# Tetrahedron Letters 53 (2012) 3086-3090

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# An efficient, expeditious, and diastereoselective one-pot pseudo-five-component reaction for the synthesis of new bis-Betti bases under catalyst-free conditions

Mehdi Shafiee, Ahmad R. Khosropour\*, Iraj Mohammadpoor-Baltork\*, Majid Moghadam, Shahram Tangestaninejad, Valiollah Mirkhani

Catalysis Division, Department of Chemistry, Faculty of Science, University of Isfahan, Isfahan 81746-7344, Iran

#### ARTICLE INFO

Article history: Received 31 January 2012 Revised 29 March 2012 Accepted 5 April 2012 Available online 16 April 2012

Keywords: Bis-Betti base Condensation Multi-component reaction Aldehydes 3-Amino-5-methylisoxazole Dihydroxynaphthalene

# ABSTRACT

A novel, diastereoselective, one-pot synthesis of new bis-Betti bases via condensation of dihydroxynaphthalene, two equivalents of aryl aldehydes, and two equivalents of 3-amino-5-methylisoxazole is reported. Conversion into the adducts was almost quantitative without the use of solvent or catalyst. The reaction conditions are very simple and enable easy isolation of the product.

© 2012 Elsevier Ltd. All rights reserved.

One-pot multi-component reactions are effective processes for the discovery of new reactions and the synthesis of complex structures.<sup>1</sup> They enable rapid access to large compound libraries with diverse functionalities, and avoid costly purification processes in addition to protection and deprotection steps by systematic variation of the starting material which is either commercially available or is easily prepared.<sup>2</sup>

One of the classic multi-component reactions is the synthesis of Betti bases.<sup>3</sup> The typical Betti reaction is a three-component reaction between an aldehyde, ammonia/urea, and  $\beta$ -naphthol.<sup>4</sup> Several studies have centered on the catalysis of this reaction, using different bases or metal salts.<sup>5</sup> The Betti reaction represents a useful method to obtain amidoalkyl naphthols.<sup>3</sup> These are very important precursors for the synthesis of bioactive 1-aminomethyl-2-naphthols, the bradycardiac and hypotensive effects of which have been evaluated in humans.<sup>6</sup> Moreover, they are attractive compounds as chiral ligands in enantioselective reactions.<sup>7</sup> They can be used as chiral shift reagents for carboxylic acids or as chiral auxiliaries for the synthesis of  $\alpha$ -aminophosphonic acids.<sup>8</sup> Furthermore, isoxazole derivatives, especially 5-methylisoxazole represent an interesting class of heterocycles possessing a wide spectrum of biological activity.<sup>9,10</sup>

Thus, new hybrid moieties secured by introducing 5-methylisoxazole into Betti bases, promise to offer fascinating scaffolds.

In continuation of our work on one-pot multi-component reactions,<sup>10</sup> we embarked on the synthesis of novel bis-Betti bases possessing 2-amino-5-methylisoxazole, arene, and dihydroxy naphthalene moieties embedded in a fused molecular framework via a pseudo-five-component reaction under catalyst-free conditions (Scheme 1).<sup>11</sup>

Initially, we investigated the one-pot condensation reaction of 2-chlorobenzaldehyde (2 mmol), 5-amino-3-methylisoxazole (2 mmol), and 2,3-dihydroxynaphthalene (1 mmol) to give diastereoisomer **3b**, as a model system to study the solvent and temperature effects (Table 1).

The stereochemistry of **3b** was unambiguously assigned by X-ray crystallography (CCDC 849432) (Fig. 1). Interestingly, it was found that this transformation produced  $(\pm)$ -**3b** selectively.

The reaction was carried out in a range of solvents, including water, ethanol, PEG-400, acetonitrile, and toluene for a period of 3 h at 80 °C. However, the best result was obtained at 80 °C under solvent-free conditions (Table 1, entry 6). The results subsequently showed that the temperature appeared to be crucial as the reaction did not take place even after stirring for 24 h at room temperature (Table 1, entry 7). Running the reaction for 3 h at 50–70 °C did not result in any increase in the yield (Table 1, entries 8–10). Furthermore, no remarkable differences in the diastereoselectivity were apparent in this temperature range.





<sup>\*</sup> Corresponding authors. Tel./fax: +98 311 668 9732.

*E-mail addresses:* khosropour@chem.ui.ac.ir (A.R. Khosropour), imbaltor@sci. ui.ac.ir (I. Mohammadpoor-Baltork).

