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Abstract—5-(Bromomethylene)hydantoins, prepared from bromopyruvic acid and ureas in the presence of BF3, react with various
nitrogen, phosphorus, sulfur, and carbon nucleophiles by addition–elimination to give the corresponding 5-(substituted-methyl-
ene)hydantoins. The 5-(bromomethylene)hydantoins also undergo acid-catalyzed reactions with nucleophiles by addition–displace-
ment and addition–elimination processes. © 2003 Elsevier Science Ltd. All rights reserved.

C-5 unsaturated hydantoins (1) are important as bio-
logical and pharmaceutical intermediates and as precur-
sors to C-5-substituted hydantoins (2) and their
subsequent �-amino acids (3).1,2 Classic methods for
preparing 1 are (1) base- or acid-catalyzed condensa-
tions of 5-unsubstituted hydantoins with aldehydes and
unhindered or activated ketones1 and (2) reactions of
aldehydes, certain ketones, and �-dicarbonyl com-
pounds in the presence of bases with diethyl hydan-
toinyl-5-phosphonate as obtained from 5-bromo-
hydantoin, triethyl phosphite, and acetic acid.2 Synthe-
sis of C-5 functionally-substituted, unsaturated hydan-
toins (1, R and/or R�=functional groups) however has
been limited.2,3 Of interest with respect to present pro-
grams for (1) preparing 1 in which R and/or R� are
functional groups and (2) eliminative-conversions of
5-(halomethylene)hydantoins (4, Eq. (1)) to 5-hydan-
toenylcarbenes (6)4 by strong bases is that 5-(�-bro-
mobenzal)hydantoin (7) reacts with hot aqueous KSH
(Eq. (2)) to give 5-(�-mercaptobenzal)hydantoin (8).3,5

Now reported are (1) novel syntheses (Scheme 1) of
5-(bromomethylene)hydantoin (12) and (Z)-5-(bro-
momethylene)-1,3-dimethylhydantoin (16) from bro-
mopyruvic acid (9) and ureas (10 and 14) and (2)
nucleophilic addition–elimination reactions (Scheme 1)
of 12 and 16 to give varied C-5 unsaturated hydantoins
(13 and 17) of interest. Of further importance as will be
illustrated, 12 and 16 also undergo efficient addition–
displacement reactions with nucleophiles in acidic envi-
ronments to yield novel C-5-substituted hydantoins (2).

(1)

(2)

Scheme 1.
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5-(Bromomethylene)hydantoin (12, 47%) is now prepara-
ble (Scheme 1) by condensation of equivalent quantities
of bromopyruvic acid6a–c [9; generated in situ from
pyruvic acid, Br2, (1.0 equiv.) and H2SO4 (trace amounts)],
with urea (10) in CH3CN at �40°C as catalyzed by
BF3·Et2O.7,8 Synthesis of 12 is practical, safe, and inex-
pensive. (Z)-(Bromomethylene)dimethylhydantoin 16
(40%, Scheme 1) is obtained similarly by refluxing
solutions of 9, N,N �-dimethylurea (14), BF3·Et2O (1.0
equiv.), and CH2Cl2.7 Condensation–elimination to give
16 as in Scheme 1 also occurs with POCl3, SnCl4, or HCl
as catalysts.7 Use of AlCl3 (1.0 equiv.) yields (Z)- and
(E)-16 in a 1:2 ratio.7 The stereochemical assignment of
(Z)-16 is based on its 13C NMR vicinal C,H spin coupling
(3JC,H) of 4.0 Hz for its exocyclic olefinic proton with the
C-4 carbonyl carbon.9

(Bromomethylene)hydantoins 12 and 16 react readily
with various nitrogen and phosphorus nucleophiles. The
secondary amine, piperidine (excess), and 12 undergo
reaction in 1-propanol at 20–25°C by addition, elimina-
tion of Br−, and deprotonation to give 5-(N-piperidi-
nomethylene)hydantoin (18, 78%). Similarly, 12 is
converted by morpholine (excess) at 20–25°C to 5-(N-
morpholinomethylene)hydantoin (20, 91%) and by
diethylamine (excess) in ethanol at 60°C to 5-(N-diethyl-
aminomethylene)hydantoin (21, >52%). Piperidine
(excess) and 16 in warm CHCl3 give 1,3-dimethyl-5-(N-
piperidinomethylene)hydantoin (19, �30%).9,10 5-(Azi-
domethylene)hydantoin (22) is formed (94%) from 12 and
aqueous sodium azide at 20–25°C. Further, pyridine
(excess) upon reflux effects addition–eliminations of 12
and 16 to yield [5-(N-pyridiniummethylene)hydantoin
bromides 23 (90%) and 24 (96%), respectively.11,12 Of note
is that reactions of 12 and 16 with triphenylphosphine
[(C6H5)3P] in refluxing CH3CN give 5-(triphenylphospho-
niummethylene)hydantoin bromides 25 (89%) and 26
(48%), respectively. The 13C NMR vicinal spin coupling
values (3JC,H) of the exocyclic olefinic protons with the
C-4 carbonyl carbons of 24 and 26 are 4.3 and 10.0 Hz,
respectively, and lead to the tentative stereochemical
assignments as 24 (Z) and 26 (E).9,12 5-(Hydantoenyl-
methylene)triphenylphosphorane (27, 91%) is formed
from phosphonium bromide 25 and triethylamine (excess)
in CH2Cl2 at 20–25°C. The utilities of 27 (and its
3-substituted analogs) as a Wittig reagent and as a carbene
source7 are being evaluated.

