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The emission energies of the cyclometalated iridium-complexes span the range of 473-560 nm and are
shown pictographically by their corresponding color. This range corresponds to a 9 kcal/mol energy
difference in available triplet state energy.
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Introduction

Cyclometalated iridium(lll) complexes constitute an
exceptional class of organometallic complexes ploassess
remarkable photophysical and photochemical progefti,

2] Consequently, these complexes have been wtilize
number of applications in diverse fields. They édeen
especially important in the fields of organic lighitting
diodes (OLEDSs),[3-8] dye sensitized solar cells,|®@]
sensing[11-14] and biology.[15-17] More recentliiese
complexes have been utilized as photocatalysteénatea
of synthetic organic chemistry to perform uniquermical
transformations that take place by catalytic rerhdea
addition) of an electron as well as by serving as
photosensitizers.[18-23] Exploration of these claxgs as
photocatalysts is still in its infancy and will &k continue

to expand and give rise to powerful chemical
methodologies. Consequently, substantial quastité
complexes with a range of properties will be needed

Despite a rich history of exploration in the prdjpes of
these complexes, syntheses for many the facial lemtio
variants[1] are scattered, and often lack comptagmical,
photophysical, and electrochemical characterization
Within our own research, we have also utilized thge of

an iridium photocatalyst. Recently, we have disetb
several photocatalytic reactions which utilize coencrally
available fac-tris-(2-phenylpyridine) iridium (Ir(ppy) in
which the substrates are activated directly (orireudly)
via electron transfer or energy transfer from IyppH24-
27] However, we often found our research was intett

by the photophysical and electrochemical propefethe
limited number of commercially available photocgsd.
Herein, we report a simple synthetic method to setleese
complexes readily in sufficient quantities for wsi¢hin the
laboratory. Furthermore, we also report and disdhe
photophysical and electrochemical properties of the
synthesized complexes within the context of
photoredoxcatalysis.

Schemel. Energy and electron transfer processes in
triscyclometalated iridium complexes
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*|rL 3 represents the higher energy spin allowed excited state
and *IrL 3 representsthe lowest spin forbidden excited state

The iridium complexes are tris-cyclometalated di®:
electron complexes that are remarkably stableergtiound
state. However, upon absorption of photons of the
appropriate energy-in the blue region of the visibl
spectrum, the complexes undergo excitation (Sch&me
Initially, an excited singlet state is produced hutapidly

relaxes to its long-lived, triplet state.[28, 29The triplet
state has undergone a metal-to-ligand charge @aasid
by virtue of charge transfer, it can serve as lmothotent
oxidant and reductant. By knowing the excitedestatiox
potentials of E(Ir*/Ir") and B (Ir'/Ir) complexes, one can
begin to rationally design novel chemical transfations
provided the relevant potentials of substrates ka@wn.
With this goal in mind, we desired to develop apenand
robust method that would allow us to modulate tha@ox
potentials and triplet state energies of the indiu
photocatalysts, allowing us to more fully explomesgible
synthetic transformations.

A survey of the literature revealdtat there are a number
of reported synthetic methods that use more expensi
Ir(acac)so.az Or alternatively require two steps- forming
the chloro-bridged dimer and then subsequentlyragttie
third ligand. This is done even in the case of tlg
homoleptic-cyclometalated complexes, which is ld&m
ideal since it requires additional chemical steps.
Furthermore, a stoichiometric chloride scavengde li
AgOTf is often employed.[34, 35] Konno reported
microwave synthesis of tris-cyclometalated iridium
complexes, but this required a large excess ohdg@0-
100 equiv.) which limits the scope of the reactiomeadily
available ligands such as 2-phenylpyridine.[36]erEfiore,
we set about to develop a general and simple sgistiteat
would allow us to acquire the facial homoleptiaivim
complexes in high chemical yield via a simple and
selective one step process.

Results and Discussion

In our initial attempt, a glass pressure vial was charged
with IrClzenH,0O, 2-phenylpyridine, N&LO; and water and
heated at 200 °C for 48 h.[37] Unfortunately, tfgaction
resulted in extremely low vyield (<8%) of the dedire
complex, Ir(ppy). However, it was observed that the
reaction was heterogeneous until temperatures eeach
nearly 200 °C. Concerned that even higher temperst
may be needed to ensure homogeneity, reprodugikalitd
faster reaction rates the remaining reactions were
performed in Parr reactor for safety purposeswatig us

to safely heat WD to 260 °C. Routine optimization
(Tablel) of this reaction provided improvement ielgs on
increasing the equivalents of base from 1.5 to 6, 2
phenylpyridine from 3.3 to 12, and the temperatinoen
200 to 260 °C. Using optimized conditions (ent)y tBe
reaction yielded 79% of Ir(ppy)3a, in just 24 h.

Table 1. Optimization of Reaction Conditions

X

P

X N
_N  H,0 ‘
[ — . Ir
-

-
S X
2a 3a

entry NayCOjequiv equiv of 2a

IClynH0  +

temperature  time % yield

1 1.5 equiv 3.3 equiv 200 °C 24 h 10%
2 3.0 equiv 6.6 equiv 220 9C 48 h 22%
3 6.0 equiv 12 equiv 260 °C 24 h 79%



Pleased with this result, we next attempted to stigate
the scope of the method which required the synthesthe
requisite 2-phenylpyridine ligand-g (Scheme 2) which
we hoped would lead to catalyst with a range opprtes.
The ligands were synthesized quite easily via Suzuk
coupling of 2-chloropyridine (1 equiv.) and the uesite
boronic acid (1.2 equiv.) with only minor modificats to
the literature procedure.[38] Conveniently, thegaedure
could be performed outside the glovebox. In aflesathe
Suzuki coupling reaction led to good yields of thesired
phenylpyridine products and in one cag&e) (approached
quantitative vyields. Ligand2h (4-(tert-butyl)-2-(4-
fluorophenyl)pyridine) was synthesized via Baran's
procedure.[39]

Scheme 2. Ligand Synthesis

HO.__OH
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With ligands ga-h) in hand, we returned to the
cyclometalation reaction (Scheme 3). However, urtde
standard reaction conditions, several of the satesr
presented problems. Upon modification of our aiti
conditions, yields were improved and substantianties
were obtained. For instance, when 2d3-butyl)
phenylpyridine) 2e) was subjected to the reaction
conditions the expecte8@e was not formed. RatheBa
Ir(ppy)s along with 2-phenylpyridine2a, were the primary
products recovered which apparently resulted fréma t
detertbutylation of either (or both) ligand or broplex at
260 °C. However, by lowering the temperature to 200
we were able to suppress detertbutylation and oi3&in
high yield. Moreover, our initial attempts to dyasize3c
resulted in amixture of iridium complexes in which partial
hydrolysis of fluorine had occurred. Additionallyye
observed a migration of fluorine on the ring of tlgand
recovered from the reaction mixture.[40] To avdids
problem, reaction with 2-(4-fluorophenyl) pyridinec,
ligand was performed in the absence of sodium ceateo
and at lower temperatures (200 °C for 48 h). Ssimgly,
using these conditions the reaction proceeded dryotu
achieve3c in excellent yield. This experiment suggested
that no base is required to synthesize triscyclalattd
iridium complexes and, to the best of our knowledbis is
the first report that suggests that the base isnroessary
for the formation of these complexes. Thus, foe th
remainder of the fluorinated substrates, the reastivere
carried out with no base which allowed us to aa8iir-e,
and 3h complexes in moderate to highelds. 3h was
synthesized in 84% yield and was very recently used
catalyst for the deacarboxylative arylationoedmino acids
anda-etheral acids though its synthesis and propehtes
never been reported.[41]] A more modest yield was

observed for3d but is likely a result of the effectively
lower concentration o2d, sinceonly 6 equiv. were used
due to smaller quantities on hand. Using standard
conditions, new complex3f, was obtained only in trace
amounts and addition of base did not prove helpfld.
these cases, the major product was the choro-latidge
dimer. However3f was finally successfully obtained by
subjecting the chloro-bridging dimer to excessidién the
presence of AgOAc.