<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.04.037

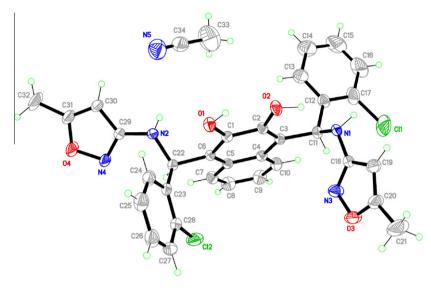
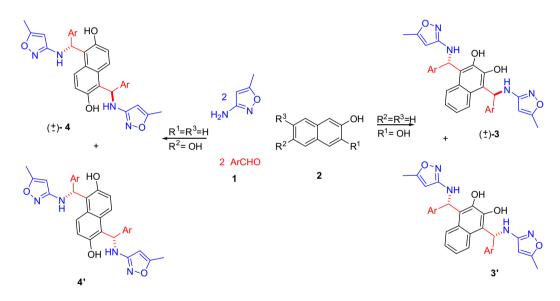




Figure 1. ORTEP view of compound 3b.



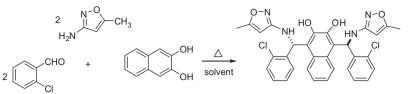
Scheme 1. Synthesis of new bis-Betti bases.

We found that performing the reaction at 80 °C under solventfree conditions provided the best result. The reaction was rapid, and achieved satisfactory conversion without any significant side reactions.

Next, we considered the introduction of additional diversity to this new class of Betti bases via the one-pot reaction. We examined several aryl aldehydes for the synthesis of Betti bases based on 2,6-or 2,3-dihydroxynaphthalene (Table 2). It is worthwhile to note that compounds **3** and **4** were obtained as the major products in racemic form for all the reactions examined in Table 2.

It was generally observed that high to excellent yields of the products were obtained with moderate to excellent diastereoselectivity in all cases (Table 2). The stereochemistry of compounds **3a-e** and **4a-i** was established by correlation of the spectroscopic data with those obtained for **3b**. Also, it was found that aryl aldehydes possessing electron-withdrawing groups could be converted into the desired products in higher isolated yields and shorter reaction

times (Table 2, compare entries 4 and 5). Moreover, this reaction worked well with heteroaromatic carbaldehydes such as thiophene-2-carbaldehyde (Table 2, entry 14). Identification of the structures of the products was achieved by spectral analysis.<sup>12</sup>


This simple, straightforward, and atom-economic method represents an advantageous alternative to the laborious syntheses of this class of Betti bases. Thus, the reaction developed represents a short and expedient route to a family of Betti bases for the design of metal complex catalysts, and building blocks for organic synthesis.

Also, it was found that under the above reaction conditions, 2,7dihydroxynaphthalene gave the corresponding mono-Betti base, exclusively (Table 3), which can be attributed to the steric hindrance which would be present in the corresponding bis-Betti base.

In conclusion, we have described a novel and efficient strategy for the diastereoselective synthesis of new bis-Betti bases. To our

## Table 1

The effect of solvent and temperature on the yield of  $\mathbf{3b}^{a}$ 



| Entry | Solvent <sup>b</sup> | Temp (°C) <b>3b</b> | Yield <sup>c</sup> (%) |
|-------|----------------------|---------------------|------------------------|
| 1     | H <sub>2</sub> O     | 80                  | 60                     |
| 2     | EtOH                 | 80                  | 13                     |
| 3     | PEG-400              | 80                  | 9                      |
| 4     | CH <sub>3</sub> CN   | 80                  | 10                     |
| 5     | Toluene              | 80                  | 50                     |
| 6     | _                    | 80                  | 90                     |
| 7     | _                    | 25                  | _                      |
| 8     | _                    | 50                  | 17                     |
| 9     | _                    | 60                  | 33                     |
| 10    | _                    | 70                  | 59                     |
| 11    | _                    | 90                  | 91                     |

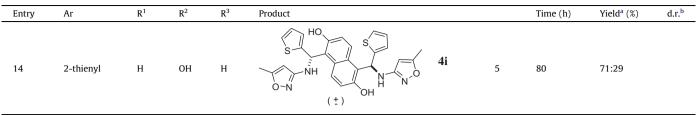
<sup>a</sup> Reaction conditions: 2-Chlorobenzaldehyde (2 mmol), 5-amino-3-methylisoxazole (2 mmol), 2,3-dihydroxynaphthalene (1 mmol), 2.5 h.
 <sup>b</sup> 2 ml of solvent.

