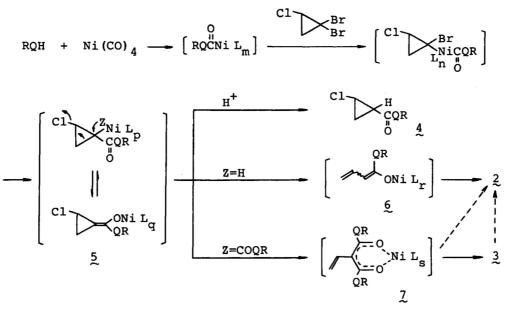
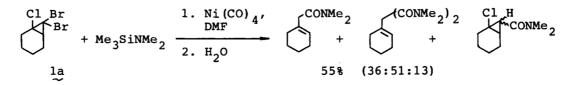

CHEMISTRY LETTERS, pp. 1625-1628, 1985.

SYNTHESIS OF β, γ -UNSATURATED CARBOXYLIC ACID DERIVATIVES BY THE NOVEL Ni(CO)₄-INDUCED RING-OPENING CARBONYLATION REACTION OF 1,1-DIBROMO-2-CHLOROCYCLOPROPANES

Toshikazu HIRAO,^{*} Shinichiro NAGATA, and Toshio AGAWA Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565


1,1-Dibromo-2-chlorocyclopropanes underwent the Ni(CO)₄-induced ring-opening carbonylation reaction with alcohol or amine giving the β,γ -unsaturated carboxylic acid and dicarboxylic acid derivatives. Use of N,N-dimethyltrimethylsilylamine as an initial nucleophile in the presence of benzaldehyde led to a dienecarboxamide presumably via codensation of the nickel enolate intermediate.

The Ni(CO)₄-induced carbonylation reactions of gem-dibromocyclopropanes permit gem-functionalization leading to a variety of cyclopropanecarboxylic acid derivatives.^{1,2)} This unique transformation is considered to depend on the intermediacy of nickel enolate compounds. We describe herein a novel ring-opening carbonylation reaction, which is effective for a synthesis of β,γ -unsaturated carboxylic acid derivatives.


Treatment of the 1,1-dibromo-2-chlorocyclopropane 1^{3} with 1-propanol in the presence of Ni(CO)₄ in DMF at 70 °C gave the β,γ -unsaturated ester 2 (Q=O) and the corresponding diester 3 (Q=O) as major products. No α,β -unsaturated isomer was detected. The 2-chlorocyclopropanecarboxylate 4 (Q=O) derived by normal reductive carbonylation was produced in a small amount. Some results including the preparation of β,γ -unsaturated carboxamides and carbothiolate are listed in Table 1.

Without the addition of alcohol, the carbonylation reaction did not occur and 1 was recovered. This finding excludes the possibility that Ni(CO)₄ attacks 1 at the first step. One of the plausible reaction paths is outlined in the following scheme. The nickel enolate complex 5 (Q=O) might intervene as reported previously.²⁾ Further displacement with the alkoxycarbonyl group (Z=COOR) results in the formation of 7. Decarboxylation of 3 or 7 is assumed to lead to the β , γ -unsaturated ester 2 since a longer reaction time increased the 2a/3a ratio (Table 1). Another route to 2 is explained by hydride⁴⁾ transfer which gives the nickel enolate intermediate $\hat{6}$.

The present method provides a versatile synthetic procedure for β , γ -unsaturated carboxylic acid derivatives from vinyl chlorides³⁾ based on carbonylation with one-carbon homologation. Its utility was also demonstrated by preparing a precursor of the key intermediate, 7-hydroxy-3-octenoic acid, for the pyrenophorin synthesis^{5,6)} as shown by the bottom example of Table 1; the β , γ -unsaturated ester 2d was produced exclusively.⁷⁾ The corresponding diester and cyclopropanecarbo-xylate were not formed, this being in sharp contrast to the results mentioned above.