As expected, 12 and 16 react readily with sulfur nucle-
ophiles by addition–elimination. Thiophenol and (1) 12
and triethylamine (1.7 equiv.) in CHCl3 at 50–55°C and
(2) 16 and tetramethylguanidine (2.0 equiv.) in THF at
25°C give 5-[(phenylthio)methylene]hydantoins 28 (84%)
and 29 (85%),13 respectively. Heating 16 with aqueous
sodium p-toluenesulfinate yields 1,3-dimethyl-5-[p-tolue-
nesulfonylmethylene]hydantoin (30, 52%). Addition–
elimination products 29 and 30 have values of 5.2 and
6.16 Hz, respectively, for the vicinal C,H spin couplings
(13C NMR, 3JC,H) of their exocyclic olefinic hydrogens
with their C-4 carbonyl carbons and are assigned (Z)-
stereochemistries.9

Carbon nucleophiles also effect addition–elimination
reactions in (Z)-(bromomethylene)hydantoin 16. Warm-
ing an initial mixture of 16, 2-nitropropane (1.5 equiv.),
and tetramethylguanidine (1.6 equiv.) results in Michael
addition of the 2-propanenitronate ion [(CH3)2C�NO2

−]
to 16 and elimination of Br− to yield (E)-1,3-dimethyl-5-
(2-methyl-2-nitropropylidene)hydantoin (31, >36%).9

Similarly, lithium diethyl malonate reacts rapidly with 16
in THF at 20–25°C to give, upon neutralization (HCl),
an equilibrium mixture (54% yield) of (E)-5-(diethyl
malonylmethylene)-1,3-dimethylhydantoin (32, major)9

and its enol 33. Further, 1-phenylsulfonyl-2-trimethyl-
silylethane14 with n-BuLi in THF at −78°C and then 16
in THF/HMPA (−78 to 25°C) yield (E)-1,3-dimethyl-
5 - [2 - (phenylsulfonyl) - 3 - (trimethylsilyl)propylidene]-
hydantoin (34, 47%).9 The stereochemistries of 31, 32, and
34 are assigned as (E) on the basis that the 13C NMR
spin coupling values (3JC,H) for their H on methylene
carbon and their C-4 carbonyl carbon are 10.0, 9.1, and
9.0 Hz, respectively.9
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Scheme 2.

The mechanisms of the above nucleophilic addition–
elimination reactions merit discussion. (Z)-1,3-
Dimethylhydantoin 16 is converted by C5H5N
(pyridine), C6H5S−, and p-CH3C6H4SO2

− to (Z)-prod-
ucts 24, 29, and 30, respectively; the bulky carbon
nucleophiles (CH3)2C�NO2

−, −CH(CO2C2H5)2, and
C6H5SO2

−CHCH2Si(CH3)3 along with (C6H5)3P yield
the (E)-products 31, 32, 34, and 26, respectively.9 Step-
wise sequences in reactions of 16 leading to (Z)-37 and
to (E)-39 are illustrated in Scheme 2. (Z)-37 products
may be formed upon early elimination of 36 in which
there is kinetic electronic and steric control and in
which there has been small structural change (60° rota-
tion) in adducts 35. (E)-39 products are less strained
than their (Z)-37 isomers and can arise upon reorgani-
zation (120° rotation) of 35 to 38 which then eliminate
in late transition states which are primarily thermody-
namically sterically controlled. In late transition states
originating from 38 to give 39, steric interactions
involving the bonded nucleophile will be less with the
C-4 oxygen than with the methyl group at N-1.

Of further significance are that 16 reacts with warm
ethanol to give 5-(diethoxymethyl)-1,3-dimethylhydan-
toin (41, Eq. (3); >40%) and 20 is converted by dilute
sulfuric acid to 5-(hydroxymethylene)hydantoin (42,
Eq. (4), 89%).4d These results reveal that 5-
(halomethylene)hydantoins (1) and related 5-(substi-
tuted-methylene)hydantoins undergo (acid-catalyzed)
addition–displacements readily and indicate that such
reactions will be of value for synthesis.

(3)

(4)

Studies of (1) the scope,15 synthesis products, stereo-
chemistries, kinetic and thermodynamic effects, and
further mechanistic details in the addition–elimination
and the (acid-catalyzed) addition–displacement reac-
tions of various nucleophiles and electrophiles with 12,
16–21, 23, 24, 5-(bromomethylene)-3-methylhydantoin,
5-(dibromomethylene)hydantoin, their analogs, and
their derivatives, (2) reactions of alkoxide, amide, and
stronger bases with 4 (Eq. (1)) to give usable carbenes
(6),4 and (3) chiral conversions of 1, 13, and their
derivatives to optically-active �-amino acids (3)16 and
other products are being made.
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