<sup>c</sup> Isolated yield.

### Table 2

\_

Synthesis of novel bis-Betti bases via a pseudo-five-component reaction under catalyst-free conditions \_

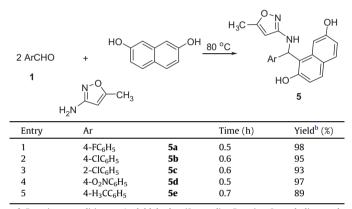

| Entry | Ar                                              | $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time (h) | Yield <sup>a</sup> (%) d.r. <sup>b</sup> |
|-------|-------------------------------------------------|----------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|
| 1     | 4-ClC <sub>6</sub> H <sub>4</sub>               | ОН             | Н              | Н              | CI (±) CI 3a 3a 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95       | 91:9                                     |
| 2     | 2-ClC <sub>6</sub> H <sub>4</sub>               | ОН             | Н              | Н              | O-N HO OH N-O 3b<br>CI CI CI 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90       | 95:5                                     |
| 3     | 2-BrC <sub>6</sub> H <sub>4</sub>               | ОН             | Н              | Н              | O-N HO OH N-O 3c<br>Br Br 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89       | 94:6                                     |
| 4     | 4-0 <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> | ОН             | Н              | Н              | O <sup>-N</sup> NH OH NO 3d<br>O <sub>2</sub> N NO <sub>2</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95       | 90:10                                    |
| 5     | 4-H <sub>3</sub> CC <sub>6</sub> H <sub>4</sub> | ОН             | Н              | Н              | $H_{3}C$ $(\pm)$ $CH_{3}$ $C$ $C$ | 85       | 95:5                                     |

| Entry | Ar                                              | $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time (h) | Yield <sup>a</sup> (%) d.r. <sup>b</sup> |
|-------|-------------------------------------------------|----------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|
| 6     | C <sub>6</sub> H <sub>5</sub>                   | Н              | ОН             | Н              | $\begin{array}{c} \begin{array}{c} HO \\ \hline \\ \hline \\ \hline \\ O-N \end{array} \end{array} \xrightarrow{NH} \begin{array}{c} HO \\ OH \end{array} \xrightarrow{NH} \begin{array}{c} HO \\ OH \end{array} \xrightarrow{N} O \end{array} \xrightarrow{5.5} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75       | 56:34                                    |
| 7     | 4-FC <sub>6</sub> H <sub>4</sub>                | Н              | ОН             | Н              | $F \rightarrow HO \qquad F \qquad 4b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90       | 67:33                                    |
| 8     | 4-CIC <sub>6</sub> H <sub>4</sub>               | Н              | ОН             | Н              | $( \stackrel{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}}}} ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}}} ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}}} ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}}} ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}) ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}}} ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2} )}}}} ( \stackrel{( \stackrel{+}{2} ) \overset{( \stackrel{+}{2} )}{\overset{( \stackrel{+}{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85       | 60:40                                    |
| 9     | 4-BrC <sub>6</sub> H <sub>4</sub>               | Н              | OH             | Н              | $ \begin{array}{c} Br \\ HO \\ \hline \\ O-N \\ (t) \end{array} \begin{array}{c} Br \\ HO \\ OH \\ OH \\ H \\ N \end{array} \begin{array}{c} 4d \\ 4.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80       | 67:33                                    |
| 10    | 3-BrC <sub>6</sub> H <sub>4</sub>               | Н              | ОН             | Н              | $ \begin{array}{c}       Br \\       HO \\       \overline{NH} \\       O-N \\       (t)   \end{array} $ $ \begin{array}{c}       Br \\       HO $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83       | 68:32                                    |
| 11    | 4-0 <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> | Н              | ОН             | Н              | $\begin{array}{c} O_2 N \\ \hline \\ O_2 N \\ \hline \\ O N \\ ( \pm ) \end{array} \right) \begin{array}{c} NO_2 \\ H \\ \hline \\ O N \\ ( \pm ) \end{array} \begin{array}{c} 4f \\ H \\ OH \end{array} \begin{array}{c} 4 \\ H \\ O \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89       | 70:30                                    |
| 12    | 4-H <sub>3</sub> CC <sub>6</sub> H <sub>4</sub> | Н              | ОН             | Н              | $H_{3}C + HO + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70       | 66:34                                    |
| 13    | 4-iPrC <sub>6</sub> H <sub>4</sub>              | Н              | ОН             | Н              | $ \begin{array}{c} \stackrel{i Pr}{\longrightarrow} HO \\ i Pr$ | 72       | 68:32                                    |

Table 2 (continued)

(±)

### Table 2 (continued)




<sup>a</sup> Isolated yield.