Scheme 3. Synthesis of Facial Homoleptic Tris
Cyclometalated Iridium Complexes
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While our initial focus was in the syntheses of the
homoleptic iridium complexes, cationic heteroleptic
iridium complexes[2] have also proven to be effexti
photocatalysts and we sought to synthesize thergati
complexes as well. In the cationic complexes,titie 2-
phenylpyridine ligand is replaced with 2,2’-bipyird type
ligand. Thus, in order to be able to modify thiedhigand,
the dichloro-bridged iridium dimer was selectively
synthesized according to Nonoyama's procedure[4#¢iwv
was then subsequently treated with the third, ldgyr
ligand to afford cationic heteroleptic iridium colepes
(scheme 4).[43]



Scheme 4. Synthesis of Cationic Iridium Complexes
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counteranion. First step yield followed by second step.

The cyclometalated iridium(lll) chloro-bridged dime
[Ir(ligand),Cl], was prepared by following Nonoyama’s
procedure[42] in which hydrated iridium(lll) chlde was
heated with substituted phenylpyridine ligand in2d
methoxyethanol/6D mixture at only 120 °C. Upon
cooling, the chloro-bridging dimer precipitated amgs
carried onto the second step. The catalysts weeesified

by use of several bipyridine ligands. Finally, amni
metathesis was achieved by the addition of aqueous
NH4PFs. In this manner, complexésy (Scheme 4) were
synthesized. In some cases, complexes were further
purified by recrystallization. This is the firseport for
complexes3f, 4ab, 4cb and 4fd. All synthesized facial
homoleptic and cationic heterolepticomplexes were
characterized byH, *3C, *F, 3P NMR, LCMS, and new

complexes by elemental analysis

With iridium complexes in hand, we next turned ke t
investigation of the photophysical properties of facial

homoleptic 3a-f and the heteroleptigixy complexes.
Absorbance of the facial homoleptic (Figure 1) ahd

heteroleptic (Figure 2) were measured in acetdmi{fl0

uM). As depicted in Figure 1 and 2 all the compkegkow
intense UV absorption band below 325 nm-charadteii$

spin allowed transition of ligandt{tJ)[44] and weaker,
broad and unresolved absorption band into visiblgion

from 320-480 nm generally assigned as both alloaed
spin-forbidden metal to ligand charge transfer (MI.C
transitions.[44]
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Figure 1. Absorbance Spectra of Facial Homolepittium
Complexes3a-f,h) 10 uM in MeCN.

From a catalysis standpoint, the emission frequency
corresponds to the energy available for energysfeario
substrates, (i.e., the ftriplet state energy, TSEJhe
complexes were excited in the region of 370-390wtrith
corresponds to the metal-to-ligand charge transfer
excitation.[45] In  general, electron-withdrawing
substituents on the phenyl ring such as fluorineels the
energy of HOMO resulting in larger HOMO-LUMO gaps
and greater emission energies (more blue shifted).
Whereas electron-donating substituents such asl alky
groups raise the HOMO energy, resulting in smaller
HOMO-LUMO gaps and lower emission energies (more
red shifted).[46, 47] As expected, in complexes thave
electron-withdrawing groups8iy-d and3h Figure 3), a 10-

40 nm hypsochromic shift is observed whereas
bathochromic shift of 5-10 nm is observed in alkyl
substituted complexes (on the phenyl rirBgand3f, when
compared to that of Ir(ppy)(3a). Furthermore, as the
degree of fluorine substitution increases, more Ishifting
was observed3fl vs. 3c). Similar trends were observed in
the case of heteroleptic cationic iridium complefeigure

———
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Figure 2. Absorbance spectra dda and cationic
heteroleptic iridium complexegxy) 10 uM in MeCN.

Electron withdrawing group<ga, gb, gc) resulted in a 42-
45 nm blue shift with respect to Ir(pgyl3a). Complex
4db shows 55 nmbathochromic shiftrelative to more
fluorinated complexedga, gb, gc. Addition of electron
donatingtert-butyl groups on bipyridyl4de) resulted in a
12 nm hypsochromic shift compared to compfetb. In

the mono-fluoro series, a similar trend was obskrdeb



and4cc). Complexegidb, 4fcb, 4cc and4fd depict a 10-
42 nm red shift andga, 4gb, 4gc, 4dc a 2-45 nm blue shift
from Ir(ppy) (3a). Furthermore, among these complexes,
complex4fd was found to be the most red shifted (3e).
with poor emission which could be due to the meghox
substituents.[48] In most complexes, broad emissio
spectra were observed which could be due to sagmifi
degree of charge transfer (CT) whereas structupedtsa

in 4ga and4gc suggest a small CT contribution.[49]
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Figure 3 Emission spectra of facial homoleptic iud
complexes 3a-f,h excited at 385 nm, 372 nm, 380 nm, 378
nm, 390 nm, 383 nm, 385 nm respectively) 5 uM ifOMe
except3a 10 uM in MeCN.

In all complexes emission is from the lowest endriptet
state which is likely formed by mixing of tH®ILCT, *LC

and 3LLCT states.[17, 50, 51] The emission maximum
(Mmay is the triplet state energy which can be used in
photocatalysis for energy transfer processes (Sehem
1).[25-27]
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Figure 4 Emission spectra 8& and heteroleptic iridium
complexes 4xy, excitation wavelength, concentration in
MeCN) @d4ga 376 nm 2.5 uM4gb 370 nm 10 uMdgc 375
nm 5 puM,4db 368 nm 10 uM4dc 365 nm 10 uM4cb
380 nm 10 pMydcc 370 nm 10 pMAfd 390 nm4h 50

UM).
Having investigated the photophysical properties, next

turned to the electrochemical properties of theliurn
complexes via cyclic voltammetry (CV) which is refzal

relative to ferrocenium/ferrocene redox couple lemag in
Table 4. The cyclic voltammograms of complexesewer
collected at a scan rate of 50 mV/s. As anticighate
complexes having electron withdrawing fluorine grsu
(3b-d. vs3a) show higher ground state,& (Ir*/Ir) due to
lowering of HOMO energy level. All cationic compgks
show higher ground state, &2 (Ir*/Ir) when compare to
that of 3a, and among all complexega and4gc exhibit
the highest ground state,&2. Whereas, lower £
potentials were observed when an electron donafiog
substituent was located on the ligadd, 3f vs. 3a) as this
group is expected to raise the HOMO energy levetinga

it more easily oxidized.[52]

Complexes that have electron withdrawing fluorinasthe
ligand make them less reducing (smaller negatiainpt
state) Eq2 (Ir/lr") as observed iBb-d and3h relative to
3a. Complexes that have an electron donating alkylig
(3e vs 3a) possess a more negatived (Ir/Ir’) potential
though3f is slightly less reducing th&8a. Among cationic
complexesifd found to be the most reducing as it contains
electron richtBu- and methoxy substituent on ligands.
FurthermoretBu-bipyridine complexes are more reducing
(4da vs4dc, 4ch vs4cc)

Knowing the excited state redox values is a keyneld in
designing photocatalytic reactions, but the excittdte
redox potentials cannot be directly evaluated. &,
they can be calculated from the electrochemically
determined ground state &2 and E.4? potentials and the

energy gap (k. Egp values were determined from the
CV.

EY2 (Ir/Ir*) = Eg*~ EggpeV
EY2(Ir/Ir ) = EgapeV + Eed”?

(eq 1)
(eq 2)

We calculated the redox values of the excited state
complexes, B2 (Ir</Ir*) and B (Ir*/Ir ") using equations 1
and 2 and the potentials are shown in TabldHe table is
arranged in descending emission energy values.

