiO-66 with one missing linker defect and one PSBA linker. 

Bottom: Creation of defects in Hl-UiO-66 upon post-synthetic treatment with H2SO4. Representation of geometrically optimized Hl-UiO-

66-SO4 structures in which the PSBA linker is in the dangling state due to protonation of a) sulfonic and b) carboxyl group while the HSO4
- 

is adsorbed on the defective site.

performed on the two bricks structure with isolated missing 

linker defects denoted as type 6 in the work of Rogge et al45. 

Each defect site was capped with one chemisorbed water 

molecule as was indicated by IR studies (Fig. S20). The Hl-
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Whereas this band is only present as a shoulder on the spectra 

of the samples Hl-UiO-66-SO4 and Hl-UiO-66, it is quite 

prominent in the spectrum of the pure UiO-66, which indicates 

a higher relative amount of Brønsted acid sites on the latter. 

Such trend is also easily visualized in Fig. 8 (right) and the 

results also correlate with the catalytic activity tests where UiO-

66 behaved more like a Brønsted acid, forming CA with a 

selectivity of only 47%.

A perfect UiO-66 contains 4 Brønsted acidic sites 8_3-OH) 

per cluster and no Lewis acidic sites. Yang et al. showed that 

one defect site in UiO-66 results in one Lewis (Zr vacancy) and 

one Brønsted (Zr-OH) acid site (Fig. S20, Scheme 1).57, 64-65 But, 

upon thermal treatment, the 2 Brønsted sites (Zr-OH and _3-OH) 

in this defective UiO-66 will dehydroxylate annihilating both 

Brønsted sites and forming a Zr-O-Zr linkage. As a result, a 

dehydroxylated UiO-66 with x defects contains 4-x Brønsted 

acid sites and x Lewis acid sites. In our case, the UiO-66 

contains 1.7 defects resulting in 2.3 Brønsted acidic sites and 

1.7 Lewis acidic sites per cluster with a ratio of Brønsted to 

Lewis acidic sites of 1.35 (2.3/1.7). Similarly, Hl-UiO-66 

contains 1.8 Brønsted acidic sites and 2.2 Lewis acidic sites per 

cluster with a ratio of 0.82 and Hl-UiO-66-SO4 contains 1.0 

Brønsted acidic sites and 3.0 Lewis acidic sites per cluster with 

a ratio of 0.33. It is clear that upon increasing the number of 

defects, the amount of Lewis acidic sites increases, resulting in 

the enhanced selectivity to CA. Since Hl-UiO-66-SO4 has the 

highest number of defects, and the highest ratio of Lewis sites 

to Brønsted sites, it has the highest selectivity towards CA in 

comparison to the other two catalysts. These observations are 

consistent with the results obtained from CD3CN adsorption 

analysis. The Brønsted acid sites are dominant in UiO-66 with 

a low defect density while the Lewis acid sites are prominent in 

Hl-UiO-66-SO4 with a high defect density.

To compare the reactivity of these Zr-MOF materials with 

the other heterogeneous MOF based catalysts and zeolites, we 

summarize the reactivity and selectivity of some published 

catalysts in Table S3. From this table, Hl-UiO-66-SO4 shows 

the best activity and selectivity in comparison to the other 

reported MOF catalysts. In comparison to Cu3(BTC)2,59, 66 

which only has Lewis acid sites, a higher catalytic activity but 

a lower selectivity was obtained. However, this catalyst is not 

stable and cannot be recycled. Compared to the best 

homogeneous Lewis-acid catalyst (ZnBr2),67 the Hl-UiO-66-

SO4 exhibits a similar selectivity but with a higher turnover.

In addition, a hot filtration test after 3 min of reaction 

revealed that after the removal of the catalyst no further 

conversion was noted, confirming the heterogeneous nature of 

the catalyst (Fig. S23). Nevertheless, during the recycling 

experiments, the activity and selectivity decreased slightly 

during each run (Fig. S24). This decrease might be due to the 

blocking of the pores during the consecutive runs, as the surface 

area slightly decreased during each run (Fig. S26). PXRD 

measurements showed that the structure remained intact (Fig. 

S25).

Conclusions

In summary, we have presented a stable, yet highly defective 

Zr-MOF, obtained using the hemilabile linker strategy. PSBA 

not only acts as a modulator for the MOF synthesis to increase 

the number of defects but also as co-ligand to stabilize the 

defective structure. The Hl-UiO-66 is one of the first reported 

frameworks that further stabilizes (instead of the typical 

destabilization) as the number of defects increases. A simple 

post-synthetic treatment with H2SO4 even further enhances the 

stability while the number of defects sites increases again. This 

Hl-UiO-66-SO4 showed the optimum number of defects (while 

maintaining structural integrity) and showed the highest 

reactivity for the acid-catalyzed isomerization of D<#�	�	� 

oxide with a high selectivity for campholenic aldehyde. We also 

found that the increase in the number of defects increases the 

Lewis acid characteristics and hence favors the campholenic 

aldehyde formation. By controlling the number of defects, we 

can tune the acid behavior of the catalysts, as a low number of 

defects leads to a Bronsted dominated catalyst, and vice versa. 

The nature and concentration of the defective sites were further 

elucidated by IR-monitored CD3CN sorption. The use of a 

hemilabile linker, either as mixed linker or as the isolated linker, 

is an interesting concept in defect engineering of MOFs. Due to 

the different possibilities in coordination ability of the two 

different groups in a hemilabile linker, defects can be generated 

and hence the stability can be affected. Meanwhile, the easy 

post-synthetic treatment can be useful to adapt and adjust the 

final structure of the pristine materials for potential 

applications.
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