<sup>b</sup> Diastereomeric ratio was determined by <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopy of the crude product.

#### Table 3

Synthesis of mono-Betti bases from 2,7-dihydroxynaphthalene under catalyst-free conditions  $^{\rm a}$ 



<sup>&</sup>lt;sup>a</sup> Reaction conditions: Arylaldehyde (2 mmol), 5-amino-3-methylisoxazole (2 mmol), 2,7-dihydroxynaphthalene (1 mmol).

<sup>b</sup> Isolated yield.

knowledge, this is the first example of a pseudo-five-component reaction under solvent-free conditions in the absence of any catalyst for the synthesis of bis-Betti bases under conventional heating.

# Acknowledgements

The authors are grateful to the Center of Excellence of Chemistry and the Research Council of the University of Isfahan for financial support of this work.

# **References and notes**

- (a) Mueller, T. J. J. Beilstein J. Org. Chem. 2011, 7, 960; (b) Choudhury, L. H.; Parvin, T. Tetrahedron Lett. 2011, 67, 8213; (c) De Moliner, F.; Crosignani, S.; Galatini, A.; Riva, R.; Basso, A. ACS Comb. Sci. 2011, 13, 453; (d) Isambert, N.; Duque, M. D. S.; Plaquevent, J. C.; Genisson, Y.; Rodriguez, J.; Constantieux, T. Chem. Soc. Rev. 2011, 40, 1347.
- 2. Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.
- Cardellicchio, C.; Capozzi, M. A. M.; Naso, F. Tetrahedron: Asymmetry 2010, 21, 507.
- 4. Betti, M. Org. Synth. Coll. 1941, 1, 381.
- (a) Khodaei, M. M.; Khosropour, A. R.; Moghanian, H. Synlett **2006**, 916; (b) Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Bioorg. Med. Chem. Lett. **2008**, 18, 788; (c) Zhang, P.; Zhang, Z. H. Monatsh. Chem. **2009**, 140, 199; (d) Lei, M.; Ma,

L; Hu, L. Tetrahedron Lett. **2009**, 50, 6393; (e) Hajipour, A. R.; Ghayeb, Y.; Sheikhan, N.; Ruoho, A. E. Tetrahedron Lett. **2009**, 50, 5649; (f) Rashinkar, G.; Salunkhe, R. J. Mol. Catal. A: Chem. **2010**, 316, 146; (g) Luo, J.; Zhang, Q. Monatsh. Chem. **2011**, 142, 923; (h) Karmakar, B.; Banerji, J. Tetrahedron Lett. **2011**, 52, 4957; (i) Cimarelli, C.; Fratoni, D.; Mazzanti, A.; Palmieri, G. Eur. J. Org. Chem. **2011**, 2094.