Table 4. Photophysical and electrochemical data

for iridium complexes

complex imax TSEkcalmol E20xV  EipredV Egap eV Eua(ir'/in) Euz (r/ir)
4gb 473 60.4 1.23 -1.23 2.2 -0.97 0.97
4ga 475 60.2 1.81 -1.25 2.64 -0.83 1.39

4gc 476 60.1 1.77 -1.35 2.77 -1 1.4z
3d 476 60.1 0.98 -1.82 2.21 -1.23 0.39
3h 481 59.4 0.926 -1.58 2.2 -1.274  0.62

3c 488 58.6 1 -2.13 2.86 -1.86 0.73

3b 507 56.4 111 -2.13 2.76 -1.65 0.63
4dc 516 55.4 1.63 -1.42 2.56 -0.93 1.14
3a 518 55.2 0.78 -2.2 2.75 -1.97 0.55
3e 525 54.5 0.69 -2.27 2.59 -1.9 0.32

3f 528 54.2 0.7 -2.03 2.28 -1.59 0.25
4do 528 54.2 1.66 -1.32 2.46 -0.8 1.14
4cc 540 53 1.49 -1.45 2.52 -1.04 1.07

4cb 556 51.4 151 -1.37 2.4 -0.89 1.03
4td 560 51.2 1.17 -15 2.35 -1.12 0.85

Conclusions

In conclusion, we have reported simple synthetic
procedures that allow rapid access to an impodkass of
iridium photoredox catalysts. We have successfully
developed a simple and general synthesis that geevi



efficient access to facial tris-cyclometalated iurid
complexes directly from less expensive B@H,O. In
addition, we applied Nonoyama's method in order to
synthesize a number of cationic heteroleptic indiu
complexes. Importantly, we have provided the cleaimi
photophysical and electrochemical characterization
necessary to facilitate catalysis. This shouldificantly

aid in the design of novel chemical transformatioes
photocatalysis by facilitating access to the catalyand by
providing the relevant photophysical and electroaical
properties necessary to rationally design new sfith
methods.

General Experimental

All reagents were obtained from commercial supplier
(Sigma-Aldrich, Oakwood chemicals, Alfa Aesar, 8tre
and VWR) and used without further purification gde
otherwise noted. NMR spectra were obtained onMbiz
Bruker Avance Il spectrometer and 400 MHz Unitpvya
spectrometer. 'H, and °C, NMR chemical shifts are
reported in ppm relative to the residual solverdakpahile

% and®P NMR are set relative to an external standard.
Purifications were carried out using Teledyne Isco
Combiflash Rf 200i flash chromatograph with Redisdp
normal phase silica (24 g, 40 g, or 80 g) columithwi
product detection at 254 and 280 nm and by ELSD
(evaporative light scattering detector). Subststethesis
reactions were monitored by thin layer chromatolgyap
(TLC) obtained from Sorbent Technology; Silica XHL
TLC Plates, w/UV254, glass backed, 250 um, and were
visualized with ultraviolet light. Photophysicatoperties
were studied on Varian Cary Eclipse spectrophotemet
and LCMS was taken on Shimadzu liquid chromatograph
mass spectrometer (LCMS-2010 E). Electrochemical
measurements were performed with CH instrumentsgusi
a glassy-carbon electrode as a working electrodb wi
Ag/AgCl reference electrode and a platinum wire as
counter electrode. All sample solutions were pregdn
acetonitrile and degassed with nitrogen bubbling 26
min. prior to voltammetric studies.  Tetra-(n-bjkyl
ammonium hexafluorophosphate (NB&;, 0.1 M in
acetonitrile) was used as supporting electrolytdhe
HOMO and LUMO energy is calculated from equation eq
3.

E HOMO/LUMO = - ( Eonset oxilredVS Fc +48) eV (eq 3)

General procedure A for the synthesis of Iigandﬁt(—Zg)

HO. . OH
‘ N Cl . _Pd(OAc)
@ v PPh3 DME
Y K>CO3 reflux

2b-29

To a two necked, 100 mL round bottom flask equipped
with a magnetic stir bar were added 2-chloropyed{i
equiv), phenylboronic acid (1.2 equiv), triphenydsphine
(0.1 equiv), 2 M potassium carbonate (2.7 equivil an
ethylene glycol dimethyl ether (0.9 M). The mixuvas
degased with Ar for 15 min. Then Pd(OA¢2.5 mol%)

was added to the reaction mixture and degassintjncreal
for 15 more minutes and then the outlet was removidte
reaction mixture was heated to reflux. The progres
reaction was monitored by TLC (hexane:EtOAc 90:10).
Upon completion (typically 18-24 h), reaction misguvas
cooled to room temperature and then extracted B
(3 x 20 mL). The combined organic portion was veash
with water (3 x 20 mL) and brine (1 x 20 mL), drieder
anhydrous sodium sulfate and then concentrategcuo.
The crude material was purified by flash chromaapy
to obtain pure ligand.

2b, the general procedure A was followed using 2-
chloropyridine (2.0 g, 17.62 mmol), (4-
(trifluoromethyl)phenyl)boronic acid (4.08 g, 21.f&fmol),

2 M K,CO; (6.55 g, 47.52 mmol), PRH461 mg, 1.760
mmol), Pd(OAc) (99 mg, 0.4420 mmol) and ethylene
glycol dimethyl ether (20 mL). The crude matenehs
purified by flash chromatography using hexane: lethy
acetate (0-5 % EtOAc for 40 cv and ramped to 100 %
EtOAc for 40-70 cv and then held at 100% EtOAc D08

on 24 g silica column) to affordb in 67% vyield (2.60 g,
11.65 mmol) as a white solidfH NMR matches literature
values.[53]

2c, the general procedure A was followed using 2-
chloropyridine (2.0 g, 17.62 mmol), (4-fluorophenyl
boronic acid (2.96 g, 21.15 mmol), 2 M,BO; (6.55 g,
47.52 mmol), PPh(461 mg, 1.760 mmol), Pd(OAc}99
mg, 0.4420 mmol) and ethylene glycol dimethyl ett29
mL). The crude material was purified by flash
chromatography using hexane:ethyl acetate (0-5 @AEt
for 40 cv and ramped to 100 % EtOAc for 40-70 cd an
then held at 100% EtOAc 70-80 cv on 24 g silicaunoi)

to afford 2c in quantitative yield (3.0 g, 17.32 mmol) as a
white solid. *H NMR matches literature values.[54]

2d, the general procedure A was followed using 2-
chloropyridine (1.0 g, 8.80 mmol), (2,4-difluoromiyd)
boronic acid (1.67 g, 10.56 mmol), 2 M,BO; (3.28 g,
23.76 mmol), PPH(231 mg, 0.8817 mmol), Pd(OAc}9
mg, 0.2188 mmol) and ethylene glycol dimethyl et{i
mL). The crude material was purified by flash
chromatography using hexane:ethyl acetate (0-5 @AEt
for 40 cv and ramped to 100 % EtOAc for 40-70 cd an
then held at 100% EtOAc 70-80 cv on 24 g silicauooi)

to afford2d in 56% yield (0.94 g, 4.92 mmol) as colorless
oily liquid. *H NMR matches literature values.[55]

2e, the general procedure A was followed using 2-
chloropyridine (2.0 g, 17.62 mmol), (4-(tert-butyl)
phenylboronic acid (3.76 g, 21.15 mmol), 2 MGO; (6.55

g, 47.52 mmol), PR1(461 mg, 1.760 mmol), Pd(OAC)99
mg, 0.4442 mmol) and ethylene glycol dimethyl et{#®
mL). The crude material was purified by flash
chromatography using hexane:ethyl acetate (0-5 @AEt
for 40 cv and ramped to 100 % EtOAc for 40-70 cd an
then held at 100% EtOAc 70-80 cv on 24 g silicaunoi)

to afford2e in 79% yield (2.93 g, 13.90 mmol) as colorless
oily liquid. *H NMR matches literature values.[56]