With N,N-dimethyltrimethylsilylamine as an initial nucleophile,²⁾ 1a underwent the similar ring-opening carbonylation reaction. This outcome contributes

another C-C bond formation between a nickel enolate intermediate and an electrophile. The Ni(CO)₄-induced reaction⁸⁾ of 1a with the silylamine and benzaldehyde was carried out leading to the dienecarboxamide 8a.⁹⁾ It remains uncertain which of the enolate 6^{10} or 7^{11} participates in the condensation reaction. This method achieves the introduction of two functional groups into a cyclopropane with ring cleavage only by mixing the silylamine, 1, Ni(CO)₄, and benzaldehyde together in one flask.

$$1a + Me_{3}SiNMe_{2} + PhCHO \qquad \frac{1. Ni(CO)_{4}, DMF, 70 °C, 3h}{2. H_{2}O} \qquad \qquad Phry CONMe_{2}$$
8a 31%

1~	RQH, equiv.	Isolated yield/ % (ratio)
Cl Br Br la	PrOH 1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
~	2.2 ^{c)}	46 (35:61:4)
	2.2	57 (49:45:6)
la	PrNH2	CONHPr (CONHPr) 2 Cl, H CONHPr b)
~	2.2	62 (37:39:24)
Cl Br Br	РгОН	COOPr (COOPr) 2 C1 H COOPr b)
↓1₽	2.2	80 (43:40:17)
1b	PrNH ₂ 2.2	$\begin{pmatrix} \text{CONHPr} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
C1 Br Br 1c	PrOH 2.2	$\succ coopr \qquad \qquad$
	e)	
lc ∼	PhSH	COSPh COSPh) 2 COSPh
BrBr	2.2	19 (58:1:42)
Ă	PrOH	Pro
OCH ₂ Ph 1d ^{d)}	2.2	45 осн ₂ Рh 2d ^{d,g)}

Table 1. Preparation of Carboxylic Acid Derivatives by the Ni(CO)₄-Induced Carbonylation Reaction of 1^{a}

a) Reaction temperature, 70 °C; time, 6 h. Ni(CO)₄, 7 equiv. b) An endo and exo mixture.
c) Reaction time, 3 h. d) A cis and trans mixture.
e) 1-Propanol was not added. f) The starting compound 1c was recovered.
g) The other products were not isolated.

This work was partially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture.

References

- 1) T. Hirao, Y. Harano, Y. Yamana, Y. Ohshiro, and T. Agawa, Tetrahedron Lett., 24, 1255 (1983).
- 2) T. Hirao, S. Nagata, Y. Yamana, and T. Agawa, Tetrahedron Lett., in press.
- 3) The 1,1-dibromo-2-chlorocyclopropanes 1 were easily obtained by the addition of dibromocarbene to the corresponding vinyl chlorides.
- P. W. Jolly, "Comprehensive Organometallic Chemistry," ed by G. Wilkinson, Pergamon Press (1982), Vol. 6, p. 37.
- 5) R. S. Mali, M. Pohmakotr, B. Weidmann, and D. Seebach, Liebigs Ann. Chem., <u>1981</u>, 2272.
- 6) Another synthetic route to pyrenophorin via 7-hydroxy-cis-3-octenoic acid was explored by use of reductive deconjugation with diethyl phosphonate as a key reaction; T. Hirao, Y. Fujihara, K. Kurokawa, Y. Ohshiro, and T. Agawa, to be published.
- 7) The starting 1,1-dibromo-2-chlorocyclopropane 1d was prepared in the following way. 1,3-Dichloropropene was treated with the anion of ethyl acetoacetate, followed by decarboxylation in DMSO in the presence of LiCl. Thus obtained 6-chloro-5-hexen-2-one was reduced to the corresponding alcohol with NaBH₄. After protecting the hydroxyl group, addition of dibromocarbene gave 1d.
- 8) To a mixture of 1a (1.0 mmol), N,N-dimethyltrimethylsilylamine (3.0 mmol), and benzaldehyde (3.0 mmol) in DMF (2.4 mL) was added Ni(CO)₄ (3.0 mmol) at room temperature. The resultant solution was stirred at 70 °C for 3 h. After removal of excess Ni(CO)₄ under the reduced pressure, the mixture was diluted with ether and filtered on celite 545. The ethereal solution was concentrated and flash column chromatographed to give N,N-dimethyl-2-(1-cyclohexenyl)cinnamamide (8a) in 31% yield.
- The geometry of the benzylidene moiety was not determined yet although only one isomer was produced.
- E. Yoshisato and S. Tsutsumi, J. Chem. Soc., Chem. Commun., <u>1968</u>, 33; I.
 Rhee, I. Ryu, H. Omura, S. Murai, and N. Sonoda, Chem. Lett., <u>1979</u>, 1435.
- 11) J. H. Nelson, P. N. Howells, G. C. DeLullo, and G. L. Landen, J. Org. Chem., 45, 1246 (1980). Decarboxylation of the adduct might lead to 8a.

(Received July 24, 1985)

1628