- 6. Shen, A. Y.; Tsai, C. T.; Chen, C. L. Eur. J. Med. Chem. 1999, 34, 877.
- (a) Cimarelli, C.; Mazzanti, A.; Palmieri, G.; Volpini, E. J. Org. Chem. 2001, 66, 4759;
   (b) Cimarelli, C.; Palmieri, G.; Volpini, E. Tetrahedron: Asymmetry 2002, 13, 2417;
   (c) Cimarelli, C.; Palmieri, G.; Volpini, E. J. Org. Chem. 2003, 68, 1200.
   Feng, J.; Dastgir, S.; Li, C.-J. Tetrahedron Lett. 2008, 49, 668.
- (a) Zhang, X.-X.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. **1997**, 97, 3313; (b) Wang, W.; Ma, F.; Shen, X.; Zhang, C. Tetrahedron: Asymmetry **2007**, 18, 832; (c) Pitt, D.; Gonzales, E.; Cross, A. H.; Goldberg, M. P. Brain Res. **2010**, 1309, 146; (d) Maeng, S.; Zarate, C. A.; Du, J.; Schloesser, R. J.; McCammon, J.; Chen, G.; Manji, H. K. Biol. Psychiatry **2008**, 63, 349; (e) Bradley, P. A.; Carroll, R. J.; Lecouturier, Y. C.; Moore, R.; Noeureuil, P.; Patel, B.; Snow, J.; Wheeler, S. Org. Process Res. Dev. **2010**, *14*, 1326.
- (a) Rostami, M.; Khosropour, A. R.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S. Synlett **2011**, 1677; (b) Rostami, M.; Khosropour, A. R.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S. Monatsh. Chem. **2011**, *142*, 1175; (c) Rostami, M.; Khosropour, A. R.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I. Appl. Catal., A: Gen. **2011**, *397*, 27.
- 11. General procedure: A mixture of aryl aldehyde 1 (2 mmol), 5-amino-3-methylisoxazole (196 mg, 2 mmol), and dihydroxynaphthalene (1 mmol) was stirred at 80 °C for 0.5-6 h. After the reaction was completed (monitored by TLC), the mixture was cooled to room temperature and diluted with H<sub>2</sub>O. The precipitated solid was collected by filtration, washed with H<sub>2</sub>O, and was purified as appropriate by recrystallisation from acetonitrile.
- Selected spectral data for compounds **3b**, **4i**, and **5d**: 1,4-Bis[(2-chlorophenyl)(5selected spectral data for compounds **30**, **4**, and **32**, **1**, **30**). White solid; mp 165-166 °C. FTIR (KBr, solid):3512, 3402, 3073, 1622, 1447, 1039, 752 cm<sup>-1</sup> NMR (400 MHz, DMSO- $d_6$ ):  $\delta = 9.59$  (s, 2H), 7.80–7.83 (m, 2H), 7.51–7.53 (m, 2H), 7.39–7.41 (m, 2H), 7.25–7.32 (m, 4H), 7.15–7.18 (m, 2H), 7.07 (d, J = 5.6 Hz, 2H), 6.67 (d, J = 5.6 Hz, 2H), 5.77 (s, 2H), 2.22 (s, 6H). <sup>13</sup>C NMR  $(125 \text{ MHz}, \text{DMSO-}d_6): \delta = 167.9, 163.5, 145.3, 138.9, 132.7, 129.5, 128.7, 127.0,$ 126.7, 123.0, 117.8, 94.03, 53.2, 11.9. CHN: Anal. Calcd for C<sub>32</sub>H<sub>26</sub>N<sub>4</sub>O<sub>4</sub>Cl<sub>2</sub>: C, 63.90; H, 4.36; N, 9.31. Found: C, 64.10; H, 4.53; N, 9.09. 1,5-Bis[(5methylisoxazol-3-ylamino)(thiophen-2-yl)methyl]naphthalene-2,6-diol (4i): White solid, mp 224–226 °C. FTIR (KBr, solid):3346, 3085, 2713, 1611, 1518, 1295, 701 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ): δ = 9.84 (s, 2H), 7.93 (s, 2H), 7.28–7.30 (m, 2H), 7.09–7.11 (m, 2H), 6.86–6.88 (m, 4H), 6.78–6.80 (m, 2H),  $\delta$  = 167.51 ( m, 21), .555 (s, 21), 2.20 (s, 6H). <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>):  $\delta$  = 167.51, 164.08, 150.00, 148.03, 127.08, 126.43, 124.13, 123.77, 119.94, 118.38, 93.92, 52.21, 12.02. CHN: Anal. Calcd for  $C_{28}H_{24}N_4O_4S_2{:}$  C, 61.75; H, 4.44; N, 10.29; S, 11.77. Found: C, 61.29; H, 4.51; N, 10.48, S, 11,61. 1-[(5-Methylisoxazol-3-ylamino)(4-nitrophenyl)methyl]naphthalene-2,7-diol (5d)· Yellow solid, mp 190 °C. FTIR (KBr, solid):3488, 3396, 1626, 1514, 1342, 1189, 845 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ):  $\delta$  = 10.02 (s, 1H), 9.65 (s, 1H), 8.15 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.18 (s, 1H), 6.99 (d, J = 8.8 Hz, 1H), 6.82–6.86 (m, 2H), 6.62 (d, J = 6 Hz, 1H), 5.86 (s, 1H), 2.23 (s, 3H).<sup>13</sup>C NMR (100 M Hz, DMSO-d<sub>6</sub>):  $\delta=167.42,\ 164.33,\ 155.89,\ 153.06,\ 151.90,\ 145.72,\ 133.61,\ 130.19,\ 129.50,$ 127.27, 123.17, 123.09, 117.33, 114.93, 114.74, 94.05, 52.56, 12.01. CHN: Anal. Calcd for C21H17N3O5: C, 64.45; H, 4.38; N, 10.74. Found: C, 64.29; H, 4.51; N, 10.65