2f, the general procedure A was followed using 2-
chloropyridine (2.0 g, 17.62 mmol), (3-(tert-bupiienyl)
boronic acid (3.76 g, 21.15 mmol), 2 M,BO; (6.55 g,
47.52 mmol), PPh(461 mg, 1.760 mmol), Pd(OAc)99
mg, 0.4420 mmol) and ethylene glycol dimethyl et{&®



mL). The crude material was purified by flash
chromatography using hexane:ethyl acetate (0-5 @AEt
for 40 cv and ramped to 100 % EtOAc for 40-70 cd an
then held at 100% EtOAc 70-80 cv on 24 g silicaunoi)

to afford 2f in 79% yield (2.76 g, 13.09 mmol) as colorless
oily liquid. *H NMR (Chloroformd, 400 MHz):8 = 8.75 —
8.71 (m, 1H), 8.07 (t, 1H}=1.8 Hz), 7.83 — 7.71 (m, 3H),
7.53 — 7.41 (m, 2H), 7.25 (ddd, 1B6.7, 4.8, 2.1 Hz),
1.42 (s, 9H) ppm.

29, the general procedure A was followed using 2+chb
(trifluoromethyl) pyridine (2.0 g, 11.02 mmol), 42,
difluorophenyl) boronic acid (2.09 g, 13.22 mmd},M
K,CO; (4.11g, 29.75 mmol), PRK{288 mg, 1.099 mmol),
Pd(OAc) (62 mg, 0.2881 mmol) and ethylene glycol
dimethyl ether (20 mL). The crude material wasiffed
by flash chromatography using hexane:ethyl acétate %
EtOAc for 40 cv and ramped to 100 % EtOAc for 40€Y0
and then held at 100% EtOAc 7080 cv on 24 g silica
column) to afford2g in 79% vyield (2.58 g, 9.961 mmol) as
white solid. *H NMR matches literature values.[43]

Procedure for the synthesis dth

HO.__.OH
tBu B

N Ag(NO3) K28,04
F DCM/H,0

A two necked 250 mL round bottom flask was equipped
with a magnetic stir bar, #rt-butyl pyridine (1.00 g, 7.41
mmol, 1 equiv) and 40 mL dichloromethane. Then
trifluoroacetic acid (567 uL, 7.41 mmol 1 equiv}) L of

an aqueous silver nitrate solution (0.03 M), 4-
flourophenylbronic acid (1.54 mg, 11.1 mmol, 1.5uiedy
and potassium persulfate (3.09 g, 22.2 mmol, 3Wquére
added. The reaction was stirred vigorously at room
temperature for 6 hours and a second addition lgérsi
nitrate (252 mg, 1.48 mmol, 0.2 equiv) and potassiu
persulfate (3.09 g, 22.2 mmol, 3 equiv) were adddter

18 h, another addition of 4-fluorobenzene borowid §515
mg, 3.71 mmol, 0.5 mmol) and potassium persulfaté3

g, 7.41 mmol, 1 equiv) were added. The progress of
reaction was monitored by TLC (hexane:EtOAc 90:10).
Upon completion, the reaction mixture was diluteithva

5% sodium bicarbonate solution and extracted wi@ivD

(3 x 20 mL). The combined organic layer was dioeer
anhydrous magnesium sulfate and then concentriated
vacuo. The crude material was purified by flash
chromatography using hexane:ethyl acetate (0-5 @AEt
for 40 cv and ramped to 100 % EtOAc for 40-70 cd an
then held at 100% EtOAc 70-80 cv on 24 g silicaunoi)

to afford2h in 29% (492 mg, 2.15 mmol) as a clear d#i
NMR matches literature values.[39]

General procedure B for the synthesis of homoleptiac-
Ir (C”N)3; complexes 3a-3f,h)

X
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|rC|30nH20+
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A Parr reactor (1 L model 4533, figure S1) was gedr
with iridium (Ill) chloride (1 equiv), ligand (12 qmiv),
sodium carbonate (6 equiv) and DI water (.03 M)heT
reaction mixture was pressurized (30 PSI) and
depressurized with Ar (3x) and finally charged agaith

Ar before sealing. The reaction mixture was heaie200

°C for 24-48 h. After cooling to room temperatuesgction
mixture was extracted with DCM (3 x 20 mL). The
combined organic portion was filtered through eelitad
which was then concentrated to obtain crude prodiitie
pure compound 3a-3f was obtained by performinghflas
chromatography. For most complexes, (3a-3d) crude
samples were dry loaded on silica prior to runnthg
column due to low solubility of the complex. Aftelution

of the ligand with hexane/ethylacetate the elutiodvent
was switched to dichloromethane, which faciliatdg t
elution of the iridium complexes (3a-3f).

3a, the general procedure B was followed at 2BQusing
iridium  (Ill) chloride (192 mg, 0.64 mmol), 2-
phenylpyridine (1.19 g, 7.7 mmol), dMaO; (407 mg, 3.8
mmol), and DI water (850 mL). The crude materiasw
purified by flash chromatography (dry loaded) using
hexane:ethyl acetate (0-10 % EtOAc for 40 cv tdaieo
ligand and then switched to DCM as well as ramjpeti00

% DCM for 40-70 cv and then held at 100% DCM 70-80
cv) on 24 g silica column to afforga in 79% yield (311
mg, 0.47 mmol) as a yellow solid which matched wiith
literature.[57] LC/MS (m/z) calculated for 3£E,4rN3
655.16 found, 654.50.

3b, the general procedure B was followed except tiwat
sodium carbonate was used, using iridium (lll) chloride
(100 mg, 0.33 mmol), 2-(4-(trifluoromethyl) phenyl)
pyridine 2b (896 mg, 4.0 mmol) and DI water (100 mL).
The crude material was purified by flash chromaapy
(dry loaded) using hexane:DCM (0 % DCM for 16 cdan
ramped to DCM 100 % for 16-20 cv and then held0&%4
DCM for 20-23 cv) on 80 g silica column) to affoBd in
78 % yield (221 mg, 0.26 mmol) as a yellow solidH
NMR(Chloroformd, 400 MHz): 6 = 7.99 (d, 3H,J=8.3
Hz), 7.77 — 7.69 (m, 6H), 7.55 (dd, 68+6.0, 1.3 Hz), 7.20
—7.15 (m, 3H), 7.02 (ddd, 3H77.1, 5.2, 1.1 Hz), 6.96 (b,
3H) ppm. *C NMR (Methylene Chloride,, 101 MHz):§

= 165.0, 159.2, 147.5 — 147.4 (m), 147.3, 137.04.3@),
130.6, 123.9, 123.4, 120.0, 117.3 — 117.2 (m), W08
NMR (376 MHz, Chloroformd) 8 -62.76 (s). LC/MS
(m/z) calculated for gH,1FglrN3; 859.12 found M, 858.70

3c, the general procedure B was followed except tiwat
sodium carbonate was used, using iridium (Ill) chloride
(100 mg, 0.33 mmol), 2-(4-fluorophenyl)pyridir2e (678
mg, 3.9 mmol) and DI water (100 mL). The crudeamat
was purified by flash chromatography (dry loadeding
hexane: DCM (0-50 % DCM for 25 cv, held at 50% 26

35 cv and ramped to 100 % DCM for 35-36 cv and then



held at 100% DCM 36-41 cv) on 40 g silica column to
afford 3c in 78 % yield (202 mg, 0.29 mmol) as a yellow-
green solid.*H NMR(Methylene Chlorides,, 400 MHz):8

= 7.88 (d, 3HJ=8.2 Hz), 7.72 — 7.64 (m, 6H), 7.52 (ddd,
3H,J=5.5, 1.6, 0.8 Hz), 6.94 (ddd, 3Bk7.1, 5.6, 1.3 Hz),
6.63 (td, 3HJ=8.7, 2.7 Hz), 6.39 (dd, 3HF10.3, 2.7 Hz)
ppm. ¥C NMR(Methylene Chloridel, 101 MHz):§ =
165.3 (d, J=5.4 Hz), 163.4 (d,J=5.7 Hz), 162.8, 147.2,
140.2, 136.6, 125.8 (d=9.2 Hz), 122.0, 121.8 (d~16.4
Hz), 118.9, 107.4 (dJ=23.6 Hz) ppm. **F NMR (376
MHz, Methylene Chloridet,) 5 -112.33 (dddJ = 10.3, 9.1,
5.7 Hz). ). LC/MS (m/z) calculated for s{i,,F3IrN3
709.13 found, 708.60.

3d, the general procedure B was followed except tiwat
sodium carbonate was used, using iridium (Ill) chloride
(50 mg, 0.16 mmol), 2-(2,4-difluorophenyl)pyridinzd
(184 mg, 0.96 mmol) and DI water (100 mL). Thedau
material was purified by flash chromatography (dgded)
using hexane:ethyl acetate (0-40% EtOAc for 30 cv,
changed EtOAc to DCM and ramped to 100 % DCM for
30-31 cv and then held at 100% DCM 31-39 cv) orng40
silica column to afford3d in 56 % yield (68 mg, 0.09
mmol) as a pale yellow solid. The NMR specta madich
with the literature.[31]*H NMR (400 MHz, DMSOdg) &
8.27 (d, 3H,J = 8.6 Hz), 7.95 (t, 3H) = 7.5 Hz), 7.54 (d,
3HJ=5.1Hz), 7.26 (t, 3H) = 6.4 Hz), 6.70 (td, 3H] =
10.1, 9.2, 5.0 Hz), 6.06 (dd, 3H,= 8.7, 2.2 Hz). *C
NMR(Methylene Chlorided,, 101 MHz): 6 = 162.9 (d,
J=7.5 Hz), 162.5 (d, J=11.5 Hz), 161.3, 147.2, 137.4,
123.3 (d,J=20.9 Hz), 122.4, 117.8 (dd~16.1, 2.8 Hz),
96.6 (t,J=27.2 Hz) ppm.**F NMR (376 MHz, Methylene
Chlorided,) 5 -109.68 (g, 3FJ = 9.3 Hz), -110.86 (ddd,
3F,J =126, 9.9, 2.3 Hz). LC/MS (m/z) calculated for
Cs3H18F6IrN3 763.10 found 763.00.

3e, the general procedure B was followed using irndiu
(i) chloride (100 mg, 0.33 mmol), 2-(4-(tert-
butyl)phenyl)pyridine 2e (844 mg, 4.0 mmol), sodium
carbonate (210 mg, 2.0 mmol) and DI water (200 mhe
crude material was purified by flash chromatograpbing
hexane:ethyl acetate (0-20 % EtOAc for 40 cv, dvatt
EtOAc to DCM and ramped to 100 % DCM for 40-60 cv
and then held at 100% DCM 60-65 cv) on 24 g silica
column to afford3e in 92 % yield (249 mg, 0.30 mmol) as
a yellow solid. *"H NMR (400 MHz, Chlorofornd) § 7.79
(d, 3H,J = 8.2 Hz), 7.60 — 7.48 (m, 9H), 6.93 — 6.86 (m,
6H), 6.83 (ddd, 3HJ) = 7.0, 5.6, 1.1 Hz), 1.10 (s, 27Hy’C
NMR (101 MHz, Chlorofornd) & 167.5, 161.5, 152.4,
147.5,141.6, 136.0, 134.9, 123.5, 121.8, 118.8,2,134.8,
31.8. LC/MS (m/z) calculated for,gH,glrN3823.35 found
822.65

3f, the general procedure B was followed using indiu
(Il chloride (25 mg, 0.083 mmol), 2-(3-(tert-blity
phenyl)pyridine2f (200 mg, 0.95 mmol), and DI water (50
mL). The crude material was purified by flash
chromatography using hexane:EtOAc (0-10 % EtOAc for
32 cv, switched EtOAc to DCM and ramped to 100 %
DCM for 32-42 cv and then held at 100% DCM 42-4% cv
on 24 g silica column to affordf in 16 % vyield (11 mg,
0.013 mmol) as a yellow solid. 'H NMR (400 MHz,
Methylene Chlorided,) & 7.99 (dd, 3HJ = 8.3, 5.6 Hz),
7.82 — 7.56 (m, 9H), 6.95 (ddd, 6Bi= 10.2, 6.0, 1.8 Hz),

6.67 (dd, 3H,J = 7.8, 5.7 Hz), 1.35 (s, 27H)}*C NMR
(101 MHz, Methylene Chloriddy) & 167.1, 157.3, 147.4,
143.3,142.4, 136.4, 136.1, 127.6, 122.0, 120.8,9.134.2,
31.4. Anal. Calcd for GH.glrNs C, 65.66; H, 5.88; N,
5.11. Found: C, 64.82; H, 4.98; N, 5.57. LC/MS Am/
calculated for GzH4glrN3823.35 found 822.90.

3h, the general procedure B was followed except tiwat
sodium carbonate was used, using iridium (lll) chloride
(25 mg, 0.083 mmol), 4edrt-butyl)-2-(4-
fluorophenyl)pyridine2h (230 mg, 1 mmol) and DI water
(100 mL). The crude material was purified by flash
chromatographydry loaded) using hexane: DCM (0-50 %
DCM for 25 cv, held at 50% for 25-35 cv and ramped
100 % DCM for 35-36 cv and then held at 100% DCM 36
41 cv) on 40 g silica column to affot in 84 % yield (61
mg, 0.070 mmol) as a yellowish green sotid.NMR (400
MHz, Chloroformé) 8 7.73 — 7.69 (m, 3H), 7.56 (dd, 34,

= 8.6, 5.7 Hz), 7.28 (d, 3H,= 5.9 Hz), 6.83 (dd, 3H] =
5.9, 1.8 Hz), 6.53 (td, 3H,= 8.7, 2.6 Hz), 6.44 — 6.38 (m,
3H), 1.26 (s, 27H). 13C NMR (101 MHz, Chloroform-&l)
164.0 , 163.0 (dJ = 251.5 Hz), 163.0 (d) = 5.6 Hz),
159.1, 145.4, 139.2, 124.2 (@,= 9.1 Hz), 121.3 (dJ =
16.1 Hz), 118.3, 114.37, 106.1 ®= 23.7 Hz), 33.9, 29.5.
19F NMR (376 MHz, Chloroform-dp -112.01 (s, 1F).
LC/MS (m/z) calculated for £gHssFsIrN; 877.32 found
877.20.

General Procedure C for the synthesis of cationic
heteroleptic [ Ir (C*"N)bpy)]" PR~ complexes4xy)

N N +

( (‘\N T/D ( (\N —‘

CH C cl c N -

IrCI30nH20—> \l‘l’/ /Ir< —N> >|I‘< PFG
2x — ‘ ai ‘ c 5 ¢ lll N

@,

Heteroleptic iridium4xy were synthesized in a two-step
procedure.[42, 43] In the first step, chloro-badgdimer
was synthesized by charging a two-necked reactask f
with magnetic stir bar, iridium(lll) chloride (1 eiy),
ligand (2.26 equiv), and a 2:1 v:v mixture of 2-
methoxyethanol/water. The mixture was degased Aith
(via Ar bubbling) and heated under reflux at ZDwith
constant stirring overnight. The reaction mixtaomled to
room temperature and filtered. The precipitate washed
with water (3 x 10 mL), dried in air and taken orite
second step without further purification unlessedot In
the second step, the chloro-bridging dimer (1lequiv)
bipyridyl ligand (2.2 equiv) and ethyleneglycol werlaced
in a two-necked flask and then flushed with Ar. eTh
mixture was heated at 15 for 15 h and then cooled.
The cooled reaction mixture was washed hexane {8 x
mL) and mixture was heated to 85 for 5 min. to remove
residual hexane. Aqueous ammonium hexafluoroplaisph
(sat. solution) was added to the reaction mixtuaesing
the iridium-PF salt to precipitate, which was filtered, dried
and recrystallized (acetone/ether).

4ga, the general procedure C was followed using
iridium(lll) chloride (178 mg, 0.60 mmol), 2-(2,4-
difluorophenyl)-5-(trifluoromethyl)pyridine  pyridem 2g
(352 mg, 1.4 mmol) and a 2:1 mixture of 2-
methoxyethanol/water (12 mL) to obtain the dime7#%

4xy



yield (326 mg, 0.22 mmol) as yellow solid4ga was
synthesized using the dimer (50 mg, 0.034 mmol),
phenanthroline 53, 14 mg, 0.075 mmol) and ethylene
glycol (2 mL). 4ga was obtained in 91% yield (64 mg,
0.062 mmol) as yellow crystals after recrystalizatwith
acetone and hexane'H NMR (400 MHz, Acetonelk) &
9.01 (dd, 2HJ = 8.3, 1.4 Hz), 8.68 (dd, 2H,= 5.1, 1.4
Hz), 8.62 (dd, 2H) = 8.8, 2.6 Hz), 8.46 (s, 2H), 8.35 (dd,
2H,J=8.8, 1.8 Hz), 8.15 (dd, 2H,= 8.3, 5.1 Hz), 7.92 —
7.83 (m, 2H), 6.92 (ddd, 2H), = 12.7, 9.3, 2.3 Hz), 6.08
(dd, 2H,J = 8.5, 2.3 Hz). ®*C NMR (101 MHz, Acetone-
de) 8 167.7 (dJ = 6.8 Hz), 164.8 (dd] = 209.3, 13.1 Hz),
162.2 (ddJ = 212.7, 12.9 Hz), 154.7 (d= 7.3 Hz), 152.3,
146.8, 146.4 (q) = 4.7 Hz), 139.7, 137.2, 131.9, 128.6,
127.4, 127.1 (dd) = 4.5, 2.6 Hz), 125.2 (dl = 34.9 Hz),
123.8 (d,J = 20.9 Hz), 114.7 (dd] = 18.0, 3.0 Hz), 99.4
(apparent tJ = 27.1 Hz). %F NMR (376 MHz, Acetone-
de) & -63.68 (s, 6F), -72.66 (d, 68,= 707.3 Hz), -104.86
(9, 2FJ = 10.3, 9.3 Hz), -108.12 (td, 25 = 12.4, 2.7 Hz).
51 NMR (162 MHz, Acetonek) & -130.00 — -157.36
(hept,J = 701.46 Hz). Anal. Calcd forsgHgF16lfN4P: C,
41.83; H, 1.76; N, 5.42. Found: C, 41.96; H, 1895.23.
LC/MS (m/z) calculated for £H;gF10lrN, 889.10 found
M+, 888.60.

4gb, the general procedure C was followed using
iridium(lll) chloride (178 mg, 0.60 mmol), 2-(2,4-
difluorophenyl)-5-(trifluoromethyl)pyridine2g (352 mg,
1.4 mmol) and a 2:1 mixture of 2-methoxyethanolérdt
12 mL) to the obtain dimer in 74% vyield (326 mg2d.
mmol) as yellow solid. 4gb was synthesized using the
dimer (100 mg, 0.067 mmol), 2,2’ bipyridyblf, 23 mg,
0.15 mmol) and ethylene glycol (4 mL). 4b was oisd
in 78 % vyield (105 mg, 0.10 mmol) as yellow-greetics
'H NMR (400 MHz, Acetonek) & 9.01 (d, 2H,J = 7.6
Hz), 8.64 (dd, 2HJ = 8.8, 2.5 Hz), 8.47 — 8.38 (m, 4H),
8.31 (d, 2H,J = 5.3 Hz), 8.00 (s, 2H), 7.81 (t, 2H,= 8
Hz), 6.87 (ddd, 2H) = 12.7, 9.3, 2.3 Hz), 5.98 (dd, 28Iz
8.5, 2.3 Hz).**C NMR (101 MHz, Acetonels) 5 167.7 (d,
J=6.9 Hz), 164.8 (dd] = 210.8, 12.9 Hz), 162.2 (dd,=
214.1, 12.9 Hz), 156.1, 155.2 @= 7.0 Hz), 151.4, 146.2
(9,J = 4.7 Hz), 140.7, 137.5 — 137.1 (m), 129.1, 176
J=4.3, 2.6 Hz), 125.7, 125.3, 123.9 Jd; 21.0 Hz), 122.1
(d, J = 271.6 Hz), 114.5 (dd) = 18.0, 3.0 Hz), 99.4
(apparent tJ = 27.1 Hz). **F NMR (376 MHz, Acetone-
de) 5 -63.56 (s, 6F), -72.65 (d, 6F = 707.3 Hz), -104.62 —
-104.81 (m, 2F), -107.74 — -108.15 (m, 2% NMR (162
MHz, Acetonedg) & -131.24 — -157.38 (hepd, = 707.94
Hz). LC/MS (m/z) calculated for £HgF10lfN4 865.10
found M+, 864.50.

4gc, the general procedure C was followed using
iridium(lll) chloride (178 mg, 0.60 mmol), 2-(2,4-
difluorophenyl)-5-(trifluoromethyl)pyridine2g (352 mg,
1.4 mmol) and a 2:1 mixture of 2-methoxyethanolérat
(12 mL) to obtain the dimer in 74% yield (326 mg2d
mmol) as yellow solid. 4gc was synthesized using the
dimer (100 mg, 0.067 mmol), 4,4’-di-tbutyl-2,2’-lyipdyl
(5¢, 39 mg, 0.147 mmol) and ethylene glycol (4 mL 4
was obtained in 81% vyield (121 mg, 0.11 mmol) dfowe
solid. 'H NMR (400 MHz, Acetonels) & 8.95 (d, 2HJ =
1.8 Hz), 8.63 (dd, 2H) = 8.8, 2.6 Hz), 8.42 (dd, 2H,=
8.8, 1.9 Hz), 8.20 (d, 2H, = 5.9 Hz), 7.85 — 7.81 (m, 4H),
6.88 (ddd, 2HJ = 12.7, 9.3, 2.3 Hz), 5.98 (dd, 28 8.4,

2.3 Hz), 1.45 (s, 18H)**C NMR (101 MHz, Acetonelk;) &
167.9 (d,J = 7.5 Hz), 165.4, 164.6 (dd= 258.5, 12.7 Hz),
162.5 (dd, = 261.8, 13.1 Hz), 156.0, 155.8 (tk 7.0 Hz),
151.1, 145.7 (q) = 4.8 Hz), 137.2 (dJ = 3.0 Hz), 126.8
(dd,J = 4.4, 2.5 Hz), 126.0, 125.3 (d= 35.3 Hz), 123.9
(d,J=21.0 Hz), 122.6, 122.2 (d,= 271.7 Hz), 114.5 (dd,
J=17.8, 3.0 Hz), 99.3 (apparendt 27.1 Hz), 35.7, 29.5.
F NMR (376 MHz, Acetonek) & -63.69 (s, 6F), -72.68
(d, 6F,J = 707.3 Hz), -104.76 (dt, 28,= 11.9, 9.0 Hz), -
108.09 (td, 2FJ = 12.4, 2.4 Hz).*P NMR (162 MHz,
Acetonedg) 6 -131.17 — -157.37 (heptl = 706.32 Hz).
LC/MS (m/z) calculated for £Hz4F10lrN, 977.23 found
M+, 977.20.

4db, the general procedure C was followed using
iridium(lll) chloride (89 mg, 0.30 mmol), 2-(2,4-
difluorophenyl)pyridine2d (130 mg, 0.68 mmol) and a 2:1
mixture of 2-methoxyethanol/water (6 mL) to obtdire
dimer in 82% vyield (150 mg, 0.12 mmol) as yellowico
4db was synthesized using the diméb,( 150 mg, 0.12
mmol), 2,2’-bipyridyl (34 mg, 0.22 mmol) and ethy&
glycol (6 mL). 4d was obtained in 57% yield (10@,m
0.11 mmol) as yellow solid*H NMR (400 MHz, Acetone-
ds) 4 8.89 (d, 2H,J = 8.1 Hz), 8.46 — 8.33 (m, 4H), 8.24
(ddd, 2H,J = 5.4, 1.5, 0.6 Hz), 8.11 — 8.05 (m, 2H), 7.94
(ddd, 2H,J =5.8, 1.5, 0.7 Hz), 7.77 (ddd, 28~ 7.6, 5.5,
1.2 Hz), 7.27 (ddd, 2HI = 7.4, 5.9, 1.4 Hz), 6.78 (ddd, 2H,
J=12.7,9.3, 2.4 Hz), 5.82 (dd, 2Bi= 8.5, 2.4 Hz).2°C
NMR (101 MHz, Acetoneads) & 164.8 (d,J = 7.1 Hz),
163.5 (dd,J = 39.4, 12.7 Hz), 163.5 (dd,= 476.4, 12.7
Hz), 156.8, 155.6 (dJ = 6.6 Hz), 152.0, 150.8, 141.2,
140.8, 130.0, 128.9 (dd} = 4.5, 2.8 Hz), 126.1, 125.2,
124.6 (d,J = 20.2 Hz), 114.7 (dd] = 17.7, 3.0 Hz), 99.7
(apparent tJ = 27.1 Hz). **F NMR (376 MHz, Acetone-
dg) 6 -72.67 (d, 6FJ = 707.2 Hz), -107.74 — -107.86 (m,
2F), -110.00 — -110.13 (m, 2F)3P NMR (162 MHz,
Acetoneds) 6 -131.16-157.38 (hept) = 707.94 Hz).
LC/MS (m/z) calculated for GHooF4rN, 729.13 found
M+, 728.55.

4dc, the general procedure C was followed using
iridium(lll) chloride (89 mg, 0.29 mmol), 2-(2,4-
difluorophenyl)pyridine2d (130 mg, 0.68 mmol) and a 2:1
mixture of 2-methoxyethanol/water (6 mL)to obtaimet
dimer in 82% vyield (150 mg, 0.12 mmol) as yellowico
4dc was synthesized using the dimer (126 mg, 0.10 fmmol
4,4'-di-tbutyl-2,2’-bipyridyl ¢, 59 mg, 0.22 mmol) and
ethylene glycol (6 mL). 4e was obtained in 88%dyid74
mg, 0.18 mmol) as yellow solid*H NMR (400 MHz,
Acetonedg) 5 8.79 (d, 2HJ = 1.8 Hz), 8.27 (d, 2H] = 8.4
Hz), 7.98 — 7.90 (m, 4H), 7.76 — 7.72 (m, 2H), 7(6,
2H,J =5.9, 2.0 Hz), 7.09 (ddd, 2H,= 7.4, 5.9, 1.3 H2z),
6.64 (ddd, 2HJ = 12.6, 9.4, 2.4 Hz), 5.65 (dd, 28i= 8.6,
2.4 Hz), 1.28 (s, 18H)**C NMR (101 MHz, Acetonelk) &
164.6, 165.4 — 163.8 (m), 162.5 (di= 37.2, 12.6 Hz),
160.1 (d,J = 12.8 Hz), 155.7, 155.2 (d,= 6.2 Hz), 150.5,
149.6, 139.7, 125.8, 124.1, 123.6 {d5 20.5 Hz), 122.4,
113.6 (ddJ = 17.6, 2.9 Hz), 98.6 (apparenttz 27.2 Hz),
35.6, 29.5.2F NMR (376 MHz, Acetonel) & -72.61 (dd,
6F,J = 707.2, 8.6 Hz), -107.90 (q, 2F= 9.7 Hz), -110.17
(t, 2F,J = 11.7 Hz). *'P NMR (162 MHz, Acetonek) & -
130.58 — -157.12 (hept] = 707.94 Hz). LC/MS (m/z)
calculated for GgH3gF4IrN,841.25 found M+, 840.60.



4ch, the general procedure C was followed using
iridium(lll) chloride (89 mg, 0.30 mmol), 2-(4-
fluorophenyl)pyridine 2c, and a 2:1 mixture of 2-
methoxyethanol/water (6 mL) to obtain the dimer82Pb
yield (150 mg, 0.12 mmol) as yellow solid. 4f was
synthesized using the dimer (35 mg, 0.031 mmoB;-2,
bipyridyl (5b, 10.5 mg, 0.067 mmol) and ethylene glycol (5
mL). 4cb was obtained in 94% yield (48 mg, 0.070 mmol)
as yellow solid. *H NMR(Acetoneds, 400 MHz):5 = 8.87
(d, 2H,J=8.2 Hz), 8.33 (td, 2H}=8.0, 1.6 Hz), 8.24 (d, 2H,
J=8.1 Hz), 8.17 (ddd, 2H}=5.4, 1.5, 0.7 Hz), 8.05 — 7.95
(m, 4H), 7.83 (ddd, 2H}=5.8, 1.4, 0.7 Hz), 7.75 (ddd, 2H,
J=7.6, 5.5, 1.2 Hz), 7.23 — 7.14 (m, 2H), 6.84 (@,
J=8.9, 2.6 Hz), 5.95 (dd, 2HJ=9.5, 2.6 Hz) ppm=C
NMR(Acetoneds, 101 MHz): § = 167.6, 166.0, 157.0,
154.5 (d,J=5.9 Hz), 151.9, 150.3, 141.5 (d=2.1 Hz),
140.9, 140.1, 129.8, 128.3 (d79.4 Hz), 126.0, 124.7,
121.2, 118.4 (dJ=17.9 Hz), 110.7 (dJ=23.3 Hz) ppm°F
NMR(Acetoneds, 376 MHz):5 = -72.63 (d, 6FJ=707.4
Hz), -110.75 (s, 2F) ppni*P NMR(Chloroformd, 162
MHz): § = -129.39 — -148.65 (m) ppm. Anal. calcd for
CsHooFgIrN4P: C, 45.88; H, 2.65; N, 6.69. Found: C,
45.75; H, 7.48; N, 7.08. LC/MS (m/z) calculated for
CsH,oFoIrN 4 693.14 found M+, 692.60.

4cc, the general procedure C was followed using
iridium(lll) chloride (89 mg, 0.31 mmol), 2-(4-
fluorophenyl)pyridine 2c, and a 2:1 mixture of 2-
methoxyethanol/water (6 mL)to obtain the dimer 2¥8
yield (150 mg, 0.12 mmol) as yellow solid4cc was
synthesized using the dimer (106 mg, 0.10 mmod)'-di;
tbutyl-2,2’-bipyridyl (5c, 54 mg, 0.20 mmol) and ethylene
glycol (5 mL). 4g was obtained in 83% vyield (15&,m
0.19 mmol) as yellow solid..'H NMR(Acetoneds, 400
MHz): § = 8.90 (d, 2HJ=1.7 Hz), 8.24 (d, 2H)=8.1 Hz),
8.05 — 7.95 (m, 6H), 7.80 — 7.77 (m, 2H), 7.74 (2H,
J=5.9, 2.0 Hz), 7.16 (ddd, 2H57.3, 5.9, 1.4 Hz), 6.83 (td,
2H, J=8.9, 2.6 Hz), 5.94 (dd, 2H=9.5, 2.6 Hz), 1.41 (s,
18H) ppm *C NMR (101 MHz, Acetoneg) & 167.7,
165.3, 164.7 (dJ = 252.8 Hz), 156.8, 155.09 (d,= 5.8
Hz), 151.4, 150.0, 141.5 (d,= 2.0 Hz), 140.0, 128.2 (4,

= 9.4 Hz), 126.7, 1245, 123.1, 121.1, 118.3)c; 17.8
Hz), 110.5 (d,J = 23.2 Hz), 36.5 **F NMR (376 MHz,
Acetonedg) & -72.61 (d, 6FJ = 707.4 Hz), -110.86 (s,
2F)3P NMR(Chloroforme, 162 MHz): & = -139.08 (p,
J=707.6 Hz) ppm. LC/MS (m/z) calculated for
CyoH3gF2IrN,4805.27 found M+, 804.70.

4fd, the general procedure C was followed using
iridium(lll) chloride (178 mg, 0.60 mmol), 2-(3-(te
butyl)phenyl)pyridine2f (287 mg, 1.4 mmol), and a 2:1
mixture of 2-methoxyethanol/water (12 mL) to obtéire
dimer in 60% vyield (232 mg, 0.18 mmol) as yellowico
4fd was synthesized using the dimer (28 mg, 0.022 mmol
4,4'-di-methoxy-2,2'-bipyridyl 6d, 11 mg, 0.048 mmol)
and ethylene glycol (2 mL). 4h was obtained in 999
yield (43 mg, 0.044 mmol) as orange solitH NMR (400
MHz, Acetoneds) 4 8.35 (d, 2H,) = 2.6 Hz), 8.32 (d, 2H]

= 8.1 Hz,), 7.99 — 7.92 (m, 4H), 7.91 — 7.87 (m),2H83
(d, 2H,J = 6.4 Hz), 7.24 (dd, 2H] = 6.4, 2.6 Hz), 7.17
(ddd, 2H,J = 7.3, 5.8, 1.4 Hz), 7.02 (dd, 2d,= 8.0, 2.1
Hz), 6.32 (d, 2H,) = 8.0 Hz), 4.09 (s, 6H), 1.32 (s, 18H).
13C NMR (101 MHz, Acetonek) & 168.5, 168.1, 157.7,
151.5, 149.3, 147.3, 144.9, 143.9, 138.4, 131.8.12

123.4, 121.9, 119.9, 114.1, 111.6, 56.6, 34.2, 3W
NMR (162 MHz, Acetones) 6 -130.19 — -157.39 (hepd,
=707.94 Hz ). Anal. calcd forg@H44FsIrN,O,P: C, 51.79;
H, 4.55; N, 5.75. Found: C, 51.61; H, 4.38; N,45.9
LC/MS (m/z) calculated for £H4.rN,O, 829.31 found
M+, 828.70.
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Complex Amax TSE kca/mol El/ZOx \ E1/2Red Vv Egap eV E1/2(Ir+/lr*) E1/2(|r*/|,—_)
4gb 473 60.4 1.23 -1.23 2.20 -0.97 0.97
4ga 475 60.2 1.81 -1.25 2.64 -0.83 1.39
4gc 476 60.1 1.77 -1.35 2.77 -1.00 1.42
3d 476 60.1 0.98 -1.82 2.21 -1.23 0.39
3h 481 59.4 0.93 -1.58 2.20 -1.27 0.62

3c 488 58.6 1.00 -2.13 2.86 -1.86 0.73
3b 507 56.4 1.11 -2.13 2.76 -1.65 0.63
4dc 516 55.4 1.63 -1.42 2.56 -0.93 1.14
3a 518 55.2 0.78 -2.20 2.75 -1.97 0.55
3e 525 54.5 0.69 -2.27 2.59 -1.90 0.32
3f 528 54.2 0.70 -2.03 2.28 -1.59 0.25
4db 528 54.2 1.66 -1.32 2.46 -0.80 1.14
4cc 540 53.0 1.49 -1.45 2.52 -1.04 1.07
4cb 556 51.4 1.51 -1.37 2.40 -0.89 1.03
afd 560 51.1 1.17 -1.50 2.35 -1.18 0.85
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Figure S1 Parr temperature controller model 4838

Electrochemical Measurements: Ground state redox potential of all complexes were
determined (table S1) by CV. Measured Eq’?, Ereq"’? and Eggp (value determined by CV) was

utilized to calculate excited state potentials using equation 2 and 3.

Ewz IF/IF" = Ey ox— E gap= (eq 2)
E1p IF/Ir = E gap + Ex reg (€0 3)

Table S1 Data from electrochemical measurements
TSE Eip0x  Eip red

complex Amax Kcal/mol \Y \Y
4gb 473 60.4 1.23 -1.23
4ga 475 60.2 1.81 -1.25
4gc 476 60.1 1.77 -1.35
3d 476 60.1 0.98 -1.82
3h 481 59.4 0.93 -1.58

3c 488 58.6 1.00 -2.13
3b 507 56.4 111 -2.13
4dc 516 55.4 1.63 -1.42
3a 518 55.2 0.78 -2.20
3e 525 54.5 0.69 -2.27
3f 528 54.2 0.70 -2.03

E gap
eV
2.20
2.64
2.77
221
2.20
2.86
2.76
2.56
2.75
2.59
2.28

Ew
(IF/1)
-0.97
-0.83
-1.00
-1.23
-1.27
-1.86
-1.65
-0.93
-1.97
-1.90
-1.59

E12
(Irfir)
0.97
1.39
1.42
0.39
0.62
0.73
0.63
1.14
0.55
0.32
0.25
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4db
4cc
4cb
4fd

528
540
556
560

54.2
53.0
514
51.2

1.66
1.49
151
1.17

-1.32 2.46
-1.45 2.52
-1.37 2.40
-1.50 2.35

-0.80
-1.04
-0.89
-1.12

Note: TSE=triplet state energy determined from emission spectra
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Figure S2 Cyclic Voltammogram of 3a-3f, 3h (left) and 4ga-4fd (right)

Potential, V vs. Ag/AgCl
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3CNMR spectrum of 3b
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YENMR spectrum of 3b
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1 H NMR spectrum of 3c
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3CNMR spectrum of 4ga
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3CNMR spectrum of 4gb
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3CNMR spectrum of 4gc
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ENMR spectrum of 4gc
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$PNMR spectrum of 4gc
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3CNMR spectrum of 4db
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3CNMR spectrum of 4dc
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YENMR spectrum of 4dc
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$PNMR spectrum of 4dc
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1 H NMR spectrum of 4cb
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3C NMR spectrum of 4cb
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ENMR spectrum of 4cb
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$IPNMR spectrum of 4ch
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3¢ NMR spectrum of 4cc
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ENMR spectra of 4cc
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$'PNMR spectra of 4cc
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1 H NMR spectrum of 4fd
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3C NMR spectrum of 4fd

-
-
=
L =
~
p— | =
b TE— ”
{5 pE— —
-]
3
b=
96" 95— —
| =
=
-
[--)
=
o
B '%E
R
L =5
TOEr=— — -
IEIT— — |
=
. —4 [
ZE0Zr - = _ =
iZ'ZZI—f _ - f— I
£EEET _
b BET— — ]
EDZET~ - . —
— —
o
S — — .
9:'BET L 2
DERbT-_ ]
LT ERT— L= = I
B EBT— ] — =
B BET—" 1 -0
E6 TSI~
5
60'B5T— — = ~
L S & | 2
& —
_ = i
05891~ 1
= (=]
6E'BT~" = - =
- = —
=
- o
o —
[=1
L 3 |
=
&
=4 |Le .
- =]
~
e
g (=]

549



*PNMR spectrum of 4fd
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